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Abstract: In this study, α-MnO2 and Fe2O3 nanomaterials are prepared on a carbon fiber modified
with carbon nanotubes to produce the nonbinder core–shell positive (α-MnO2@CNTs/CC) and
negative (Fe2O3@CNTs/CC) electrodes that can be operated in a wide voltage window in ultrafast
asymmetrical flexible supercapacitors. MnO2 and Fe2O3 have attracted wide research interests
as electrode materials in energy storage applications because of the abundant natural resources,
high theoretical specific capacities, environmental friendliness, and low cost. The electrochemical
performance of each electrode is assessed in 1 M Na2SO4 and the energy storage properties of the
supercapacitors consisting of the two composite electrodes are determined in Na2SO4 and EMImBF4
electrolytes in the 2 V and 4 V windows. The 2 V supercapacitor can withstand a large scanning rate
of 5000 mV S−1 without obvious changes in the cyclic voltammetry (CV) curves, besides showing a
maximum energy density of 57.29 Wh kg−1 at a power density of 833.35 W kg−1. Furthermore, the
supercapacitor retains 87.06% of the capacity after 20,000 galvanostatic charging and discharging
(GCD) cycles. The 4 V flexible supercapacitor shows a discharging time of 1260 s and specific
capacitance of 124.8 F g−1 at a current of 0.5 mA and retains 87.77% of the initial specific capacitance
after 5000 GCD cycles. The mechanical robustness and practicality are demonstrated by physical
bending and the powering of LED arrays. In addition, the contributions of the active materials to the
capacitive properties and the underlying mechanisms are explored and discussed

Keywords: carbon nanotubes; composite materials; manganese dioxide; flexible supercapacitors;
ionic electrolytes

1. Introduction

Supercapacitors are energy storage devices based on both physical adsorption and
desorption, as well as electrochemical reactions, and have attracted extensive attention
because of advantages such as the fast charging and discharging capability, high power
density, robust cycling stability, and environmental friendliness [1,2]. The electrode ma-
terials, structure, and electrolyte determine the properties of the supercapacitors [3–5].
With regard to the electrode materials, various forms of carbonaceous materials, conduc-
tive polymers, and transition metal oxides are commonly used as the active materials in
supercapacitors [6–9]. In particular, manganese oxide (MnO2) originated in the battery
industry and has been widely used in the area of batteries and supercapacitors that promote
our in-depth understanding and research on this material [10]. It is interesting because
of the natural abundance, environmental friendliness, high theoretical specific capacity,
low cost, and compatibility with other materials in energy storage applications [10–12].
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However, MnO2 electrodes are prone to severe agglomeration and the volume expansion
during electrochemical cycling and the rate capability are low because of the poor conduc-
tivity [13–15]. Therefore, the optimization of MnO2-based materials is crucial for improving
the properties and the power density while maintaining the good energy density.

The integration of MnO2-based electrodes with carbonaceous materials such as graphene
and carbon nanotubes can improve the properties of supercapacitors [16–19]. Carbon nan-
otubes can improve the conductivity, specific capacitance, and ion migration efficiency
of the active materials, and increase the mechanical adhesion strength between the ac-
tive materials and the substrate [20–23]. For example, a mild one-pot reaction has been
demonstrated to synthesize the MnO2/CNTs composite which has a capacity of 201 F g−1

and does not show obvious decay after 10,000 cycles at a current density of 1 A g−1 [17].
The capacity of the MnO2/CNTs-CNFS composite electrode prepared by Wang et al. is
374 F g−1 and 94% of its capacitance is retained after 1000 cycles [24]. The needle-shaped
MnO2-CNTs-CFC composite fabricated by Li et al. by the two-step electrophoretic depo-
sition shows a specific capacity of 381.74 F g−1 and an 85% capacitance retention after
1000 cycles [18]. Therefore, the MnO2@CNTs composite is a potential electrode for su-
percapacitors. Although MnO2@CNTs have been studied, there are few reports on the
preparation of this structure on flexible carbon fiber cloth, and the research of asymmetric
flexible supercapacitors prepared based on this structure has just begun. Furthermore,
a better understanding of the mechanism pertaining to the electrochemical kinetics and
effects of different electrolytes on the electrochemical characteristics of MnO2@CNTs-based
supercapacitors are required in the development of high-performance electrodes [5].

In this study, a novel structure composed of α-phase ultrathin MnO2 films prepared
on a piece of carbon fiber cloth modified with carbon nanotubes (CNTs/CC) is prepared.
The CNTs offer advantages such as a large surface area, efficient ion diffusion, large ac-
tive substance loading, and excellent substrate conductivity to improve the rate as well
as the energy and power densities of the electrode. The α-MnO2@CNTs/CC positive
electrode and Fe2O3@CNTs/CC negative electrodes are prepared (Figure 1) [25] and the
electrochemical properties of the two electrodes are determined in 1 M Na2SO4. An
asymmetrical supercapacitor (ASCs) consisting of the α-MnO2@CNTs/CC as the positive
electrode, Fe2O3@CNTs/CC as the negative electrode, and 1 M Na2SO4 as the electrolyte
is assembled to provide a 2 V window (α-MCNTs//FCNTs-2V). In order to demonstrate
the practicality, a flexible asymmetrical supercapacitor (FASC) with the same electrode
combination but different ionic electrolyte of ionic liquid is constructed for the 4 V win-
dow (α-MCNTs//FCNTs-4V). The electrochemical performance and mechanism of the
electrodes and devices are investigated and discussed.
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2. Materials and Methods
2.1. Materials Preparation

The fabrication process and structure of the α-MnO2@CNTs/CC positive electrode,
Fe2O3@CNTs/CC negative electrode, and α-MCNTs//FCNTs-4V flexible supercapacitor
are shown in Figure 1. The CNTs were prepared on a carbon fiber cloth by chemical vapor
deposition and then the MnO2 and Fe2O3 were fabricated on the CNTs hydrothermally.
The chemicals used were analytical grade.

The carbon fiber cloth was cut into 1× 1 cm2 pieces and cleaned with a nitrogen plasma
(200 W) for 10 min in vacuum. Fe as the seed for carbon nanotubes was electrodeposited on
the carbon fiber cloth in 20 mM Fe(NO3)2 at a current density of 3 mA and CNTs/CC was
then prepared by chemical vapor deposition under nitrogen and methane at 800 ◦C for 2 h.

The α-MnO2 film was deposited on CNTs/CC hydrothermally. Potassium perman-
ganate (0.158 g) was dissolved in 20 mL of deionized water and the clean 1 × 1 cm2

CNTs/CC was placed in the solution in a container made of Teflon. After sealing, the
container was placed in a reactor and heated to 180 ◦C for 12 h. After natural cooling to
room temperature, the product was rinsed with deionized water several times and dried
at 70 ◦C for 12 h. Fe2O3 was prepared fabricated on CNTs/CC by the same method a the
α-MnO2 film except that 2 mmol Fe(NO3)2 and 15 mmol urea were used in the precursor
solution and the hydrothermal reaction proceeded at 120 ◦C for 8 h. The α-MnO2/CC and
Fe2O3/CC electrodes were produced by the same method by direct deposition of the active
materials on the carbon fiber cloth.

2.2. Preparation of Asymmetrical Supercapacitors

Asymmetrical supercapacitors consisting of the α-MnO2-based positive electrode,
Fe2O3-based negative electrode, and the nonwoven fabric separator were prepared. An
aqueous electrolyte was used in the 2 V supercapacitor of α-MCNTs//FCNTs-2V (α-
MnO2@CNTs/CC as the positive electrode and Fe2O3@CNTs/CC as the negative electrode).
The pretreatment involved soaking the separator and electrodes in 1 M NaSO4 for 10 min
and the separator and electrodes were assembled into a CR2032 shell as a sandwiched
structure. The same method used for α-MCNTs//FCNTs-2V was adopted to fabricate α-
M//F-2V (α-MnO2/CC as the positive electrode and Fe2O3/CC as the negative electrode)
and CNTs//CNTs (CNTs/CC as both the positive and negative electrode) for comparison.
To prepare the ultrafast α-MCNTs//FCNTs-4V flexible supercapacitor with a large voltage
window, the nonwoven fabric separator and electrodes were dipped in an ionic liquid
(1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4)) for 10 min. The positive and
negative electrodes were separated and encapsulated with the polyimide tape. Again,
the same technique employed to prepare α-MCNTs//FCNTs-4V was implemented to
fabricate α-M//F-4V (α-MnO2/CC as the positive electrode and Fe2O3/CC as the negative
electrode) for comparison.

2.3. Materials Characterization

The morphology and microstructure were examined by scanning electron microscopy
(SEM) on the 7500F (JEOL, Tokyo, Japan) and the elemental states and composition were
determined by X-ray photoelectron spectroscopy (XPS) using the ESCALAB-250 (Thermo
Fisher Scientific, Waltham, MA, USA). The crystal structure was determined by X-ray
diffraction (XRD, D/max-2550, Rigaku, Tokyo, Japan) and the morphology and lattice of
α-MnO2@CNTs and Fe2O3@CNTs were examined by the transmission electron microscopy
(TEM) on the JEOL2100 (JEOL, Tokyo, Japan) at 200 kV.

2.4. Electrochemical Measurements

The electrochemical assessment was carried out on the CHI660E electrochemical
workstation. In the configuration with 1.0 M Na2SO4 electrolyte, CC, CNTs/CC, and
α-MnO2@CNTs/CC or Fe2O3@CNTs/CC were the working electrodes, whereas a satu-
rated calomel was the reference electrode and platinum wire was the counter electrode.
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Galvanostatic charging/discharging (GCD), cyclic voltammetry (CV), and electrochem-
ical impedance spectroscopy (EIS) were performed in addition to self-discharging and
monitoring of the leakage currents. For the asymmetrical supercapacitor containing 1.0 M
Na2SO4 and ionic liquid as the electrolytes, respectively, GCD, CV, and EIS were performed
on the electrochemical workstation and long-time cycling was carried out on the LAND
supercapacitor testing system.

The specific capacitance of the composite electrodes Cs was calculated by Equation (1)
and the energy density (E) and power density (P) were calculated by Equations (2) and (3),
respectively [26,27]:

Cs =
I × ∆t

m× ∆V
, (1)

E =
C× (∆V)2

2× 3.6
, and (2)

P =
E× 3600

∆t
. (3)

Here, Cs (F g−1) is the specific capacitance, I(A) represents the current or current
density during the GCD process, m(g) is the mass of active materials on the surface of the
electrodes, ∆t(s) denotes the time in the discharging process of the GCD test, and ∆V(V)
stands for the voltage window of the electrodes or asymmetrical supercapacitor in the
GCD test.

3. Results
3.1. Materials Characterization

Figure 2a exhibits the XRD patterns of α-MnO2/CC, Fe2O3/CC, CNTs/CC, α-MnO2@
CNTs/CC, and Fe2O3@CNTs/CC. The peak at 25.74◦ represents carbon, and according
to PDF#44-0141, the peaks at 12.78◦, 18.11◦, 28.84◦, 36.70◦, and 66.69◦ stem from α-MnO2
matching α-MnO2/CC and α-MnO2@CNTs/CC, as shown in Figure 2a [28]. The XRD pat-
terns of the Fe2O3 deposited on the carbon fiber cloth and the CNTs-modified carbon fiber
cloth are shown in the yellow and green curves in Figure 2a, respectively. The two samples
exhibit peaks of Fe2O3 at 35.61◦, 40.85◦, 54.09◦, and 62.45◦, corresponding to the (110),
(113), (116), and (214) planes of α-Fe2O3 (PDF#33–0664), respectively [29]. The XPS survey
spectrum of Figure 2b shows the existence of C, O, and Mn in α-MnO2@CNTs/CC and C, O,
and Fe in Fe2O3@CNTs/CC. Figure 2c shows the Mn 2p spectrum of α-MnO2@CNTs/CC,
revealing peaks at 654.2 eV for Mn 2p1/2 and 642.5 eV for Mn 2p3/2 of MnO2. The satellite
peak (sat) is related to α-MnO2, consistent with previous studies and further confirming the
formation of MnO2 [28]. The H-O-H (531.9 eV) and Mn-O-H (530.2 eV) peaks in Figure 2d
of α-MnO2@CNTs/CC are attributed to the hydroxyl groups and absorbed water, respec-
tively [30–32]. The Fe 2p peaks at 724.58 eV and 710.86 eV in Figure 2e are the Fe 2p peaks of
Fe2O3@TiN/CC representing Fe 2p1/2 and Fe 2p3/2 in α-Fe2O3 [28]. As shown in Figure 2f,
the peaks at 530.0, 531.4, and 532.5 eV of Fe2O3@CNTs/CC arise from O2−, OH−, and
O-C=O, respectively [25], and that at 532.6 eV corresponds to the H-O-H of the adsorbed
water molecules [33]. The peak at 531.4 eV reflects the O-H of the surface or the internal
hydroxyl groups and the chemically adsorbed oxygen [34], and that at 530.0 eV stems from
the O2− in Fe2O3 [35].
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Fe2O3@CNTs/CC; (b) Survey XPS spectra of the α-MnO2@CNTs/CC and Fe2O3@CNTs/CC com-
posite electrodes; High-resolution XPS spectra: (c) Mn 2p of α-MnO2@CNTs/CC, (d) O 1s of α-
MnO2@CNTs/CC, (e) Fe 2p of Fe2O3/CNTs/CC, and (f) O 1s of Fe2O3/CNTs/CC.

Figure 3a–i display the SEM images of CNTs/CC, α-MnO2@CNTs/CC, and Fe2O3@
CNTs/CC at different magnifications. Carbon nanotubes with a diameter of 10–20 nm
are observed on the carbon fiber cloth (Figure 3a–c) to produce a conductive network for
the α-MnO2 nanosheets and Fe2O3 nanodots. The carbon nanotubes are connected in a
staggered and dense way to promote the transfer of electrons, ion extraction and insertion,
and the effective area for the active materials. As shown in Figure 3d–f, the CNTs form a
3D porous skeleton and provide abundant nucleation sites for uniform MnO2 deposition,
while preventing the agglomeration of the active substances during the electrochemical
reaction [27]. Figure 3f shows many micropores in the α-MnO2@CNTs/CC electrode for
enhanced electrolyte circulation in the electrode and reduced contact impedance between
the electrode and electrolyte. According to the SEM images in Figure 3g–i, nanoscale
Fe2O3 is deposited on CNTs/CC to form the Fe2O3@CNTs/CC negative electrode and
the morphological and structural characteristics of the negative electrode are similar to
those of the positive electrode. In the ionic electrolyte, the α-MnO2@CNTs/CC positive
electrode and the Fe2O3@CNTs/CC electrode broaden the voltage window of the flexible
supercapacitor to 4 V, thereby improving the power density without compromising the
energy density of the device [36].
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Figure 3. SEM images of (a–c) CNTs/CC, (d–f) α-MnO2@CNTs/CC, and (g–i) Fe2O3@CNTs/CC at
different magnifications.

The α-MnO2@CNTs and Fe2O3@CNTs core–shell structures were stripped from the
composite electrodes ultrasonically to analyze by TEM. As shown in Figure 4a, the Fe2O3
nanoparticles are densely and uniformly deposited on the carbon nanotubes, forming the
Fe2O3@CNTs nanocomposite with a diameter of about 40 nm. The high-resolution image
in Figure 4b indicates lattice spacings of 0.22 nm and 0.25 nm matching the (120) and (110)
planes of Fe2O3 [37]. Figure 4c,d show that α-MnO2@CNTs composite has a diameter of
about 50 nm, which is different from that of Fe2O3@CNTs, but the general morphology
of the carbon nanotubes is preserved. The high-resolution image of the α-MnO2@CNTs
core–shell structure in Figure 4e reveals lattice spacings of 0.14 nm, 0.31 nm, and 0.24 nm
corresponding to the (300), (101), and (110) planes of α-MnO2, respectively [27,38]. The
core–shell structure comprising the MnO2 film and CNTs is confirmed by the elemental
maps of α-MnO2@CNTs in Figure 4f and the elemental distributions of C, Mn, and O in
Figure 4(f1–f3), indicating that large amounts of Mn and O are uniformly distributed on
the CNTs [28].
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Figure 4. (a) TEM image and SAED pattern and (b) HR−TEM image of the Fe2O3@CNTs core−shell
structure; (c,d) TEM image and SAED pattern, (e) HR−TEM image and (f) The STEM image (left),
total EDS element mapping (right) and the corresponding EDS mappings of C (f1), Mn (f2), O (f3)
elements of α-MnO2@CNTs core−shell structure; (g) the unit cell of α-MnO2; (h) crystal structure of
α-MnO2 with one-dimensional pore morphology and schematic diagram of sodium ion adsorption
and embedding in pore structure.

Figure 4g depicts the unit cell of α-MnO2, and the basic structure of the unit cell is
the eight surfaces [MnO6] formed by the manganese atoms surrounded with six oxygen
atoms, and the common edge of the eight surfaces forms a double chain along the c axis, as
shown in the crystal structure of Figure 4f [39]. The eight surfaces of these double chains
share the apex with the neighboring double chains to form a [2 × 2] tunnel, and this large
tunnel can accept cations with a radius of around 0.15 nm, such as Ba2+, K+, Pb2+, Na+,
and NH4

+, as well as H2O molecules [40]. In the charge and discharge process of the
α-MnO2 electrode material, the conversion of manganese atoms is between +3 valence and
+4 valence, forming two energy storage mechanisms: one is ion adsorption and desorption
on α-MnO2 surface [41]:

(MnO2)surface + Na+ + e− ↔
(
MnO−2 Na+

)
surface (4)

the other is ion insertion and extraction in the inter tunnel of α-MnO2:

MnO2 + Na+ + e− ↔ (MnOONa) (5)
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The first energy storage mechanism comes from the high specific surface area of α-MnO2;
meanwhile, the second is based on the effective structural tunnel of manganese dioxide.

3.2. Electrochemical Properties of The Fabricated Electrodes

As shown in Figures 5a–c and S1, the electrochemical properties of CNTs/CC, α-
MnO2/CC, and α-MnO2@CNTs/CC are similar, but α-MnO2@CNTs/CC shows a longer
discharging time, a larger CV area, a smaller contact resistance, and a higher ion diffu-
sion efficiency than CNTs/CC and α-MnO2/CC. According to Figure S3, Table S1, and
Equation (1), the MnO2 loading of α-MnO2 on the carbon fiber cloth is 0.55 mg per cm2, and
that of α-MnO2 on the carbon fiber cloth with CNTs is 0.73 mg per cm2. The specific capacity
of α-MnO2@CNTs/CC is 367.44 F g−1 at a current density of 2 mA cm−2, which is superior
to that of 188.55 F g−1 of α-MnO2/CC. Hence, the carbon nanotubes play a significant role
in improving the electrochemical activity. The characteristics of the three electrodes shown
in Figure 5a,b are consistent with the Nyquist curves in Figure 5c, and the detailed fits of the
Nyquist curves are shown in Table S2. As shown in Figure 5d, the cyclic voltammograms
of α-MnO2@CNTs/CC between 80 mV s−1 and 2500 mV s−1 show the typical rectangu-
lar shape without obvious deformation, even at a large scanning rate [27]. As shown in
Figure 5e, the GCD curves of α-MnO2@CNTs/CC from 0.25 mA cm−2 to 8.0 mA cm−2

exhibit a similar shape of an isosceles triangle, consistent with the characteristics of the
pseudocapacitance. The corresponding specific capacitances are listed in Table S1.
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To assess the matching between the negative and positive electrodes, electrochemical
tests are performed on Fe2O3@CNTs/CC, as shown in Figure 5f–i. Figure 5f shows the CV
results at scanning rates between 80 mV s−1 and 2500 mV s−1 in the voltage window from
0 to −1 V. The results reflect the abundant active sites boding well for rapid ion extraction
and insertion. GCD curves are acquired from Fe2O3@CNTs/CC from 0.25 mA cm−2 to
8 mA cm−2 (Figure 5g), and the time duration of GCD increases with the decreasing
current densities. The CV and GCD curves of CNTs/CC are shown in Figure S2 for
comparison. At a current density of 0.5 mA cm−2, CNTs/CC shows a discharging time
of 260.1 s, whereas Fe2O3@CNTs/CC shows a discharging time of 958 s, confirming that
the Fe2O3@CNTs composite shows enhanced performance. Figure 5h exhibits the stability
curves of the α-MnO2@CNTs/CC, α-MnO2/CC, and Fe2O3@CNTs/CC electrodes for
10,000 GCD cycles. The specific capacitance of α-MnO2@CNTs/CC is 361.8 F g−1 at a
current density of 3 mA cm−2, and after 10,000 cycles, the attenuation is only 2.6% to
350.9 F g−1, which is better than the observed 89.36% of α-MnO2/CC. The impedance data
of the Fe2O3@CNTs/CC negative electrode before and after 10,000 cycles in Figure 5i are
consistent with the cycling tests showing 93.54% capacity retention. The detailed analysis
and fits of the Nyquist curves in Figure 5i are listed in Table S2.

The leakage current and self-discharging are important parameters. To measure the
leakage current, the composite electrode is the working electrode in the three-electrode sys-
tem, and pulses of 1 V at 2 mA are applied. The leakage currents of the α-MnO2@CNTs/CC
electrode versus time are shown in Figure 6a, disclosing a quick drop to 0.063 mA in a short
time before stabilization in the next 2 h. The leakage current of the positive electrode is less
than 0.34 mA of the 0.086 mA of 3D-NCS-3//N-rGO [42], Ni-Mn LDH/MnO2 [43], and
0.08 mA of a-NENCs [44]. The small leakage current indicates an insignificant electrolyte
diffusion on the electrode surface and fewer side reactions caused by impurities on the
electrode [45]. The self-discharging process of the α-MnO2@CNTs/CC electrode shown
in Figure 6b is monitored by measuring the potentials of the electrode under open circuit
conditions for 21 h [46]. Owing to the leakage current, the potentials of the electrode
decrease gradually with time and the potential drop is significant in the first 2–3 h before
moderation in the subsequent 10 hours. All in all, the potential time curves in Figure 6b
show a stable output potential of 467 mV after 4 h and it remains at about 385 mV after
21 h, which is comparable to previous studies [46].
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The relationship between impedance data and frequency of complex capacitance
model is essential to analyze the supercapacitor electrodes [28]. Figure 6c depicts the
relationship between the real part of the capacitance C′(ω) with the frequency of CNTs/CC,
α-MnO2/CC, and α-MnO2@CNTs/CC, according to Equations S1, S2, and S3. The capaci-
tance change is the one commonly described in the supporting information [47]: when the
frequency decreases, C′(ω) sharply increases, then tends to be less frequency-dependent
and can be displayed by the change available of stored energy. This is characteristic of the
electrode structure and the electrode/electrolyte interface and compares with CNTs/CC
and α-MnO2/CC, while α-MnO2@CNTs/CC is more like an ideal capacitor [48]. As shown
in Figure 6d and calculated from Equations (S1), (S2), and (S4), the time constants of
CNTs/CC, α-MnO2/CC, and α-MnO2@CNTs/CC are 3.83 s, 2.15 s, and 1.21 s, respectively,
so that α-MnO2@CNTs/CC shows a faster energy storage speed of nearly twice that of
α-MnO2/CC and nearly three times that of CNTs/CC [47].

The mechanism of the α-MnO2@CNTs/CC electrode is explored by calculating the
pseudocapacitance ratio based on the CV plots in Figure 7a and k1 (Figure 7b shows the
images corresponding to six groups of random voltages during charge–discharge) [28]
by Equation (6):

i(V)/v1/2 = k1v1/2 + k2, (6)

where i(V) represents the current at the selected voltage (V) according to the CV curves,
v is the CV scanning rate, k1 is equal to the slope of the line obtained by fitting the
connection points in the same voltage in Figure 7b, and k1v determines the current of
pseudocapacitance at different potentials. The pseudocapacitance (red area) is obtained
using k1v as the ordinate and the corresponding voltage as the abscissa, and the calculated
Faraday pseudocapacitance accounts for the total capacitance (red area divided by the total
CV area) from 1 mV s−1 to 5 mV s−1, as shown in Figure 7c,d. The calculated proportions of
the pseudocapacitance are about 77.18% at 1 mV s−1 and 88.31% at 5 mV s−1, indicating that
the pseudocapacitance makes the main contribution to the energy storage characteristics of
α-MnO2@CNTs/CC. The pseudocapacitance contributions of α-MnO2/CC, derived from
previous studies [28], show a 62.4% Faraday pseudocapacitance, accounting for the total
capacitance at 1 mV s−1, which is lower than that of α-MnO2@CNTs/CC. The detailed
pseudocapacitance contribution of the α-MnO2/CC electrode from 1 mV s−1 to 5 mV s−1

are summarized in Figure 4d of [28].
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3.3. Electrochemical Performance of α-MnO2-Based Supercapacitor Devices with
1 M Na2SO4 Electrolyte

To assess the performance of the electrodes systematically, an asymmetrical supercapaci-
tor is assembled with a 1 M Na2SO4 electrolyte, the positive electrode of α-MnO2@CNTs/CC,
as well as a negative electrode of Fe2O3@CNTs/CC separated by a nonwoven fabric mem-
brane. The supercapacitors of α-MnO2@CNTs/CC//Fe2O3@CNTs/CC (α-MCNTs//FCNTs-
2V) and α-MnO2/CC//Fe2O3/CC (α-M//F-2V), shown in Figures 8 and S5, are assembled
in the CR2025 cell. The CV curves of the α-MnO2@CNTs/CC positive electrode and the
Fe2O3@CNTs/CC negative electrode at 300 mV s−1 are drawn in Figure 8a for comparison.
The two CV curves have a similar shape, area, voltage difference, and rapid response, cor-
roborating the electrochemical properties and the same EDLC behavior. Figures 8b,c and S6
show the electrochemical properties of the α-M//F-2V asymmetrical supercapacitor for
comparison, and α-MCNTs//FCNTs-2V shows an obviously longer discharging time and
larger CV area.
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Figure 8. Properties of the α-MCNTs//FCNTs-2V supercapacitor in 1 M Na2SO4 electrolyte: (a) CV
plots of α-MnO2@CNTs/CC and Fe2O3@CNTs/CC at 300 mV s−1; (b) CV plots and (c) GCD
curves of α-MCNTs//FCNTs-2V, α-M//F-2V, and CNTs//CNTs-2V; Electrochemical properties
of α-MCNTs//FCNTs-2V: (d) CV curves and (e) GCD curves of α-MCNTs//FCNTs-2V for different
upper cut-off voltages, (f) CV curves, (g) GCD curves, (h) 20,000 cycles GCD test, and (i) Ragone
plots showing the energy and power densities of the materials.

The CV and GCD curves of α-MCNTs//FCNTs-2V acquired at different voltage
windows are presented in Figure 8d,e. In the 0–2.2 V window, both the CV and GCD curves
do not exhibit obvious deformation, showing that the positive and negative electrodes
match well to broaden the working potential of the device. With increasing scanning
rates, the CV curves do not change, even at 5000 mV s−1, which is indicative of the
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rapid pseudocapacitive reaction on the electrode, as shown in Figure 8f. The GCD curves
do not show much difference for the single electrode (Figure 8g), confirming the good
electrochemical reversibility, pseudocapacitive characteristics, and I-V response. At a
current of 0.5 mA, the specific capacitance is 103.27 F g−1, which is comparable to those
of similar MnO2-based devices reported in the literature, as shown in Table S3. Figure 8h
discloses that, even at a current of 10 mA, the asymmetrical supercapacitor has excellent
cycling ability for 20,000 cycles, and it should be emphasized that such outstanding features
are rarely observed from asymmetrical devices made of MnO2 and Fe2O3. Owing to the
excellent properties of CNTs, the α-MCNTs//FCNTs-2V device retains 87.06% of its initial
capacity, that is better than α-M//F-2V (49.46%) and most other devices shown in Table S3.
According to Equations (2) and (3), the energy and power densities of α-MCNTs//FCNTs-
2V are calculated and shown in Figure 8i and compared to other Mn-based supercapacitors
in Figure 8i and Table S3 [49–52]. The total mass loading of α-MnO2 on CNTs/CC is about
0.73 mg cm−2 and the discharging time at different current densities are used to calculate
the energy and power densities. At a power density of 833.35 W kg−1, the device has
an energy density of 57.29 W h kg−1, and even at 9999.99 W kg−1, the energy density is
still 46.95 Wh kg−1, which is better than those of M-MnO2/rGO//AC (36.4 W h kg−1 at
212.5 W kg−1) [53], rMnCo2O4@rMnO2-2 h//AC (32.4 W h kg−1 at 904.9 W kg−1) [54],
K-MnO2//AC (56 W h kg−1 at 550 W kg−1) [55], and GMS//AC (42.77 W h kg−1 at
30,800 W kg−1) [56].

3.4. The Performance of 4 V Voltage Window α-MnO2-Based Flexible Supercapacitor with Ionic
Liquid Electrolyte

To demonstrate the practical aspects, the ultrafast α-MCNTs//FCNTs-4V flexible
supercapacitor with a large voltage window is fabricated, as described in Section 2.2 and
shown in Figure 9. In the 0–4 V window, the GCD and CV curves do not exhibit obvious
deformation, as shown in Figure 9a,b, confirming that the flexible supercapacitor can adapt
to the broader 4 V window. The CV curves in Figure 9c indicate that the flexible device
has good pseudocapacitive characteristics even at 2400 mV s−1, in addition to a fast I–V
response with a good CV shape. The GCD curves are acquired up to 4 V at different currents
(Figure 9d), and the discharging duration at the same current is more than three times that
of the supercapacitor of α-MCNTs//FCNTs-2V in the aqueous electrolyte. Compared to the
α-M/F-4V flexible supercapacitor in Figure S6, α-MCNTs//FCNTs-4V shows a larger CV
area (Figure 9e) and a longer discharging time (Figure 9f) due to the carbon nanotubes. At a
current of 0.5 mA, the discharging time of α-MCNTs//FCNTs-4V is 1261 s, whereas that of
α-M//F-4V is only 200 s. Figure 9g discloses that the α-MCNTs//FCNTs-4V flexible device
retains 87.77% of the initial specific capacitance after 5000 cycles at a GCD current of 2 mA,
thus faring better than α-M//F-4V (78.95%) and most other devices listed in Table S4.

Figure 9h summarizes the corresponding specific capacitances of the α-MCNTs//
FCNTs-4V and α-M//F-4V-based flexible device at different currents (from 0.5 to 6.0 mA2).
The specific capacitances of α-MCNTs//FCNTs-4V are 124.8, 107.5, 90, 75, 60, 56.3, and
52.5 F g−1 at currents of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 mA, respectively. The electrochem-
ical results of α-M//F-4V as the control are shown in Figure S6d, and the specific capaci-
tances are 93.5, 72.2, 53.0, 35.9, 23.6, 13.5, and 10.8 F g−1 at currents of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0,
and 6.0 mA, respectively. Even though the charge current reaches 6 mA, the specific capacity
of the CNTs-modified electrode retains 42.1% of the capacity at 0.5 mA. In comparison, for
α-MnO2/CC//Fe2O3/CC, only 13.3% capacity is retained when the currents are changed
from 0.5 mA to 6 mA, thus providing evidence that the flexible supercapacitor has good rate
ability with the aid of CNTs. The energy densities of the α-MnO2@CNTs/CC-based flexible
device are 166.7 Wh kg−1 at 3000.0 W kg−1 and 116.7 Wh kg−1 at 6000.0 W kg−1, which
are superior to those of MnOx/N-rGOae in [BMP][DCA] + K4[Fe(CN)6], with an energy
density of 44.68 Wh kg−1 at 1121.6 W kg−1 and a voltage window of 3 V [57]. A more
detailed comparison is shown in Table 1, and the results confirm that α-MnO2@CNTs/CC
with the EMImBF4 electrolyte produce high energy and power densities [58–61].
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Figure 9. Electrochemical properties of the α-MCNTs//FCNTs-4V flexible supercapacitor in the
EMImBF4 electrolyte: (a) CV plots and (b) GCD curves for different potential windows; (c) CV curves
acquired at different scanning rates; (d) GCD plots obtained at different currents; Properties of the
α-M//F-4V and α-MCNTs//FCNTs-4V flexible supercapacitor: (e) CV curves obtained at a scanning
rate of 50 mV s−1, (f) GCD plots measured at a current of 2 mA, (g) 5000 cycles GCD evaluation, and
(h) first cycle-specific capacitances measured at different currents; (i) Two assembled flexible ASCs in
parallel powering the programmable LED arrays and with the ASCs bent at different angles.

Figure S6 shows the Nyquist plots of α-M//F-4V before and after 5000 cycles. After
5000 cycles, the axial intercept increases from 6.32 Ω to 6.69 Ω. The radius of the semicircle
in the first half of the impedance spectrum becomes larger, indicating that the specific capac-
itance decreases with the increasing charge transfer resistance. The slope of the straight line
in the second half becomes smaller, implying that the charge diffusion resistance becomes
smaller and the manganese dioxide structure collapses after charging and discharging.
Figure 9i and Figure S7 show that the flexible supercapacitor can tolerate large mechanical
bending at a large angle, and that different bending angles have little effect on the device
performance. After charging at a high current for 10 s, two flexible devices in a series can
light up the LED array consisting of electronic circuits and 11 × 44 small LEDs. The results
unambiguously demonstrate that the ultrafast flexible supercapacitor has a wide voltage
window and large commercial potential in energy storage systems.
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Table 1. Comparison of the specific capacitances, energy densities, power densities, and capacitive
retention of ionic liquid electrolyte-based supercapacitors.

Electrodes Electrolytes Potential
Window (V)

Specific
Capacitance

(F g−1)

Energy Density
(Wh kg−1)

Power Density
(W kg−1)

Capacitive
Retention Refs

MnOx/N-rGOae [BMP][DCA] +
K4[Fe(CN)6] 3 V 144.45 44.68 1121.6 85.3% (after

20,000 cycles) [57]

NiO/rGO EMIBF4 +
LiTFSI 4 V 56.7 146 1000 83.2% (after

4000 cycles) [58]

Peanut-shell-derided
AC

Mg(Tf)2 +
EMITf 2 V 189 26 57,000 72% (after

10,000 cycles) [59]

NF/CNT/Au/MnO2 [Bmim]PF6/DMF 3 V - 67.5 593.8 - [60]

Mn3O4
NDs@NG//APDC EMIMBF4 4 V 56 124 999.3 82.4% (after

20,000 cycles) [61]

α-MCNTs//FCNTs-
4V EMIMBF4 4 V 124.8 166.7 3000.0 87.77% (after

5000 cycles) This work

α-M//F-4V EMIMBF4 4 V 78.2 160.4 2000.0 78.95% (after
5000 cycles) This work

4. Conclusions

Nanoscale MnO2 and Fe2O3 are fabricated on a conductive carbon fiber cloth mod-
ified with CNTs to form flexible electrodes for high-performance supercapacitors. The
2 V supercapacitor comprises the positive α-MnO2@CNTs/CC electrode and the negative
Fe2O3@CNTs/CC in 1 M Na2SO4, whereas the 4 V ultrafast flexible supercapacitor uses the
EMImBF4 electrolyte. The electrochemical characteristics and mechanisms in the different
electrolytes are evaluated systematically. The results reveal the fast I-V response, outstand-
ing pseudocapacitive characteristics, and excellent electrochemical reversibility due to the
enhanced ion transfer efficiency between the electrodes and electrolytes, as well as the miti-
gated agglomeration of the nanomaterials. The α-MnO2@CNTs/CC and Fe2O3@CNTs/CC
electrodes with excellent properties have a large potential in energy applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12122020/s1, Figure S1. Electrochemical properties of α-
MnO2/CC: (a) CV curves acquired at different scanning rates and (d) GCD curves obtained at
different current densities; Figure S2. (a) CV curves obtained at a scanning rate of 600 mV s−1 and
(b) GCD curves acquired at a current density of 0.25 mA cm−2 from CNTs/CC and Fe2O3@CNTs/CC;
Electrochemical properties of CNTs/CC: (c) CV curves acquired at different scanning rates and (d)
GCD curves obtained at different current densities; Figure S3. Specific capacitances of α-MnO2/CC
and α-MnO2@CNTs/CC at different current densities; Figure S4. Electrochemical properties of the
α-M//F-2V supercapacitor in 1 M Na2SO4 electrolyte: (a) CV curves acquired at a scanning rate
of 300 mV s−1, (b) GCD curves obtained at a current of 3 mA with different upper cut-off voltages,
(c) CV curves acquired at different scanning rates, and (d) GCD curves obtained at different cur-
rents; Electrochemical properties of CNTs/CC//CNTs/CC in 1 M Na2SO4 electrolyte: (e) CV curves
acquired at different scanning rates and (f) GCD curves obtained at different currents; Figure S5. Elec-
trochemical properties of the α-M//F-4V flexible supercapacitor in EMImBF4 electrolyte: (a) GCD
curves, (b) CV curves for different upper cut-off voltages, (c) CV curves acquired at different scanning
rates, and (d) GCD curves obtained at different currents; Figure S6. Nyquist plots of the flexible
hybrid supercapacitor for the 4 V voltage window before and after 5000 cycles; Figure S7. (a) CV plots,
(b) GCD curves, and (c) Nyquist plots with different bending angles; Table S1. Specific capacitances
of α-MnO2/CC and α-MnO2@CNTs/CC in 1 M Na2SO4; Table S2. Important EIS parameters of the
electrodes in Figure 5c,j; Table S3. Comparison of the electrochemical properties of MnO2-based
supercapacitors. References [47,49–56,62] are cited in the supplementary materials.
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