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Characterization of a five-
microRnA signature as a prognostic 
biomarker for esophageal 
squamous cell carcinoma
Jun Yu1,3, Ming Zhu1,3, Min Lv1, Xiaoliu Wu1, Xiaomei Zhang1, Yuanying Zhang1, Jintian Li1 & 
Qin Zhang2*

This study aims to identify a miRNAs signature for predicting overall survival (OS) in esophageal 
squamous cell carcinoma (ESCC) patients. MiRNA expression profiles and corresponding clinical 
information of 119 ESCC patients were obtained from NCBI GEO and used as the training set. 
Differentially expressed miRNAs (DEmiRNAs) were screened between early-stage and late-stage 
samples. Cox regression analysis, recursive feature elimination (RFE)-support vector machine 
(SVM) algorithm, and LASSO Cox regression model were used to identify prognostic miRNAs and 
consequently build a prognostic scoring model. Moreover, promising target genes of these prognostic 
miRNAs were predicted followed by construction of miRNA-target gene networks. Functional relevance 
of predicted target genes of these prognostic miRNAs in ESCC was analyzed by performing function 
enrichment analyses. There were 46 DEmiRNAs between early-stage and late-stage samples in the 
training set. A risk score model based on five miRNAs was built. The five-miRNA risk score could classify 
the training set into a high-risk group and a low-risk group with significantly different OS time. Risk 
stratification ability of the five-miRNA risk score was successfully validated on an independent set 
from the Cancer Genome Atlas (TCGA). Various biological processes and pathways were identified to 
be related to these miRNAs, such as Wnt signaling pathway, inflammatory mediator regulation of 
TRP channels pathway, and estrogen signaling pathway. The present study suggests a pathological 
stage-related five-miRNA signature that may have clinical implications in predicting prognosis of ESCC 
patients.

According to world statistics, esophageal cancer is among the ten most frequent cancers globally1. Its two main 
histological types are esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. ESCC is the 
principal type and accounts for over 90% of esophageal cancer cases in China2. Approximately 398,000 ESCCs are 
reported globally in 20123. It has a poor prognosis, with overall five-year survival of less than 20%4.

MicroRNAs (miRNAs) are endogenous small noncoding RNAs, fine-tuning expression of genes in 
sequence-depending manner5. Growing studies have demonstrated that miRNAs play a role in initiation and 
progression of ESCC through regulating expression of oncogenes and tumor suppressors6,7. Prognostic applica-
tion of miRNAs in ESCC has attracted recent interest. For instance, Chen et al. find a prognostic four-miRNA 
signature through analyzing miRNA expression profile of 119 ESCC samples by microarray8. There is evidence 
that miR-148 is associated with disease-free survival and overall survival (OS) in ESCC patients and could serve 
as a prognostic biomarker9. Additionally, circulating plasma miR-16 and miR-21 are of prognostic value for ESCC 
patients10. Furthermore, a recent study by Mao et al. demonstrates potential application of a six-miRNA signature 
for predicting survival of ESCC patients11. However, associations of miRNAs with prognosis of ESCC patients 
have not been fully elucidated.
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Since pathological stage is an important prognostic indicator for ESCC, this study derived a prognostic 
five-miRNA signature from the differentially expressed miRNAs (DEmiRNAs) between early-stage and late-stage 
ESCC samples by using Cox regression analysis, recursive feature elimination (RFE)-support vector machine 
(SVM) algorithm, and LASSO Cox regression model. Moreover, potential target genes of the five miRNAs were 
predicted and miRNA-target gene networks were built. Function analysis was performed for these target genes to 
provide insights into the roles played by the five miRNAs in the molecular mechanisms of ESCC.

Methods
Retrieval of public data. This study included a training set and a validation set. GSE43732 was used as the 
training set of this study, including miRNA expression profiles of tumor tissue samples from 119 ESCC patients 
with clinical information downloaded from National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) based on Agilent-038166cbc_human_ miR18.0 platform (https://www.ncbi.nlm.
nih.gov/geo/queryacc.cgi?Acc=GPL1654). The validation set consisted of miRNA expression data of 93 ESCC 
tissue samples with the corresponding clinical information downloaded from The Cancer Genome Atlas (TCGA) 
data portal (https://gdc-portal.nci.nih.gov/; IlluminaHiseq platform).

Clinical characteristics of all 119 ESCC patients in GSE43732 were shown in Table 1, and underwent uni-and 
multi-variate Cox regression analysis by using survival package12 of R. The clinical factors with log-rank 
p-value < 0.05 in uni-variate Cox regression analysis were further included in multi-variate Cox regression anal-
ysis. As a result, pathological stage was identified to be an independent prognostic factor (log-rank p < 0.05, Fig. 1 

Clinical characteristics
GSE43732 
(N = 119)

Uni-variate cox regression Multi-univariate cox regression

HR 95%CI P-value HR 95%CI P-value

Age (mean ± SD) 59.03 ± 8.93 1.027 0.999–1.057 0.06 — — —

Gender (male/female) 98/21 0.827 0.468–1.461 0.51 — — —

Pathologic grade (poorly/moderately/
well) 32/64/23 0.819 0.575–1.169 0.27 — — —

Pathologic stage (I/II/III) 6/47/66 1.900 1.225–2.946 <0.01 1.512 1.175–2.614 0.01

Pathologic N (N1/N2/N3) 8/20/62/29 1.126 0.838–1.514 0.43 — — —

Pathologic T (T0/T1/T2/T3) 54/42/13/10 1.443 1.143–1.821 0.02 1.243 0.915–1.688 0.16

Tumor location (lower/middle/upper) 36/69/14 1.104 0.755–1.614 0.61 — — —

Alcohol (yes/no) 74/45 1.053 0.656–1.689 0.83 — — —

Tobacco (yes/no/reformed) 80/39 0.859 0.532–1.388 0.54 — — —

Death (dead/alive) 46/73 — — — — — —

Overall survival days (months, 
mean ± SD) 37.06 ± 24.25 — — — — — —

Table 1. Clinicopathological characteristics of ESCC patients and identification of prognostic clinical factors. 
SD, standard deviation.

Figure 1. Kaplan-Meier curves for overall survival of patients in GSE43732 classified by pathological stage.
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and Table 1) in multi-variate Cox regression analysis. According to pathologic stage, all patients of GSE43732 
were separated into an early-stage group (stage I-II) and a late-stage group (stage III).

Screening DEmiRNAs between early-stage and late-stage samples. MiRNA-expression data 
of GSE43732 and the TCGA set was subject to unit scale normalization and median scale normalization as 
described previously13. Briefly, unit scale normalization was aimed to acquire samples with a norm scaled to 1 
using the following formula:

For a given sample vector v = (v1, …, vn)

= .v v
v
1

normed
2
2

v 2
2 means the l2 norm of v, which is obtained using sqrt(sum(data2)) function of R.
Median scale normalization was conducted using the following two equations.
For a give feature vector x = (x1, …, xn):

= − ∈mad x median x median x x x( ) ({ ( ) , })i i

The median absolute deviation (mad) is used to estimate variability of a uni-variate sample.

= − .x x median x
mad x

( ( )) 1
( )scaled

Following data normalization, differential expression analysis was performed between early-and late-stage 
samples in GSE43732 using limma package https://bioconductor.org/packages/release/bioc/html/limma.html) 
of R. The miRNAs with FDR < 0.05 and |log2FC| > 0.263 were identified as significant DEmiRNAs, followed 
by two-way hierarchical clustering analysis based on centered pearson correlation14 algorithm with pheatmap 
package of R.

SVM analysis. We employed survival package of R to conduct uni-variate Cox regression analysis to select 
the miRNAs significantly associated with OS in GSE43732 from the pre-selected DEmiRNAs, using log-rank 
p < 0.05 as the cutoff. Subsequently, we identified optimal feature miRNAs from these OS-related miRNAs 
within GSE43732 set by implementing RFE algorithm with caret package15 of R. Finally, SVM classifier (core: 
Sigmoid Kernel; cross: 100-fold cross validation) was built using the optimal feature miRNAs with SVM func-
tion16 of e1071 package of R. The classifier was used to distinguish early-stage samples from late-stage sam-
ples in GSE43732 and the TCGA set, respectively. Efficacy of the classifier was evaluated by concordance index 
(C-index)17, Brier score18, logRank p-value of cox-PH regression, and a number of receiver operating character-
istic (ROC) curve-related metrics including area under ROC curve (AUROC), sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV).

Definition of a prognostic scoring model. In order to build a risk scoring model for survival prediction 
in ESCC patients, initially, we used the fore-mentioned optimal feature miRNAs to fit the LASSO Cox regression 
model for identification of optimal predictive miRNAs by employing penalized package of R. Optimal lambda 
value was calculated via a 1,000 cross-validations. Consequently, LASSO Cox regression coefficients and expres-
sion levels of the identified optimal predictive miRNAs were used to establish a prognostic scoring model as 
follows:

∑= ×Risk score coef ExpDEmiRNAs DEmiRNAs

Using the prognostic model, risk scores were calculated for all patients within GSE43732. Using median risk 
score as the threshold, GSE43732 was separated into a high-risk group and a low-risk group. The two risk groups 
were compared for OS by using Kaplan-Meier curves19 and log-rank test. ROC curves were applied to estimate 
predictive value of the miRNAs-based prognostic model. To validate prognostic capability of the model in the 
TCGA set, similarly, the TCGA set was divided into a high-risk group and a low-risk group according to median 
risk score. Similarly, OS of the two risk groups was compared using Kaplan-Meier and log-rank methods.

Function analysis. As described above, the TCGA set was dichotomized by risk score into a high-risk group 
and a low-risk group. Using paired mRNA-seq data of miRNA-seq data of all 93 ESCC samples in the TCGA set, 
we screened differentially expressed genes (DEGs) between the two risk groups of the TCGA set. The cutoff for 
selection of DEGs was set at FDR < 0.05 and |log2FC| > 0.263. Besides, target genes of the identified prognos-
tic miRNAs were predicted using starBase V3.020 (a http://starbase.sysu.edu.cn/). We reserved the target genes 
that were identified by at least one of five miRNA target prediction programs21 including targetScan (http://
www.targetscan.org), picTar (http://pictar.mdc-berlin.de/), RNA22 (http://cbcsrv.watson.ibm.com/rna22.html), 
PITA (http://genie.weizmann.ac.il/pubs/mir07/) and miRanda (http://www.microrna.org/microrna/home.do). 
The overlapped genes between the identified target genes and the selected DEGs were chosen to construct a 
miRNA-target gene network with these prognostic miRNAs using Cytoscape software22. For genes in the network, 
gene ontology (GO)23 function and Kyoto Encyclopedia of Genes and Genomes24 pathway enrichment analyses 
were performed using database for annotation, visualization, and integrated discovery (DAVID)25 tool. When 
p-value <0.05, a GO term or a pathway was considered significant.
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Results
Identification of DEmiRNAs. Overall study design was depicted in Fig. 2. GSE43732 (training set) com-
prised of 53 early-stage (stage I-II) samples and 66 late-stage (stage III) samples. MiRNAs expression profiles 
of these samples were analyzed. A total of 46 DEmiRNAs between the early-stage and late-stage samples were 
acquired, consisting of 6 down-regulated miRNAs and 40 up-regulated miRNAs in the late-stage samples com-
pared to the early-stage samples (Fig. 3A). The two-way hierarchical- clustering heatmap showed that expression 
patterns of these DEmiRNAs were obviously different in the early-stage and late-stage samples (Fig. 3B).

Definition of a SVM classifier of 10 miRNAs. Using data of GSE43732, we performed uni-variate Cox 
regression analysis to identify OS-related miRNAs from the identified 46 DEmiRNAs. As a result, 12 significant 
miRNAs (log-rank p < 0.05) were obtained. We then applied the RFE algorithm to filter the 12 OS-related miR-
NAs in order to identify the optimal combination of feature miRNAs in GSE43732. Finally, 10 miRNAs (maximal 
accuracy = 0.846, minimal RMSE = 0.0826) were identified as the optimal feature miRNAs to construct the clas-
sification model using an SVM (Fig. 4).

The constructed SVM classifier was applied on both GSE43732 and the TCGA set (validation set). As shown 
in Fig. 5A,B, the classifier could successfully differentiate early-stage samples from late-stage samples in both two 
datasets. Moreover, there was significant difference in OS time between predicted early-stage and late-stage sam-
ples in both two datasets (GSE43732, p-value = 1.05E−03; TCGA set, p-value = 1.47E−03, Fig. 6A,B). GSE43732 
generated C-index of 0.867, Brier score of 0.0542 and AUROC of 0.948, while the TCGA set generated C-index of 
0.819, Brier score of 0.0962 and AUROC of 0.902 (Table 2, Fig. 6A,B). These results illustrate that the classification 
model based on the 10 miRNAs could accurately discriminate between early-stage and late-stage ESCC samples.

Construction of a prognostic scoring model based on five miRNAs. To construct a risk score model 
for predicting survival in ESCC, we used the above-mentioned 10 feature miRNAs to fit the LASSO Cox regres-
sion model. With parameter lambda of 8.153 obtained by performing 1000 cross-validations, we identified a 
prognostic panel of five miRNAs (Table 3), including miR-181c-5p, miR-195-5p, miR-203, miR-212-3p and miR-
28-5p. A prognostic prediction model was developed based on the five miRNAs as follows:

Figure 2. Graphic demonstration of DEmiRNAs. (A) Volcano plot of effect size (log2FC) and −log10(FDR) of 
miRNAs. Blue round spots represent DEmiRNAs, and black round spots represent non-DEmiRNAs. Horizontal 
dash line indicates FDR < 0.05, and two vertical dash lines indicate |logFC| > 0.263. (B) A heatmap for two-way 
hierarchical clustering analysis of DEmiRNAs.

https://doi.org/10.1038/s41598-019-56367-1


5Scientific RepoRtS |         (2019) 9:19847  | https://doi.org/10.1038/s41598-019-56367-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

= . ×

+ . × + − .

× + . ×

+ . ×

‐ ‐

‐ ‐ ‐

‐ ‐ ‐ ‐ ‐

‐ ‐ ‐

Risk score (0 0368) Exp

(0 0831) Exp ( 0 1629)

Exp (0 0894) Exp

(0 0489) Exp

hsa mir181c 5p

hsa mir 195 5p

hsa mir 203 hsa mir 212 3p

hsa mir 28 5p

Figure 3. RFE algorithm optimization process. The horizontal axis is the number of selected miRNAs, and the 
vertical axis is cross-validation accuracy. When 10 feature miRNAs are selected, the model has the highest accuracy.

Figure 4. Scatter plot for early-stage and late-stage samples predicted by the SVM classifier in the training set 
(A) and the validation set (B).
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Figure 5. Kaplan-Meier survival curves (left) and ROC curves (right) to evaluate the SVM classification model 
based on ten miRNAs in the training set (A) and the validation set. (B) Patients are stratified into an early-stage 
group and a late-stage group by the classification model.

Figure 6. Kaplan-Meier survival curves (left) and ROC curves (right) to evaluate the five-miRNA prognostic 
signature in the training set (A) and the validation set. (B) Patients are separated into a high-risk group and a 
low-risk group by risk score.
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With median risk score as threshold, GSE43732 was divided into a low-risk group and a high-risk group. 
OS time was significantly different between the two risk groups (p-value = 4.401E−04), with AUC of 0.952. 
These results suggest that the five-miRNA risk score could predict survival in ESCC patients. Moreover, the 
TCGA set was separated by the risk score model into two risk groups with significantly different OS time 
(p-value = 4.282E−02, AUC = 0.914, Fig. 7). These observations showed that prognostic value of the five-miRNA 
risk score was successfully validated in the TCGA set.

Functional annotation for target genes of the five prognostic miRNAs. Using paired mRNA-seq 
data of miRNA-seq data of the TCGA set, 684 DEGs were found between the high-risk and low-risk samples of 
the TCGA set (FDR < 0.05 and log2FC| > 0.263), consisting of 526 up-regulated genes and 158 down-regulated 
genes in the high-risk samples relative to the low-risk samples. Out of these DEGs, the genes that were pre-
dicted to be target genes of the five prognostic miRNAs by using StarBase software were reserved. A total of 228 
miRNA-target gene pairs were obtained and then used to construct a miRNA-target gene network (Fig. 8). The 
genes in the network were functionally related to 18 GO biological process (BP) terms, such as positive regulation 
of inflammatory response and Wnt signaling pathway (Table 4). Regarding KEGG pathways, cGMP-PKG sign-
aling pathway, gastric acid secretion, vascular smooth muscle contraction, inflammatory mediator regulation 
of TRP channels, estrogen signaling pathway, pathways in cancer and aldosterone synthesis and secretion were 
important for these genes (Table 4).

Discussion
EC is among the five most common causes of cancer-related death in China26. ESCC is the most common subtype 
of EC in China27. Accumulating evidence reveals that investigating esophageal carcinogenesis-related miRNAs 
is potentially useful for developing prognostic biomarkers28,29. The present study used miRNA expression pro-
files of ESCC samples from GEO to identify prognostic miRNAs. Total 46 DEmiRNAs were found between the 
early-stage and late-stage samples. A classification model based on 10 miRNAs for pathological stage was built 
by using RFE-SVM method. The SVM classifier performed well in classifying all ESCC samples into early-stage 
and late-stage groups on both GSE43732 set and the TCGA set, as evidenced by values of C-index, Brier score, 
AUROC, sensitivity, specificity, PPV and NPV. Moreover, by using LASSO Cox regression model, five prognostic 
miRNAs (miR-181c-5p, miR-195-5p, miR-203, miR-212-3p and miR-28-5p) were identified. The five-miRNA 
risk score could dichotomize the training set (GSE43732 set) into two risk groups with significantly different OS 
time. Moreover, prognostic capability of the five-miRNA risk score was successfully confirmed in an independent 
validation set (TCGA set).

Down-regulated miR-181c-5p is found in EC tissues compared to adjacent normal tissues30. MiR-181c-5p is 
observed to be dys-regulated in patients with pancreatic cancer relative to healthy controls and be significantly 
up-regulated in pancreatic cancer cases in comparison with chronic pancreatitis controls31. Up-regulation of 
miR-195-5p is reported in plasma of patients with laryngeal squamous cell carcinoma compared to healthy sub-
jects32. Circulating miR-195-5p has been found to serve as a promising prognostic biomarker in head and neck 
cancer patients, with high expression indicative of poor prognosis33. There is evidence that miR-203 is associated 
with OS in esophageal adenocarcinoma patients9. Thomas et al. report that miR-203 has an oncogenic activity 
in pancreatic cancer and maybe a prognostic biomarker34. Down-regulated expression of miR-212-3p is related 
to radio-resistance in nasopharyngeal carcinoma35. Liu et al. suggest that miR-212-3p exerts an inhibitory effect 
on glioblastoma cell proliferation through targeting serum and glucocorticoid-inducible kinase 336. miR-28-5p 
is observed to be decreased in serum and tumor specimens of patients with renal cell carcinoma, and plays a 

Datasets
C 
index

Brier 
score Log rank P

ROC

AUROC Sensitivity Specificity PPV NPV

Training set 
(GSE43732, 
N = 119)

0.867 0.054 1.05 × 10−3 0.948 0.755 0.879 0.833 0.817

Validation 
set (TCGA, 
N = 93)

0.819 0.096 1.47 × 10−3 0.902 0.806 0.710 0.847 0.747

Table 2. Effectiveness evaluation of the classifier of ten miRNAs on training set and validation set. ROC, 
receiver operating characteristic curve; AUROC, area under the receiver operating characteristic curve; PPV, 
positive predictive value; NPV, negative predictive value.

miRNA coefficient
Hazard 
ratio 95%CI P-value

miR-181c-5p 0.0368 1.129 1.085–1.510 0.041

miR-195-5p 0.0831 1.116 1.083–1.506 0.0471

miR-203 −0.1629 0.789 0.618–0.906 0.0156

miR-212-3p 0.0894 1.204 1.135–1.551 0.0151

miR-28-5p 0.0489 1.095 1.012–1.493 0.0454

Table 3. The five-miRNA signature for survival prediction.

https://doi.org/10.1038/s41598-019-56367-1
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tumor-suppressive role in this cancer37,38. To the best of our knowledge, this is the first time that the five-miRNA 
signature is suggested for survival prediction of ESCC patients. The prognostic model based on the five-miRNA 
signature enables differentiation of patients at high risk of mortality from patients at low risk of mortality, thus 
paving a way for development of personalized therapies.

To gain an understanding of functional roles of the five signature miRNAs in ESCC, we constructed a 
miRNA-target gene network using these miRNAs and their target genes, and analyzed possible biological pro-
cesses and signaling pathways that involve these target genes. Results showed that the five miRNAs might be 
functionally related to Wnt signaling pathway, cGMP-PKG signaling pathway, inflammatory mediator regulation 
of TRP channels pathway, several inflammation- related biological processes, and estrogen signaling pathway. 
Abnormal activation of WNT signaling pathway contributes to esophageal tumorigenesis39. Recently, shi et al. 
uncover that up-regulated circRNAs are implicated in cGMP-PKG signaling pathway in ESCC40. TRP channels 
are associated with tumorigenesis and may represent promising therapeutic targets41. TRPC6 channel highly 
expressed in ESCC is critical for cell proliferation and cell cycle42. It has been established that inflammation plays 
an important role in cancer progression43. Several inflammatory biomarkers, such as neutrophil/lymphocyte 
ratio, platelet/lymphocyte ratio and lymphocyte/monocyte ratio have shown prognostic value in ESCC patients44. 
A recent study demonstrates that estrogen suppresses proliferation of human ESCC cells via estrogen-Ca2+ signa-
ling pathway45. Nevertheless, further investigations are necessary to confirm these findings of our study.

conclusion
In summary, our study identified a pathological stage-related five-miRNA signature as a promising predictor of 
OS for ESCC patients. Several biological processes and signaling pathways are unveiled to show that these miR-
NAs may participate in various molecular mechanisms of ESCC. Other independent cohorts of large sample size 
are needed to further validate prognostic value of the five-miRNA signature in ESCC.

Figure 7. A nomogram combining pathological stage and RS status for predicting prognosis of ESCC patients. 
(A) total points of pathological stage and RS status are used to decide probability of 5-year OS of each individual 
patient. (B) Calibration plots of nomogram for predicting 5-year OS.
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Figure 8. MiRNA-mRNA networks. Triangular nodes stand for miRNAs, and round nodes stand for mRNAs. 
Colors of nodes from green to red indicate values of log2FC.

Category Term
Count of 
genes P-value

GO biology process

Cytokine-mediated signaling pathway 8 2.70 × 10−4

Positive regulation of cell migration 8 2.00 × 10−3

Negative regulation of angiogenesis 5 2.95 × 10−3

Negative chemotaxis 4 4.16 × 10−3

Establishment of skin barrier 3 1.26 × 10−2

Melanocyte differentiation 3 1.55 × 10−2

Signal transduction 20 1.56 × 10−2

Thyroid gland development 3 2.37 × 10−2

Mesenchymal-epithelial cell signaling 2 2.85 × 10−2

Cornification 2 2.85 × 10−2

Transcription, DNA-templated 28 3.24 × 10−2

Positive regulation of inflammatory response 4 3.30 × 10−2

Wnt signaling pathway 6 3.43 × 10−2

Blood vessel remodeling 3 3.76 × 10−2

Lung alveolus development 3 4.20 × 10−2

Regulation of cell shape 5 4.59 × 10−2

Positive regulation of glucose transport 2 4.70 × 10−2

Negative regulation of cell cycle 3 4.89 × 10−2

KEGG pathway

cGMP-PKG signaling pathway 7 5.21 × 10−3

Gastric acid secretion 5 6.31 × 10−3

Vascular smooth muscle contraction 6 6.56 × 10−3

Inflammatory mediator regulation of TRP 
channels 5 1.73 × 10−2

Estrogen signaling pathway 5 1.79 × 10−2

Pathways in cancer 9 4.50 × 10−2

Aldosterone synthesis and secretion 4 4.90 × 10−2

Table 4. Results of GO function and KEGG pathway enrichment analyses. GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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