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Abstract: This study explores the effect of introducing additional alloy elements not only in a different
order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon
steel production. A more economical method, described as “pre-alloying”, has been introduced.
The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that
spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on
the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled
3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing,
the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and
inclusion size conform to industry standards.
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1. Introduction

Silicon steel is a soft magnetic material that is widely used in the manufacture of electrical
machinery, motors, and transformers [1]. Production of this low-carbon steel requires careful control of
the oxide inclusions that occur during the steelmaking process [2–4]. One commonly used technique
for refining low-carbon steels is the Ruhrstahl-Heraeus (RH) process [5–7]. The RH refining process
has three stages: (1) decarburization, (2) deoxidization and alloying, and (3) degassing. During the
first stage, oxygen is blasted into the melt to keep the carbon level low. The second stage has two
aims: (1) to bring the oxygen level down before the processing continues, and (2) to ensure the proper
combination of the additional elements introduced to form a new alloy. The third stage also has two
aims: (1) to remove the hydrogen and nitrogen that had been naturally absorbed from the air during
treatment prior to the RH process, and (2) to allow inclusions to float up into the slag.

During deoxidization and alloying, the second stage, aluminum (Al) and ferrosilicon (FeSi) are
frequently used as deoxidizers. When these alloys are added separately, they produce either Al2O3 or
SiO2 inclusions. Zhen et al. pointed out that slabs produced by Al deoxidization are inferior in quality
to those produced by Si deoxidization [8]. This may be in part because SiO2 inclusions (produced by
Si deoxidization) are less likely to cluster than Al2O3 inclusions (produced by Al deoxidization) [9].
When FeSi is added first, the resulting SiO2 inclusions combine with any Al that is subsequently added,
but the reverse does not occur. The behavior of inclusions in melts varies, depending on the sequence
of alloy addition [10].

After deoxidization, conventional alloying occurs, not only with Si and Al but also with Mn.
As an alloying agent, low-carbon ferromanganese (FeMn) is as effective as pure Mn but much more
economical, so it is often used in this stage. In the current study, medium-carbon FeMn, which is even
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less expensive than low-carbon FeMn, was introduced into the melt in the first stage, that is, before the
beginning of decarburization. This fabrication method is referred to in this study as “pre-alloying”.
The disadvantage of pre-alloying is that Mn oxide inclusions begin immediately to form and build up
in the melt. The countervailing advantage, however, is that the Mn that remains after oxides are formed
is available during the second stage to reduce the consumption of costlier low-carbon FeMn. Previous
studies have analyzed the manganese balance between slag and steel in the pre-alloying process
from both thermodynamics and dynamics [11–13]. The yielding rate of FeMn and its influencing
factors has also been investigated [14]. Nevertheless, the evolution of inclusions in silicon steel after
introducing the pre-alloying procedure has rarely been studied. One of the objectives of this study was
to investigate the growth and behavior of the Mn oxide inclusions produced by the early introduction
of medium-carbon FeMn.

The third stage of the RH process is a procedure named “degassing”. Degassing occurs when
argon is blasted into the melt, causing inclusions to float up into the slag. This process is important for
removing the silicon oxide and aluminum oxide inclusions that form during the deoxidization and
alloying stage [15]. Zhang et al. claimed that the smaller inclusions collide with one another to form
larger inclusions, which then float up to the slag where they are absorbed and thus removed from the
melt [16].

The aim of this work is to investigate the impacts of modification of the alloying method on the
inclusion evolution in RH refining of silicon steel, with an emphasis on the composition and size of the
inclusions. The carbon content induced by medium-carbon FeMn addition in pre-alloying was also
probed to make sure it met the industry expectation.

2. Experimental Procedure

RH refining was processed in a 160-t ladle with MgO-C-type lining refractory. The molten steel
in the ladle undergoes the processes of decarburization, deoxidization alloying, and degassing to
obtain a semi-finished product. Samples were taken by drawing 3 kg of steel melt from the industrial
ladle at four key states of RH refining. The first drawing occurred before the start of decarburization
but after medium-carbon FeMn alloy had been added; the second after decarburization had been
completed; the third after FeSi and Al had been introduced for deoxidization/alloying, followed by the
addition of low-carbon FeMn for further alloying; and the fourth after degassing had been completed
(See Figure 1). The four samples were investigated to clarify the formation and evolution of inclusions,
not only in the pre-alloying process but also in the deoxidization and alloying process.
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Each drawing was cooled down to room temperature and allowed to solidify into a cylindrical
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the longitudinal plane at the halfway point of the radius (see Figure 2a). Each of these four sample
sheets (S1, S2, S3, S4) was then electrolyzed in a non-aqueous solution composed of methanol, maleic
anhydride, and tetramethyl ammonium chloride [17]. After 6 hours of electrolysis, a good portion of
the steel matrix had dissolved into the non-aqueous solution. When this solution was passed through
a polycarbonate membrane film filter (open pore size 3 µm), the oxide inclusions from the sample
sheet were deposited on the filter (see Figure 2c) [18]. This filter was coated in platinum to improve
conductivity, and inclusions were then examined in a scanning electron microscope (SEM, Hitachi SU
1510, Hitachi, Tokyo, Japan) with an energy-dispersive X-ray spectrometer (EDS, Hitachi, Tokyo, Japan).
Fifty inclusions from each filter were randomly selected for statistical analysis.
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Figure 2. (a) Sheet cut from the ingot at the halfway point of the radius (“Height direction” and
“Radial direction” are the vertical and horizontal directions of the RH ladle, respectively). (b) Schematic
of non-aqueous solution electrolysis of a steel sample. The anode is a sheet cutting from the sample
and the cathode is a platinum plate. (c) Collection of inclusions separated by vacuum filtration.

3. Results and Discussion

3.1. Analysis of Oxide Inclusions in RH Refining

Inclusions in sample S1 were analyzed using EDS and found to be composed of a MnO-FeO oxide
rich in Fe, which was called 3FeO·MnO according to the average atomic ratio calculated from the
EDS results (see Figure 3a,e). These inclusions were photographed using SEM and were found to be
spherical in all cases.

The images of inclusions in sample S2 were more complex. These inclusions appeared in two
separate spherical forms, one with a shell and the other without (see Figure 3b,c). EDS showed that
these two forms were distinct from one another. The unshelled form was composed entirely of Mn-rich
oxide, which was identified as FeO·zMnO. The average value of z calculated from EDS data is close to
4 (Figure 3e). In the shelled form, the outer shell was also composed of FeO·zMnO, but the average
value of z is close to 2. The inner core, however, was composed of 3FeO·MnO, the same composition
as in the whole sphere of the S1 inclusions (see Figure 3d,e).
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Figure 3. (a) Morphology (black arrow) and EDS spectrum of the spherical inclusions typical of S1.
The Pt peak is derived from the platinum plating that is applied to the inclusions before analysis.
On average, S1 inclusions are smaller than S2 inclusions. (b) Morphology and EDS spectrum of the
inner core (black arrows) and outer shell (red arrows) of the shelled inclusions that occur in S2.
(c) Morphology and EDS spectrum of the unshelled spherical inclusions that also occur in S2.
(d) Mapping analysis of the distribution of Mn, O, and Fe elements in shelled inclusions. Note that
the intensity of Mn and O elements is high in the outer area (shell) and weak in the inner area (core),
but that of Fe is high in the core and weak in the shell. (e) Composition analysis of MnO-FeO oxide
inclusions in S1 and S2. The first two columns on the left show that the Mn/Fe ratio for all S1 inclusions
(calculated to be 0.36 ± 0.09) is at the same level as for the core of shelled inclusions in S2 (0.35 ± 0.05).
The last two columns on the right show that the Mn/Fe ratio for S2 spherical inclusions (average of 4
with maximum 5 and minimum 3) is at the same level as for the shells alone in the S2 shelled inclusions
(average of 2 with maximum 4 and minimum 0.7), and the shell has a wider ratio range from 0.7 to 4.

Above results indicate that the spherical 3FeO·MnO forms a molten-glass-like product before
the melt reaches the solidification temperature and later acts as a heterogeneous nucleation site for
shelled inclusions. Dissolved Mn in the melt diffuses towards 3FeO·MnO to nucleate FeO·zMnO
on 3FeO·MnO. At this stage, such oxides form molten-glass-like products made of FeO·zMnO shell
and 3FeO·MnO core. The solidification temperature of FeO-MnO increases with the increase of
MnO content [19]. Because FeO·zMnO has a higher MnO content and hence a higher solidification
temperature than 3FeO·MnO, FeO·zMnO solidifies first, forming the shell. Subsequently, 3FeO·MnO,
with its lower solidification temperature, forms the solid core, leaving a distinct shell-core structure in
a solid state.
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In sample S2, the ratio (z) of Mn/Fe in FeO·zMnO varies from 0.7 to 4 in shelled inclusions and
from 3 to 5 in spherical FeO·zMnO. When z = 0.7, the composition is close to 2FeO·MnO. When z = 4,
the composition is FeO·4MnO. This indicates that inter-diffusion occurred within the inclusions.
The higher chemical potential of Mn in the oxide shell of S2 inclusions may have resulted in the
diffusion of Mn from the shell into the inner core. Conversely, the higher Fe content in the core diffuses
into the shell. When diffusion leads to z > 3, a distinct interface between shell and core disappears and
spherical FeO·zMnO forms (see Figure 4).
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nucleate FeO·zMnO shell on 3FeO·MnO. 3FeO·MnO forms the solid core after solidification, leaving a
distinct shell-core structure.

When samples S3 and S4 were examined, three different types of Mn-free oxide inclusions had
emerged: SiO2, Al-Si oxide, and Al2O3 (see Figure 5). No MnO-FeO oxides were found either at the
beginning or the end of the third and final (degassing) stage, despite the fact that FeMn had been
added not only in the second stage (traditionally reserved for deoxidization and alloying) but also
in the first stage (traditionally reserved only for decarburization). This means that the pre-alloying
process had not interfered with the level of inclusions in the final product.
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A decrease in size occurred between the second and third stages in all types of oxide inclusions
(see Figure 6), because the larger inclusions had already floated into the slag.
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3.2. Quality and Cost Analysis of the Pre-Alloying Innovation

Carbon content is an important factor in the production of low-carbon silicon steel. The carbon
content in the first stage of the conventional alloying process is in the range of 3.0–4.0 × 10−2 wt. %
for high-quality silicon steel [20,21]. Because of the early addition of medium-carbon FeMn alloy in
the pre-alloying process, the carbon content at the end of first stage was considerably higher than the
level required for high quality steel. The carbon content dropped sharply during the second stage and
reached 1.0 × 10−3 wt. % at the end of RH refinement, a level even lower than that produced in the
conventional alloying process (see Table 1). Thus, the carbon content can be expected to consistently
meet or exceed the industry standard for high quality silicon steel.

Table 1. Chemical compositions of steel samples (wt. %) in different stages of the pre-alloying process
and in the final stage of the conventional alloying process.

Process Point C Si Mn Als

Pre-alloying process

S1 4.4 × 10−2 2.1 × 10−3 6.1 × 10−2 2.0 × 10−3

S2 1.0 × 10−3 2.3 × 10−3 4.9 × 10−2 1.9 × 10−3

S3 5.0 × 10−3 2.6 × 10−1 3.0 × 10−1 3.3 × 10−1

S4 1.0 × 10−3 2.6 × 10−1 3.6 × 10−1 2.8 × 10−1

Conventional alloying process End of RH <5.0 × 10−3 2.5 × 10−1 3.5 × 10−1 2.8 × 10−1

Because MnO-FeO oxides form immediately after the addition of low-cost, medium-carbon FeMn
in the pre-alloying process, part of the added Mn element (about 21%) goes into inclusions during the
first stage. This loss of Mn is compensated by the later addition of high-cost, low-carbon FeMn during
the second stage. The amount of high-cost FeMn alloy needed in the second stage is thus reduced
about 20%, by the previous addition of low-cost, medium-carbon FeMn in the first stage. Based on
the price of the two kinds of FeMn alloys in 2017 [22,23], the overall cost reduction introduced by
pre-alloying amounts to 3%.

4. Conclusions

A new fabrication method of pre-alloying was introduced in the RH refining process of low-carbon
silicon steel. The evolution of inclusions produced by pre-alloying was investigated. The quality of the
final product of RH refining and the cost of the pre-alloying RH process were analyzed. Three main
conclusions were obtained:



Materials 2017, 10, 1206 7 of 8

(1) MnO-FeO inclusions formed as a by-product of pre-alloying. The evolution of the oxide is as
follows: spherical Fe-rich 3FeO·MnO becomes shelled Fe-rich, low-melting point 3FeO·MnO
in the core and Mn-rich, high-melting point FeO·zMnO on the surface of the shell. Some of
shelled inclusions become spherical Mn-rich FeO·zMnO. These inclusions are eliminated at the
beginning of the degassing stage.

(2) Inclusion evolution in pre-alloying RH refining is different from that in conventional RH refining,
but the ingots produced by pre-alloying are of a quality that meets or exceeds industry-wide
specifications with respect to quality, carbon content, and inclusion size.

(3) When pre-alloying is used, the amount of high-cost, low-carbon FeMn alloy required during the
deoxidization/alloying stage is reduced by 20%, thus reducing the overall cost of the process
by 3%.
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