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Abstract: The evolution of biosensors and diagnostic devices has been thriving in its ability to provide
reliable tools with simplified operation steps. These evolutions have paved the way for further
advances in sensing materials, strategies, and device structures. Polymeric composite materials
can be formed into nanostructures and networks of different types, including hydrogels, vesicles,
dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and
low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials
and immobilization surfaces. Polymers can also allow the construction of scaffold materials and
3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review
discusses the latest developments in nano-scaled materials and synthesis techniques for polymer
structures and their integration into sensing applications by highlighting their various structural
advantages in producing highly sensitive tools that rival bench-top instruments. The developments
in material design open a new door for decentralized medicine and public protection that allows
effective onsite and point-of-care diagnostics.

Keywords: nanocomposites; polymer scaffolds; nanoparticles; optical sensing; point-of-care diagnostics

1. Introduction

Developing new materials and exploiting analytical devices to determine, monitor,
control, and quantify specific molecules in the environment and the human body has
become necessary in biosensing. Clark and Lyons first introduced biosensors in 1962 when
an oxygen electrode was used to selectively detect glucose levels [1]. Since then, numerous
studies have focused on improving these tools by developing efficient biosensing devices to
detect a variety of other analytes and, more specifically, trace-quantity analytes. Nowadays,
biosensors are widely used in biomedicine and health, environmental monitoring, drug
development, forensics, and food safety. Despite all the successes in this area, developing
more sensitive and selective devices that detect low target concentrations via effective trans-
ducing elements and recognition materials is challenging. The selectivity and sensitivity of
the biosensing devices can be directly or indirectly affected by the preparation of analyte
samples. Some analytes are now detected without the need for preparation procedures. For
example, hazardous chemicals and heavy metals such as mercury can be directly traced
without sample preparation in contaminated water [1].

Conversely, other samples necessitate intricate multistep preparation procedures to
minimize interferences and enrich the target molecules to reach detectable concentrations
and enhance analytical performances. Moreover, the presence of interferents and biofoul-
ing are two main problematic issues that directly influence the performance of biosensors.
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Electroactive substances interfere with the results when analytical measurements are made
on physiological materials such as blood. For example, interferents such as ascorbate or ac-
etaminophen (paracetamol) can negatively affect the glucose sensors as these substances are
oxidized at the electrode surface. Biological fluids such as blood can deposit biomolecules
(i.e., proteins) which eventually block the surface area. In this case, the surface biofouling
blocks the electron passage through the analyte to the surface and reduces the response
signal [2].

Robust automated systems containing advanced materials can significantly enhance
analytical performance. The recent development of polymer science has made significant
progress in sensitivity and selectivity enhancement, response time shortening, and flexibility
increase for the immobilization of biomolecules to biosensor platforms. The earliest polymer
structures utilized in biosensing devices were the fluorinated ionomer Nafion [3] and
cellulose acetate [4]. After their initial success, a range of other polymers was employed
to modify the recognizing surfaces and prevent their biofouling [5]. Polyethylene glycol
(PEG) and polyethylene oxide (PEO) are the most commonly used polymer materials [5].
These biocompatible composite polymers are highly soluble in aqueous systems allowing
them to mimic the typical conditions found within biological systems. Polymeric structures
such as dye-loaded polymersomes can be used successfully to detect illegal drugs (cocaine,
methamphetamine, synthetic cannabinoids, etc.) in various bodily fluids, including saliva
and urine [6,7].

Along with the advances in polymer science, there has been a clear transition from us-
ing their insulating features toward their conductive properties [8]. Many sensor platforms
were designed using polymer materials, including planar polymers, vesicular polymers,
polymersomes, hydrogel materials, conducting polymers, and molecularly imprinted
polymers. However, despite the improvements in polymer materials’ employment in
biosensing platforms and their commercialization, the need to improve current systems
and their analytical performances is still a subject of interest.

Nanomaterials and nanotechnology have received tremendous interest and have
become leaders in analytical chemistry over the last decades. Desirable nanoparticles
properties, such as the ability to tailor size, structure, and surface-to-volume ratios, provide
excellent possibilities for designing novel sensing systems and enhancing the performance
of the current bioanalytical assays. Combining nanomaterials with polymers through
physical/chemical crosslinking to polymeric chains leads to nanocomposite polymers
with new exclusive properties. The present review encloses a specific overview of these
polymeric nanocomposite materials and their impact and integration in biosensing and
diagnosis applications. Nanocomposite polymers are a relatively rising material niche with
several promising applications. This review takes a broader look at the general sensing
abilities of these materials with a significant focus on non-invasive approaches in biomedical
applications from our own experiences and the many reports found in the literature.
While the combination of polymers and nanomaterials provides many options, the current
manuscript mainly focuses on planar and vesicular polymer nanocomposites, hydrogel
materials, conducting polymers, and molecularly imprinted polymers in biosensors design.

2. Polymer and Biopolymer Nanocomposites

Polymers have been considered prominent candidates for creating an ideal matrix for
entrapment and immobilization of biomolecules in the analytical sciences. Characteris-
tics of most polymers, such as high conductivity, ease of biofunctionalization, flexibility,
biocompatibility, highly modifiable chemical functions, etc., make them attractive for
biosensor development in different fields from environmental analysis to biomedical appli-
cations [9]. Our experience with polymeric and co-polymeric materials also demonstrates
the successful application of functional polymers for the immobilization of enzymes [10],
micro-organisms [11], antibodies [12], and aptamers [13] in the design of electrochemical
biosensors. Historically, polymers have been seen as a practical material choice for electro-
chemical devices, but recent advances in nanotechnology and the creation of nano-scaled
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materials has allowed for even further evolution in the biosensor field development due to
new intrinsic optical, electrical, and mechanical properties.

Efficient immobilization of bioreceptors (or other components) and optimal signal
transduction are crucial for biosensors. Polymers are still key coating matrices for nano-
materials through the fusion of nano-objects and polymers. These combinations have led
to the emergence of new nano-scaled hybrid materials or polymer nanocomposites. They
have been further employed to construct polymer nanocomposite-based biosensors to
obtain highly sensitive and reliable analytical devices by improved catalytical and chemi-
cal reactivity, surface specificity, enhanced electrode kinetics, controllable synthesis and
morphologies, higher stability, and biocompatibility [14]. As an alternative to synthetic
polymers, some features of biopolymers, such as natural origin, biodegradability, recycla-
bility, lower antigenicity, and their suitable interaction with living systems, make them
powerful tools for biosensor fabrication [15,16].

Polymeric and biopolymeric nanocomposites refer to a hybrid structure in which a
polymer matrix is used as a substrate, and nano-scaled organic or inorganic materials
are used as fillers. Typically, the polymers of poly(lactic acid) (PLA), poly(ethylene ox-
ide) (PEO), poly(lactic-co-glycolide) (PLG), poly(N-isopropyl acrylamide) (PNIPAM), and
polyurethanes, etc. have been utilized as the matrix phase of polymeric nanocomposites.
Biopolymeric nanocomposites, which are also called “Bio-nanocomposites”, “bio-hybrids”,
and “green nanocomposites” by the popular terms of recent years, are made up of a nano-
sized additive in naturally occurring polymers including cellulose, chitin, collagen, silk,
keratin, alginate, lignin, starch, polyhydroxyalkanoates (PHA), etc. [17]. The merging of
nanosized filler materials into the polymeric matrix produces interesting and improved
mechanical, thermal and optical properties. According to this reinforcement strategy, it
can be said that filler materials act as molecular bridges enhancing and controlling dimen-
sional stability, flexibility, strength, toughness, durability, thermal stability and conductivity,
optical properties (color and transparency), size, distribution, and shape [15,18,19]. Or-
ganic materials (carbon nanotubes (CNTs) and graphene) and inorganic materials (silicates
and metal/metal oxides) are the kinds of nanofillers used to prepare nanocomposites
made of polymers [18,19]. The characteristics of polymeric nanocomposites are affected
by choice of both the filler and matrix. For instance, while the type of polymer matrix
significantly determines the hydrophobicity, transparency, strength, toughness, controlled
ionizability, crystallinity, functionality, biocompatibility, and biodegradability, the choice of
filler considerably affects the structural and functional properties. Hence, unique polymer
nanocomposites can be synthesized by various combinations of nanofillers. This diversity
provides application-oriented strategies via selection of filler nano-objects for the desired
properties of specific fields, including medicine, diagnostics, biomedical applications, food
packaging, optoelectronic devices, biosensing, bioimaging, tissue engineering, cosmetics,
energy, etc. [17,20].

In parallel to their flexible functionalities and fascinating properties, polymeric nanocom-
posites have been extensively studied to improve sensor performance and have remarkably
allowed the fabrication of many novel biosensors in recent years [21–23]. For example,
while quantum dots–polymeric nanocomposites exhibit excellent fluorescence properties
that can be used in optical biosensors, CNTs–polymeric nanocomposites provide significant
enhancement in the mechanical property that can be adapted to an optoelectronic sensing
device [20]. The utilization of polymeric nanocomposites provides needs-based designs. It
brings additional key performance parameters, including higher sensitivity and selectivity,
lower detection limits, good reproducibility, and stability by providing a large and easily
adjustable surface area, higher electrical conductivity, and fast electron transfer rate [23].

For polymeric nanocomposites, chemists and material scientists have described vari-
ous synthesis methods, including ion exchange, template synthesis, sol-gel, in-situ poly-
merization, hydrothermal route, melt intercalation techniques, etc. [20,24]. The successful
design of a polymeric nanocomposite with any required property is a critical step to-
ward the control of interfacial interactions between the nanofiller and the polymer matrix.
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Understanding the influence of the filler on the size, shape, orientation, dispersion, and
compatibility of the polymer matrix is the most important consideration. When creating a
new polymer nanocomposite material, an effective formulation is required by considering
three main approaches: rationality-based design, functionality-based design, and tailored
property-based design. In the design of polymeric nanocomposites, process route, tempera-
ture, pressure, and time are the parameters required to be controlled during processing.
The nanofiller choice needs to consider the filler shape, size, type, volume, weight, and
orientation. In contrast, the matrix preparation needs to consider the kind of polymer,
surface nature, and chemistry. Based on the above, the combination of the nanofiller and
the polymer matrix must be achieved at a nanoscale level with chemical compatibility and
homogenous dispersion.

Polymer nanocomposites are microstructures of hybrid organic–inorganic materi-
als that can be formed into three types; unintercalated (or microcomposite), intercalated
(and/or flocculated), or exfoliated (or delaminated). These microstructural forms are con-
trolled by the synthesis method. Of these various synthesis methods, the melt-blending
method is eco-friendly because of the lack of solvent usage and is industrially scalable
due to its cost effectiveness, however the need for a high temperature that can damage
the surface of nanofiller is its main disadvantage. On the other hand, the in-situ poly-
merization technique provides better exfoliation in comparison to the melt intercalation
method. In the case of sol-gel technology, disadvantages such as high temperature, which
can cause the degradation and aggregation of polymers, make it uncommon. There are
different synthetic methodologies including organic treatment and chemical modifications
for the polymer nanocomposites manufacturing process [25]. Click chemistry and ring
opening of epoxides and aziridines are very efficient and common chemical concepts in
the fabrication of polymer nanocomposites. In particular, click reactions are versatile cou-
pling methods due to advantages that include methodological simplicity, high reaction
yield and high reaction rates, moderate reaction conditions, easily removable byproducts
etc. CuAAC click reaction, metal-free click reaction, Diels–alder reaction, and Thiol-ene
and thiol-yne reactions are the commonly employed click reactions in the fabrication of
polymer nanocomposites [26]. Since the concept of this manuscript is mostly applications,
the synthetic details are not included in the current paper. Additionally, different surface
modification strategies have been developed, something which is also a very critical step
in biosensing chemistry and design. Surface modification techniques significantly impact
the nanocomposites’ structural and functional properties such as reactivity/chemical reac-
tivity, biocompatibility/bioactivity, hydrophobicity, surface energy, dispersion/stability,
and surface roughness. Surface modification can be achieved through different reactions
with coupling agents and/or surface adsorption and polymeric molecules’ covalent or
non-covalent bonding-based grafting. Along with such functionalization techniques, the
reported polymer-nanocomposites-modified electrodes are very promising tools to enhance
sensing capabilities in terms of high sensitivity and good selectivity for different types of
targets such as drugs, heavy metals, pesticides, pathogens, etc. Polymer nanocomposites
still hold a great strength in biosensor design since they provide variable morphologies
and architectures on electrode surfaces such as films, vesicles, and dendritic structures [20].
While choosing the nanocomposites-based structural design, the main strategy is to add a
nanofiller according to the need to give the final sensor system a targeted feature such as
magnetism, fluorescence, electroconductivity, strength etc. The characteristics of a nanofiller
considerably affects the properties of the polymer nanocomposites. The incorporation of a
nano-scaled structure can add a new feature or improve an existing property. As demon-
strated in Figure 1, in order to obtain a nanocomposite structure with magnetic properties,
magnetic beads can be added to the composite structure, on the other hand quantum dots
can be used as nano-modifier to prepare fluorescent polymeric nanocomposites. For the
strength enhancement and hydrolytic stability, silica nanoparticles are a very appropriate
choice and for their excellent mechanical stability, CNTs are very attractive nanofillers
for the polymer nanocomposites. These unique properties, which are gained by adding
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nanofillers to polymer nanocomposites, significantly increase the analytical performance
of the fabricated sensors. According to this approach, Table 1 represents the common
nanofillers and their effect on polymer nanocomposite and advantages for the final proper-
ties of the fabricated biosensors. Here, the several forms of polymeric and biopolymeric
nanocomposite films, the common nanofillers (Nanoclays, graphene, carbon nanoparticles,
and quantum dots) and dendritic/vesicular polymeric nanocomposites from which they
are made, and their use in biosensors and point-of-care systems are discussed in detail in
light of recent advancements.
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Table 1. The effect of several nanofillers on the improved properties of polymeric nanocomposites
and their sensors.

Nanofiller Polymeric Composite Effect for the Fabricated
Composites Advantages of the Sensors Ref.

Nanoclay OMMT/PLA Improved thermal and
mechanical property

Improved surface
morphology and surface

reflectance, modified optical
properties

[27]

Graphene GC-COOH Electroactivity High electroactivity and easy
assembly, high sensitivity, [28]

CNT
Chitosan modified by

ferrocene
and CNT

Increased surface area and
decreased effective distance
between mediator molecules

Increased recorded analytical
signal, and measurement

sensitivity
[29]

PAMAM dendrimer PAMAM-PPy

Functionality and increased
quantity and homogenous

distribution of attached
biomolecules

Efficient electron transfer,
reversible redox system, and

simple reaction procedure
[30]

Oleic acid-modified
MNPs

Magnetic cyclodextrin
vesicles Magnetic property Higher sensitivity [31]

Nano rod and
Quantum Dot

TiO2 Nanorod/TiO2
Quantum

Dot/Polydopamine

Strong light absorption and
excellent

photocatalytic activity

Stronger photoelectric
response under visible light [32]

PLA: Polylactide, OMMT: Organically modified montmorillonite, GC-COOH: Carboxylated chitosan-
functionalized nitrogen-containing graphene, CNT: Carbon nanotube, PAMAM-PY: poly(amidoamine) den-
drimers and polypyrrole film, MNPs: Magnetic nanoparticles.
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2.1. Nano-Clays

Nanoclay-incorporated polymers or copolymers have been a major focus of scientists
working on biosensors. Nanoclays are well known and widely studied 2D nanomaterials
in the surface modification of electrodes due to their mechanical and thermal stabili-
ties, inert chemical structure, and unique and varying morphology [33,34]. According
to the literature, the first combination of polymer and clay structures was reported by
Blumstein in 1965 [35]. After demonstrating the increased thermal stability of polymers
with this study, many nanocomposites have been produced to improve mechanical and
structural properties. Owing to the remarkable advancements in material science, clay-
reinforced polymer composites have been successfully adapted to analytical sciences. For
instance, Emre et al. prepared polymethylmethacrylate (PMMA) layered silicate nanocom-
posites and evaluated their combinational use with conducting polymers with the name
of poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-
7-yl)-2-benzyl-1H-benzo[d]imidazole) (poly(BIPE)) as an immobilization platform for a
glucose biosensor. This study demonstrated the prepared nanocomposite as a suitable
matrix to protect enzyme molecules and provide proper surface chemistry for biomolecule
attachment due to the aromatic groups of the conjugated polymer [36]. Another study
regarding clay–polymer nanocomposites showed that a biodegradable polymer polyg-
lycolide (PGA) and natural silicate montmorillonite composites could be applied as a
coating material on electrode surfaces. Pyranose oxidase as a model enzyme was immobi-
lized to the composite matrix, and the proposed biosensor was used for glucose detection
in beverages without samples pretreatment [37]. Sarkal et al. developed a biopolymer-
clay nanocomposite-based pesticide biosensor. The composite film comprising chitosan
biopolymer and montmorillonite provided an eco-friendly immobilization matrix for acetyl-
cholinesterase enzyme for organophosphorus pesticide detection with excellent sensing
performance [38].

2.2. Graphene

Due to their excellent thermo-mechanical and electrical performance characteristics,
graphene or graphene oxide is another widespread additive of polymer nanocompos-
ites used to develop biosensors. Qiu et al. demonstrated the application of chitosan–
ferrocene/graphene oxide nanocomposite film as an immobilization platform for a glucose
oxidase enzyme. The developed sensor showed a fast response, high stability, good linear-
ity, and sensitivity due to its multi-component structure and the redox mediator ferrocene
group [39]. Graphene–polymer composite-based studies were used at the electrochemical
sensor level and in the point-of-care test format. A label-free paper-based electrical biosen-
sor chip developed from poly(styrene)-b-poly(acrylic acid) (PS67-b-PAA27) polymer and
graphene nanoplatelet composite was recently presented. In this biosensor chip, an anti-
cortisol antibody was immobilized over the electrode surface, and a layer-by-layer assembly
process was applied for cortisol detection in saliva samples. The graphene nanoplatelet and
amphiphilic di-block copolymer composite-based immunosensor exhibited outstanding
analytical performance and had great potential for in vitro diagnostics [40].

2.3. Carbon Nanoparticles and Quantum Dots

Among the nanoparticles, multi-walled carbon nanotubes (MWCNT) and quantum
dots (QD) have become prominent in biosensing applications. Another representative
study for nanocomposite made from fullerene (C60), MWCNT, polyethyleneimine (PEI),
and polymer QDs has been recently reported by Jamei and co-workers. They aimed to
show the synergy of each nanocomposite component for the design of an aptasensor to
analyze thrombin protein. While the examples above are enzyme- and antibody-based,
this study shows that nanocomposites can also be used for aptamer immobilization. The
C60/MWCNTs-PEI/PQdot/APT aptasensor exhibited excellent analytical performance in
terms of sensitivity, selectivity, repeatability, and stability owing to the successful combina-
tion of various materials in the nanocomposite which offers high electrical conductivity,
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high surface-volume ratio, higher sites for the better attachment of aptamers, and high and
stable mechanical and chemical structure [41].

2.4. Dendrimers

Polymer nanocomposites can form film-like surface coating layers as well as dendritic
structures. For instance, dendrimers are valuable candidates for electrode covering in
terms of their characteristic properties to maximize attachment points and flexible and
well-oriented binding sites for biomolecules. When the multi-point binding ability of
dendrimers is combined with the power of nanomaterials, dendrimeric nanocomposites
have great potential in the fabrication of bioinspired devices and biosensors with high
sensitivity and stability. In Luo’s work, the harmonious branched tree-like structure of
Poly(amidoamine) (PAMAM)-Au nanocomposite was prepared as a matrix for horseradish
peroxidase enzyme immobilization. The proposed mediator-free biosensor was fabricated
on a MWCNT-modified glassy carbon electrode. Owing to the three-dimensional network
of the hybrid surface material, unique bioelectrocatalytic capabilities were reported [42].
Another dendrimer nanocomposite-based biosensor was developed by Shukla et al. using
zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite to modify screen-
printed carbon electrode surfaces by electro-co-deposition. The prepared nano-platform
provided a suitable and biocompatible matrix for urease enzyme with its protected ac-
tivity and high stability [43]. Recently, an interesting application of organic–inorganic
composite nanomaterials for point-of-care diagnostics has been reported by Ruiz-Sanchez
et al. Their novel approach was to obtain one-dimensional nanochains carrying the unique
self-assembling properties of polyamidoamine dendrimers and AuNPs and to investigate
their potential use as labels in lateral flow assays (LFA). Their findings confirmed that the
prepared gold dendrimer nanocomposites increased the sensitivity by 4-folds compared to
traditional AuNP (20 nm)-based sensors. This dendrimer nanocomposite-based approach
promises to overcome sensitivity issues, which is the main drawback of LFAs [44].

2.5. Polymer Vesicles

Polymers can be self-assembled into several forms, such as micelles, vesicles, mono-
or multi-layers, and nanosized particles. After discussing the micelles-shaped dendrimeric
nanocomposite-based biosensor studies, the polymeric vesicles or spherical polymeric
nanostructures are evaluated. Polymeric materials allow the obtention of biomimetic
vesicles such as polymersomes derived from the self-assembly of various block polymers
to produce a nan-sized composite. Because the polymersomes are flexible structures in
terms of easy surface functionalization with biomolecules and encapsulation of multiple
substances, they represent promising tools for drug delivery, bioimaging, diagnostics, and
biosensor applications [45]. Polymersomes greatly impact optical biosensing systems be-
cause they allow the encapsulation of different colored dyes or fluorescence molecules and
the attachment of antibodies or aptamers on their surface. Recent studies on point-of-care
diagnosis, mainly due to the urgent needs associated with the COVID-19 pandemic, have
focused on increasing selectivity and sensitivity. For this purpose, our group used dye-
loaded polymersomes as labels in the design of paper-based rapid test kits as alternatives to
AuNPs in traditional LFAs. Different test designs, including dot-blot assay [46] and lateral
flow assay [47] were prepared, and their analytical performance parameters were investi-
gated compared to RT-PCR methods. In the pre-clinical studies, a very high correlation was
obtained between the proposed platform and the data from the RT-PCR results, even at low
viral loads. This application has presented a novel and valuable scientific approach provid-
ing an urgent and cost-effective design strategy for pandemic sensors that can be applied
to similar epidemics. Additionally, in the designed polymersome-based dot-blot assay, we
reported a reference study that shows a comparison between AuNP-based and dye-loaded
polymersome-based spot tests. The proposed diagnostic assay exhibited 10-times better
sensitivity than AuNP [46].



Biosensors 2022, 12, 301 8 of 29

As previously mentioned, nano-additives can incorporate into polymeric structures by
creating polymer vesicles formed by closing the amphiphilic block copolymeric spherical
lamellar structures in the appropriate solvent. For instance, in a similar strategy to develop
alternative labels for an immunosensor system, Fe3O4 nanoparticles loaded poly(ethylene
glycol)-poly(lactic acid) (PEG-PLA) polymeric vesicles were synthesized to fabricate a
sandwich-type electrochemical immunosensor for the detection of prostate-specific antigen
(PSA) as a model analyte. In the design strategy, while PEG-PLA polymeric vesicles carried
secondary antibodies, the primary antibody was immobilized onto a graphene sheet surface.
The prepared immunosensor based on nanoparticle-loaded polymer vesicles exhibited low
LOD, high sensitivity, and stability [48].

The basis of such interest in polymer-based nanocomposites is the ability to design
various morphologies and compositions with any desired decoration. In the fabrication
of polymer and inorganic hybrid nano-objects, increasing the morphological diversity has
been the driving force. Starting from this point of view, Fan et al. demonstrated a combined
technique for quick preparation of polymer-gold nanocomposites with different morpholo-
gies, including sphere, worm, and vesicles. The facile technology they proposed combined
the polymerization-induced self-assembly technique with “host-guest” chemistry. For the
“host-guest” complexation, β-cyclodextrin (β-CD) and adamantane (Ada) was used. Cy-
clodextrins are composed of hydrophilic outer parts and a hydrophobic inner cavity, which
can form non-covalent inclusion complexes with a guest molecule. This complexation strat-
egy was adapted to achieve AuNP-decorated polymer nanocomposites; AuNP-Polymer
sphere nano-flowers, AuNP–polymer sphere nano-patterns, AuNP-Polymer nano-worms,
and vesicles. Briefly, β-CD functionalized block copolymer nano-objects were first pre-
pared, and then the structures “host” and “guest” induced quick interactions between β-CD
and Ada, which allowed the co-self-assembly of AuNP–polymer composites [49]. Our
previous works have adapted the biomimetic property of β-CD units to electrochemical
sensor platforms and LFA tests for cocaine detection. With these studies, a poly(p-phenylene)
β-cyclodextrin poly(ethylene glycol) (PPP-CD-g-PEG) polymeric structure was specifically
synthesized, and the β-CD cavity of the polymer was used as a biorecognition surface due to
its ability to form CD–cocaine inclusion complexes [50,51]. It is conceivable that β-CD and
inorganic materials (Au, Ag, Si, Fe2O3)-decorated polymer composites may be designed with
various morphologies and compositions for biosensor applications in the near future.

In the light of the above reports, it is possible to conclude that coupling polymer
nanocomposites with biosensing systems offer significant possibilities for improving sensor
performances. Some recently published works on polymer and biopolymer nanocomposites-
based biosensors are summarized in Table 2.

Table 2. Recently developed biosensors based on polymer–biopolymer nanocomposites.

Polymer/
Biopolymer Nanocomposites Target Analyte Limit of Detection Sensor Type Ref.

Amphiphilic
polymer

Polymeric-coated
Fe-doped ceria/gold 2,4-Dinitrophenol 0.45 µg/mL Optical biosensor [52]

Chitosan

MT/Chitosan
Organo-

phosphorus
pesticide

0.448 µg/L Electrochemical [38]

GO/Chitosan Amine vapors
MA: 2.2 ppm

DMA: 2.6 ppm
TMA: 1.3 ppm

QCM [53]

AuNP/graphene/
chitosan H2O2 1.6 µM

Electrochemical

[54]

GNRs/chitosan Sarcosine 0.001 µM [55]

CuS/NSC
Glucose

2.72 µM [56]

3D-NPZnO/Chitosan 0.2 mM [57]

AuNP-Chitosan-IL Malathion 0.68 nM [58]

CMC rGO-CMC NO and H2O2 0.37 µM and 0.08 µM [59]
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Table 2. Cont.

Polymer/
Biopolymer Nanocomposites Target Analyte Limit of Detection Sensor Type Ref.

G4-PAMAM

AuNP/G4-PAMAM
dendrimer Insulin 0.5 pM Surface plasmon

resonance [60]

MWCNTs/G4-PAMAM
dendrimer

Cellular prion
proteins 0.5 pM

Electrochemical

[61]

PABS SWCNT/PABS Hg(II) 0.06 µM [1]

PAMAM
GO/PAMAM dendrimer CCRF-CEM cell 10 cells/mL [62]

PtNP/PAMAM
dendrimer H2O2 141 µM Electrochemiluminescence [63]

PAN
MT/PAN Glucose 2.4 mM

Electrochemical
[64]

AgNO3/PAN nanofiber Triglyceride 10.6 mg/dL [65]

PEI Au@Ti3C2@PEI-
Ru(dcbpy)3

2+
SARS-CoV-2 RdRp

Gene 0.21 fM Electrochemiluminescence [66]

PGMA and PEI Ag-PEI-cPGMA E. coli - Raman scattering [67]

poly(N-
methylaniline)

poly(N-methylaniline)-
Ce2(WO4)3@CNT Cd2+ 0.11 nM

Electrochemical

[68]

Polyrhodanine Graphene oxide/Fe3O4/
polyrhodanine Doxorubicin 0.008 µM [69]

PPI AuNP/PPI dendrimer ssDNA 0.05 nM [70]

PS and PANI Au/PS/PANI Glucose 12 µM [71]

PS-b-P4VP AuNP/PS-b-P4VP Human IgG 1.1 nM Surface plasmon
resonance [72]

PVP/PVA/PAM Ti3C2 MXene/PVP/
PVA/PAM Dopamine 0.2/0.3

/0.1 × 10−4 mol/L Electrochemical [73]

3D-NPZnO: 3D-nanoporous Zinc oxide, AuNP: Gold nanoparticle, CCRF-CEM cell: Human acute lymphoblastic
leukemia, Ce2(WO4)3: Cerium tungstate, CMC: carboxymethyl cellulose, CuS/NSC: N and S co-doped chi-
tosan polymer, DMA: Dimethylamine, G4-PAMAM: Fourth-generation polyamidoamine dendrimer, GNRs:
Graphene nanoribbons, GO: Graphene oxide, IgG: Human gamma globulin, IL: Ionic liquids, MA: Methy-
lamine, MT: Montmorillonite, MWCNT: Multi-walled carbon nanotubes, PABS: Poly (m-amino benzene sulfonic
acid), PAN: Polyacrylonitrile, PANI: Polyaniline, PEI: Polyethyleneimine, PGMA: poly(glycidyl methacrylate),
PPI: Poly(propyleneimine), PS: Polystyrene, PS-bP4VP: poly(styrene-b-4-vinylpyridine), QCM: Quartz crystal
microbalance, rGA: Reduced graphene oxide, SWCNT: Single-walled carbon nanotube, TMA: Trimethylamine.

3. Conducting Polymer Nanocomposites

The four valance electrons of some polymers’ constructive carbon atoms are not fully
used up in covalent bonds. These polymers are well known as conjugated polymers
in which the electron delocalization provides high charge mobility along their carbon
backbones. The conjugated polymers can possess semiconducting features or metallic
properties depending on the number and kind of atoms within the repeated polymeric
units. Conjugated polymers can also be transformed into conducting polymers by doping
processes that change the number of π-electrons [74]. Heeger et al. received the Nobel Prize
in Chemistry for the discovery of the first conducting polymer (polyacetylene). Conducting
polymers (CPs) exhibit remarkable features such as high mechanical, electronic, optical,
and environmental stability and low operating temperature and are lightweight, offer a
simple synthesis, and economical behavior [75]. These outstanding features have led to
the fabrication of optical wires, gadgets, and biosensor devices, such as sensor chips for
diagnostic and environmental monitoring purposes [76,77].

With growing interest in this subject, many research reports have focused on advancing
the properties of CPs and their synthesis approaches. The formation of composite and
nanocomposite by the addition of fillers has been widely recommended to enhance the
physical and chemical features of CPs. A composite typically consists of two or more
constituents in which each component carries its features to the final structural material.
Using nanomaterials of different types and shapes as a reinforcing phase in the CPs matrix
phase creates a conducting polymer nanocomposite (CPNC). Several methods to produce
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CPNCs include electrochemical encapsulation, colloidal dispersions, in situ polymerization
with nanoparticles, and coating of inorganic polymers [78]. The properties of CPNCs can
be tuned by varying the matrix and filler, which results in millions of combinations usable
in different applications. Alternative carbon nanomaterial (CNMs) fillers such as single-
walled and multi-walled carbon nanotubes, fullerenes, carbon nanofibers, nanospheres,
and graphene have been extensively used for CPNCs preparation [21]. The unique features
of carbon nanomaterials, such as their environmental stability, surface area, and other
properties (physical, chemical, thermal, and electrical), make them unique materials for
the twenty-first century. Substantial efforts have been allocated to produce CPNCs with
superior fundamental and technological assets through CNM and CP combination [79].

Other than CNMs, metal nanoparticles (silver, gold, platinum, etc.) and their oxide
forms have been employed to create CPNCs with advanced features due to their differ-
ent compositions and dimensions [80,81]. Various techniques such as electrochemical
or chemical methods [82], sonochemical methods [83], sol-gel techniques [84], ultrasonic
irradiation [85], and photochemical preparation [86] have been actively used to incorporate
metals or metal oxide fillers into the preparation of conducting polymer nanocomposites.
During preparation, nanocomposites show increased electrical breakdown strength, melt-
ing temperature, magnetization, charge capacity, and adopted behaviors such as electrical
conductivity, corrosion resistance, dielectric, and semiconductivity. These advanced prop-
erties make CPNCs great candidates for developing electric-based biosensing platforms.

As an active biosensing platform, CPNCs such as nanocomposites of polypyrrole
(PPy) and polyaniline (PANI) conducting polymers have shown high biocompatibility with
cells and biological tissues. These features influenced researchers to employ CPNCs in
tissue engineering, bio-electrodes, drug delivery, and biosensors to detect biological and
synthetic moieties [87]. It has been demonstrated that the electrochemical performance
of screen-printed electrodes-based biosensors is highly enhanced following the use of
porous carbon, given the latter’s great conductivity and surface area. Moreover, using
sulfur and nitrogen to dope carbon enhances its electrocatalytic properties. Taking this
advantage, a nanocomposite formed by N and S-doped carbon and the polymer poly3-
((2,20:50,2′′-terthiophen)-30-yl)-5-aminobenzoic acid (pTTABA) was successfully used for
neurotransmitters (NTs) detection. The proposed pTTABA-based amperometric biosensor
exhibited a detection range of 0.5 µM to 4.0 mM with a limit of detection (LOD) reaching
112 nM for lactate detection [88]. A similar study proposed a combination of heteroatoms
(N and S)-doped porous carbon and 2,2′:5′,5′′-terthiophene-3′-p-benzoic acid (TBA) to
produce an enhanced electrochemical microfluidic system for NTs determination in human
plasma. This biosensor had an NTs detection range of 0.05–130 nM coupled with a highly
sensitive LOD of 34–44 pM [89].

In addition to CNM nanocomposites, metal nanocomposites such as Pt and Au with
PANI and PPy conducting polymers have been prepared and applied in biosensing ap-
plications. An antifouling electrochemical biosensing platform was designed based on
embedded AuNPs into the conducting polymer poly(3,4-ethylene dioxythiophene) (PE-
DOT). The AuNPs functioned as signal enhancers, whereas the PEDOT acted as an antifoul-
ing agent over the sensor’s surface [90]. Another electrochemical biosensor comprising
3-mercaptopropionic acid (MPA) capped PtNP-PPy nanocomposite film was developed
for C-reactive protein detection. The electrodeposition of Pt nanofibers creates numerous
heterogeneous nucleating sites in the polymeric matrix resulting in highly controllable
geometrical conformities. This nanocomposite allowed for enhanced orientation and easy
access to the interaction between the analytes and biomolecules, leading to the detection
of αCRP at a LOD = 4.54 ng/mL [91]. A study examining a PtNPs/PPy-based biosensor
for sulfite detection in alcoholic beverages demonstrated satisfactory and fast analytical
performances (LOD = 12.4 nM) obtained within 3–5 s [92].

Natural clay is an exciting material for sensor surface modification due to the out-
standing features of the material, such as its porosity, ion exchange ability, high stability,
and, most importantly, availability and low cost [91,92]. Zheng et al. developed a glucose
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biosensor using PANI-montmorillonite clay particles–PtNPs nanocomposite for glucose
oxidase anchoring via electrodeposition. The biosensor was tested over human serum,
providing a broad detection range (10 µM to 1.94 mM) [93]. Erkmen et al. also reported
the preparation of a tyrosinase enzyme inhibition-based biosensor for the dual detection
of catechol and azinphos-methyl. This platform consisted of a nanocomposite (poly (3,4
ethylene dioxythiophene) and iridium (IV) oxide) and tyrosinase crosslinked through
glutaraldehyde. The biosensor could successfully detect catechol and azinphos-methyl
samples with a LOD of 17 nM and 2.96 µM, respectively [94]. Several targets can be de-
tected through nanocomposite conducting polymer-based biosensors, including hormones,
enzymes, nucleotides, chemicals, organic compounds, microorganisms, neurotransmitters,
vitamins, lipids, proteins, etc. Some examples of the pertinent works are summarized in
Table 3.

Table 3. Various nanoparticles/conducting polymer-based nanocomposites and their characterization
techniques, target analyte, and detection limit.

Conducting
Polymer Nanocomposites Target Analyte Limit of

Detection Sensor Type Ref.

APS FcA/APS H2O2 2.07 µM Electrochemical,
Fluorescence [95]

P3ABA Pt@rGO/P3ABA
Glucose 44.3 µM

Electrochemical [96]
Cholesterol 40.5 µM

PABA G/PABA Acetylcholine 2.3 µM

Electrochemical

[97]

PANI

Au NPs/PANI

Prostate-specific antigen 0.085 pg/mL [98]
Dopamine 0.1 µM [99]

Melamine 1.39 pM [100]

Cu-BTC/PANI E. coli 2 cfu/mL [101]

G/PANI
Dopamine 1.98 pM [102]

Anthracene 4.4 nM [103]

GO/PANI DNA 20.8 fM [104]

NiCo2O4/PANI Glucose 0.38 µM [105]

MWCNTs/PANI
Cholesterol 0.01 mM [106]

Cardiac troponin T 0.04 pg/mL [107]

NiO/CuO/PANI
Glucose

2 µM [108]

NiO/PANI 0.06 µM [109]

Pt NPs/PANI

Uric acid 0.001 mM [110]

Cholesterol 0.3 mM [110]

Triglyceride 0.2 mM [110]

ZnO/MWCNTs/PANI Glucose 0.1 mM [111]

G/PANI Estradiol 0.02 ng/mL Immunosensor [112]
PANI@PPY MWCNTs/PANI@PPY H2O2 0.1 µM Electrochemical [113]
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Table 3. Cont.

Conducting
Polymer Nanocomposites Target Analyte Limit of

Detection Sensor Type Ref.

PDA MWCNTs/PDA Cholesterol (Ch) (Ch
oxidase/SPE) 1.5 µM

Electrochemical

[114]

PEDOT

Au NPs/PEDOT
Triglyceride 89 µM [115]

CA15-3 35.64 mU/mL [90]

CNTs/PEDOT Dopamine 20 nM [104]

AuNPs-
MWCNT/PEDOT

Catechol 0.11 µM
[116]

Laccase 12.26 µM

CNTs/PEDOT Mycobacterium
tuberculosis 0.5 fg/mL [117]

Fe2O3/PEDOT Carcinoembryonic
antigen - Electrochemical

paper-based [78]

GO/PEDOT Dopamine 90 nM

Electrochemical

[118]

MWCNTs/PEDOT Magnolol 3 nM [119]
PtNPs-PEDOT Glucose 1.55 µM [120]

RGO/PEDOT Dopamine
78 fM [121]
39 nM [122]

ZrO2/PEDOT

Vitamin B2 0.012 µM

[123]Vitamin B6 0.2 µM
Vitamin C 0.45 µM

PIn-5-
COOH

MWCNTs/PIn-5-
COOH α-fetoprotein 0.33 pg/mL Immunosensor [124]

POT Au NPs/POT Glucose 0.2 mM Electrochemical [125]
PP3C GO/PP3C Glucose 0.05 mM

Electrochemical
[126]

PPy

Ag@ZnO/PPy Xanthine (X) 0.07 µM [127]

Au NPs/PPy

Carcinoembryonic
antigen 1.6 × 10−7 ng/ml Immunosensor [128]

Dopamine 1.5 × 10−8 M

Electrochemical

[129]
Serotonin 1.0 × 10−9 M

DNA 8.4 × 10−12 M [130]

CeO2-NRs/Ppy DNA from Salmonella 0.29 vM [131]

Ferrocene/PPY M. tuberculosis 0.36 aM [132]

G/PPy
Adenine 0.02 µM

[133]
Guanine 0.01 µM

MWCNTs/PPy
6-mercaptopurine 0.08 µM [134]

Glucose 0.43 µM [135]

NiO/PPy

Glucose

0.33 µM [136]

NiCo2O4/PPy 0.22 µM, [137]

ZnFe2O4/PPy 0.1 mM [138]

PTBA S, N-doped
carbon/PTBA Neurotransmitters 0.034 nM Electrochemical [89]

PVDF Carbon black/PVDF IL-8 biomarker 3.3 fg/mL Immunosensor [139]
AgNPs: Silver nanoparticles, APS: Amino-polyethersulfone, Au NPs: Gold nanoparticles, BTC: 1,3,5-benzene tri-
carboxylic acid, CeO2: Cerium oxide, CNTs: Carbon nanotubes, Cu: copper, FcA: ferrocene carboxylic acid, Fe2O3:
Iron (II, III) oxide, G: Graphene, GO: Graphene oxide, MWCNT: Multi-walled carbon nanotubes, NiCo2O4: Nickel
cobaltite, NiO: Nickel oxide, P3ABA: Poly(3-aminobenzoic acid), PABA: Poly(3-amino-benzylamine-co-aniline),
PANI: Polyaniline, PDA: Polydopamine, PEDOT: Poly(3,4-ethylene dioxythiophene), PIn-5-COOH: Poly(indole-5-
carboxylic acid), PP3C: Poly(pyrrole-3-carboxylic acid), PPY: Polypyrrole, Pt NPs: Platinum nanoparticles, PTBA:
Poly 2, 2′:5′, 5′′-terthiophene-3′-p-benzoic acid, PVDF: Polyvinylidene fluoride, RGO: Reduced graphene oxide,
TiO2: Titanium dioxide, ZnO: Zinc oxide, ZrO2: Zirconium dioxide.
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4. Molecularly Imprinted Polymer Nanocomposites

Molecular imprinting technology is of great interest in biomimetic molecular recogni-
tion. Molecularly imprinted polymers (MIP), in which a target-specific cavity is created
using a template, are considered an essential alternative to natural antibodies in bioana-
lytical devices. Due to their low cost, flexibility, outstanding chemical stability, and high
recognition ability, MIPs have been used to fabricate biosensors in numerous studies. These
artificial receptors suffer from some drawbacks, including long response time, heteroge-
neous structure of binding cavity, diffusion rate, etc. The main reason for these limitations
is slow binding kinetics arising from the bulky forms of MIPs such as monoliths, thin
films, microspheres, etc. The binding efficiency decreases as the recognition sites remain
inside the MIP structure. Also, the low surface area of a general MIP results in a limited
amount of recognition sites. Low affinity caused by these problems in biosensing systems
has been the main focus for transforming the binding event into a successful signal [140].
Hybrid approaches to obtain MIP nanocomposites have great perspectives on enhancing
biosensing performance by overcoming the limitations of traditional imprinted polymers.
In the hybrid-material strategy, a variety of functional nanomaterials could be used. For
their synthesis, the thickness of MIP films is controlled by an inorganic core. Some forma-
tion methodologies of such core–shell MIP nanocomposites are controlled through living
radical polymerization (CRP, reversible/addition/fragmentation, chain transfer polymer-
ization (RAFT), or atom transfer radical polymerization (ATRP) [141]. The application of
molecular imprinting technology in nanocomposites combines the unique advantages of
MIPs, such as affinity, physical and chemical stability, low cost, etc., with optical and/or
electrical properties of nano-scaled materials. This synergy makes MIP nanocomposites
very feasible tools for biosensor construction. Since the amount of high affinity imprinted
sites alone is not enough for the sensitivity of a biosensor, the enlargement of surface area
and manipulating interfacial properties by nanomaterials are important approaches in
sensing strategies. Additionally, molecular geometry is a crucial factor to improve the
binding ability of MIPs. Hence the sensitivity of a biosensor is also directly controlled by the
imprinted polymer nanocomposites [142]. To increase detection selectivity and sensitivity,
CNTs, AuNP, graphene, QDs and, SiO2, noble metal, Fe3O4 nanoparticles are the common
modifiers of MIPs [143,144]. According to the target-oriented sensing strategy, the expected
function can be achieved by choosing one of these nano-modifiers to develop different
analytical methods, including optical, fluorescence, and electrochemical. For instance,
among the nanomaterial-MIP hybrid materials, QDs are typical nanostructures used in
fluorescence-based sensing applications due to their photostability and size-dependent
fluorescence spectra. Although different nanofluorophores can be used in MIP fluorescence
sensors, QDs have received greater attention because they offer narrower emission and
broader absorption spectra. According to reports, there are several developed QD–MIP-
based sensing methods [143,145]. In addition to fluorescence property, magnetic features
can be added to MIPs for the construction of electrochemical biosensors. For example,
Fe3O4 nanoparticles has been reported as an appropriate candidate by providing easy and
quick fabrication technology to a biosensor system. Thanks to their excellent properties
such as stability, catalytic activity, non-toxicity, and high surface area, Fe3O4 nanoparticles
have been utilized to improve the sensitivity and selectivity of biosensors. Hence, Fe3O4
nanoparticles provide increased sensitivity while MIP has a unique cavity for the target
molecule, and this magnetic MIP nanocomposite creates a precise sensor surface [146].
Another idea for MIP-hybrid-based fabrication strategies has been to utilize graphene
for better electron transfer, higher mechanical strength, and increased specific surface
area. This approach improves electrochemical assays’ performance due to the graphene
nanohybrid-based electrochemical signal amplification [142]. Similarly, to add a particular
function to a biosensing surface, SiO2 nanobeads can be used to form nanolayers for en-
hanced sensing ability [147]; TiO2 nanoparticles to provide high surface area, improved
adsorption of the target, and quick electrochemical response [148]; silver nanoparticles
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(AgNPs) to incorporate optical properties [149]; and MWCNTs to accelerate the electron
transfer [140] could be developed.

In a recently published work on a sarcosine sensor for prostate cancer diagnosis,
the advantages of MIPs were combined with silica nanoparticles, making the resulting
MIP nanocomposite more stable, biocompatible, and highly competitive permeable [150].
Similarly, a MWCNT/imprinted polymer nanocomposite-based potentiometric sensor was
designed for lactic acid detection in dairy products. The purpose of the MIP decoration
with a nano-object is the enhancement of electrical conductivity between the electrode and
MIP surface and to improve the sensitivity with a wide calibration range [151]. In another
work, a graphene oxide-based molecularly imprinted nanocomposite was reported for
bisphenol A detection via electrochemical measurements. The work reported a combined
approach for preparing a 3D network composed of graphene oxide, β-CD, and polyacrylate.
The 3D network of these covalently linked components provided a molecular imprint of
bisphenol A and presented a selective, rapid, and cost-effective method [152].

AuNPs are promising materials that permit excellent optical and electrical properties
in diagnostic science and technology. These properties provide unique added characteris-
tics in the production of MIP–AuNP nanocomposites. AuNPs have been combined with
MIPs as nanocomposite films or colloidal particles. They have also been used to form
multi-composite structures with other nanoparticles such as CNTi graphene, TiO2, etc.
The design of these types of AuNP-based nanohybrid materials has been the main devel-
opment topic for optical, gravimetric, and electrochemical biosensors. In a recent study,
AuNP/MIP nanocomposite thin films were used over the electrode surface to fabricate
a chemiresistive sensor to detect hexanal gas, a lung cancer biomarker in exhaled breath.
This hybrid sensor layer allowed a successful detection window for hexanal gas with a
good selectivity [153]. As previously mentioned, multifunctional hybrid nanocomposites
can be designed to obtain multi-hybrid sensors based on AuNP/MIPs combined with CNT,
graphene, or TiO2 nanoparticles to add synergic and beneficial effects of these nanopar-
ticles to the designed sensors, including enhanced electron or charge transfer, increased
electrocatalytic activity, improved sensor response and sensitivity, good mechanical ro-
bustness and chemical stability [154]. Lian et al. have reported a representative work for
such an application introducing an imprinted sensor surface based on chitosan–platinum
nanoparticles/graphene–AuNPs. With an advantageous combination of self-assembly and
electropolymerization techniques, this approach was applied to obtain an erythromycin
sensor with improved analytical capabilities [155]. Table 4 reports the MIP-based hybrid
sensors decorated with different nanoparticles.

Table 4. Some nanomaterials combining MIP architectures for biosensor applications.

MIP Nanocomposite Target Analyte Limit of Detection Sensor Type Ref.

AgNWs-MIPs Lactate 0.22 µM
Electrochemical

[156]

AuNPs-GO-MIP BRCA1 gene 2.53 fM [157]

bAu@mSiO2@MIP Enrofloxacin 1.5 nM
Optical biosensor

[141]

CdS/CdTe QDs/MIP BSA 0.5 µM [158]

Fe3O4-MIP Tributyltin 5.37 pM

Electrochemical

[159]

fMWCNTs-MIP Norfloxacin 1.58 nM [160]

GO-MIP Cholesterol 0.1 nM [161]

MIP@CdTe QDs Lysozyme 3.2 µg/mL Optical biosensor [162]

MWCNT-MIP Chlorpromazine 0.29 nM
Electrochemical

[163]

MWCNTs-Chit-MIP HCV antigen 1.67 fg/mL [164]

PGr/CdTe QDs/Fe3O4@SiO2/MIP Cefoperazone 0.09 µg/L Optical biosensor [165]

SiC-MIP Loratadine 0.15 µM
Electrochemical

[166]

SMoSe2/NSG/Au/MIPs Dopamin 0.02 µM [167]

bAu@mSiO2@MIP: Multibranched gold−silica−molecularly imprinted polymer, BRCA1: Breast cancer suscepti-
bility gene, BSA: Bovine serum albumin, GO: Graphene oxide, HCV: Hepatitis C virus, MWCNT: Multi-walled
carbon nanotube, SiC: Silicon carbide nanoparticles.
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5. Hydrogel Nanocomposites

The growing trend of using biosensors for rapid diagnosis purposes has led to a
greater focus on miniaturized biorecognition two-dimensional (2D) surfaces. However,
these planner surfaces have exhibited limited analytical performances due to their nar-
row dynamic range, instability of the immobilized probes, longer response time, and low
LODs [168]. Such constraints on the 2D structural biosensors eventually led to the de-
sign of three-dimensional (3D) biosensors. The newly designed biosensors successfully
showed higher analytical performance, biocompatibility, enhanced selectivity, sensitivity,
and flexibility for implantable devices (Figure 2).
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with permission from Ref. [169]. ©2019, Elsevier B.V.

The 3D polymeric networks in hydrogels can infuse a significant quantity of water
and soluble molecules [170]. The weak mechanical strength of hydrogels is a considerable
drawback limiting their performance where strength, elasticity, and endurance are highly
demanded [171]. Other physicochemical criteria (diffusion, swelling, functional groups)
should be closely considered when selecting materials for hydrogel manufacturing. Re-
cent approaches in hydrogel optimization have led to the development of new hydrogel
varieties such as nanocomposite hydrogels [172] and double network hydrogels [173].
The nanocomposite hydrogels containing various physically/chemically crosslinked nano-
scaled structures among polymeric chains have shown novel properties and behaviors.
Nanocomposite hydrogels can be created using different nanomaterials, including carbon-
based nanomaterials, polymer NPs, inorganic/ceramic NPs, and metal NPs [174].

Creating nano/micro-sized matrices that benefit the unique properties of both hy-
drogels and nanomaterials is the main challenge in developing nanocomposite hydrogels.
Typically, hydrogels’ flexible and 3D polymeric configuration can host different types
of materials as a “guest” [175]. The gelation procedure of the final composite structure
happens in any water-based or organic solution resulting in either hydrogel for aqueous
media or organogel if made in organic media. Various natural polymers such as chitosan
(CS) [176], cellulose [177], alginate [178], collagen [179], and lignin [180], as well as synthetic
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polymers, including poly(ethylene glycol) (PEG) [181], poly (N-isopropyl acrylamide) (PNI-
PAM) [182], poly(vinyl imidazole) [183], poly(vinyl alcohol) (PVA) [184], and poly(acrylic
acid) (PAA) [185] show the ability to create hydrogels. The “host-guest” interaction be-
tween hydrogels and nanomaterials is formed through covalent and non-covalent bonding,
such as hydrogen bonding, van der Walls forces, and electrostatic interactions [186]. The
application of functionalized nanomaterials can significantly enhance the features of the
final nanocomposite hydrogel, namely the mechanical properties and bioactivity [187]. On
the contrary, by taking advantage of their chemical structures and forming π-π stacking
interactions, non-functionalized nanomaterials (graphene and carbon materials) can also
enhance some aspects of hydrogels compared with pure ones [175].

Other than organic-based nanomaterials, inorganic nanomaterials (nanoclays, ceram-
ics, bioactive glass, metallic NPs) are actively utilized to produce nanocomposite hydro-
gels [174]. The implication of metal NPs and their oxide forms in the hydrogel structure
has brought up attractive attributes such as magnetism, electrical and thermal conductivity,
and antimicrobial activities. This makes these nanocomposite hydrogels great alterna-
tives as sensors and conductive scaffolds in addition to other applications such as drug
delivery [174].

Biosensors containing nanocomposite hydrogels as 3D material supports exhibit dis-
tinguishable performance and minimized platform cost. The unique structure of these
hybrid hydrogels preserves the biological activity of the probe molecules by reducing
steric hindrance and improving probe orientation and stability for enhanced analyte cap-
turing. Introducing conductive materials into hydrogel matrices is a well-known ap-
proach for sensor applications due to their functionalities. Amongst conductive materials,
graphene and carbon nanomaterials [188,189], nanocrystals [190–192], and conducting
polymers [186,192,193] are mainly applied as conductive additives to hydrogels. The addi-
tion of conducting polymers (PPy and PANI) to the hydrogel matrices usually occurs along
with electrochemical polymerization procedures. On the contrary, carbon nanotubes and
graphene are generally incorporated into the matrices via various mixing methods.

Depending on the nature of the added conductive components, the charge transfer
can be accelerated, and the signal made stronger [190–192]. For instance, Wang et al. devel-
oped a carbon–PPy hydrogel nanocomposite-based biosensor for acetaminophen detection.
The addition of the porous carbon to the matrix enhanced the analytical performance
of the sensor in acetaminophen determination at nanomolar levels (LOD = 1.2 nM) [193].
Xu et al. reported the development of a PANI conductive polymer-hydrogel 3D mate-
rial for xanthine detection. The purine base was detected by measuring the produced
hydrogen peroxide [194]. Zhao et al. also reported the development of an animal skin-
inspired conductive hydrogel-based biosensor containing polydopamine-AgNPs, PANI,
and polyvinyl alcohol for skin sensing and wound-dressing for diabetic patients [195].
Table 2 shows the components of biosensors containing conducting polymers, carbon, and
graphene nanocomposite hydrogels. The sensing mechanism of these biosensors strongly
depends on the electrochemical charge transfer as the added nanocomposite is beneficial
for charge transport.

A limited number of inorganic nano-scaled materials can be used directly in sensing
platform formation. Inorganic components have specific characteristics, making them
very competitive to reach a defined purpose and function. Therefore, these materials are
generally used as primary or secondary components. On the contrary, inorganic nanomate-
rials can be widely utilized as additives to enhance the analytical performance of sensors.
Forming homogeneous dispersions of inorganic materials is hard to achieve, whereas using
a strong mixing procedure could denaturalize the hydrogel structure. If inorganic additives
are effectively dispersed into hydrogels, the obtained sensor can exhibit steady signal
transduction and stable performances. Among the wide range of inorganic materials used
to improve performance, nano-scaled silica [196], titanium oxide [197], quantum dots [198],
and organosilicates [199] are preferred for the functionalization of hydrogels. For exam-
ple, Huang et al. reported using a magnetic Fe3O4 nanoparticles-embedded hydrogel to
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form a fiber-optic glucose biosensor. The proposed biosensor demonstrated temperature-
adjusted glucose-sensing within 50 to 700 mg/dL and an LOD = 8.3 mg/dL [196]. Cui et al.
attempted the creation of a TiO2-chitosan and Au nanorods–SiO2 NPs nanocomposite
hydrogel embedding acetylcholinesterase for organophosphate pesticides sensing. This
biosensor showed a linear range of 18 Nm–13.6 µM and LODs of 5.3 nM and 1.3 nM for
dichlorvos (DDVP) and fenthion, respectively [200]. Titanium dioxide nanoparticles (TiO2)
can be used actively as an additive in hydrogel matrices without losing their photocatalytic
activity [201]. TiO2 nanocomposite hydrogel can be recycled through heating and separa-
tion methods allowing the hybrid gel to be simply remodeled into new hydrogel forms of
different shapes and sizes (Figure 3).
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Other inorganic nanomaterials such as QDs [202–204], noble metal [198,205], and
magnetic nanoparticles [206] took part in many research areas. Cadmium Selenide QDs
nanocrystals were combined with PEG-based hydrogels and successfully applied for phe-
nol detection [202]. Enzyme encapsulated cadmium telluride QD-based hydrogels with
a biocatalysis unit and a fluorescence signaling unit was utilized as a multifunctional
material to develop optical biosensors [203]. Magnetic nanoparticles in sensors and biosen-
sors are in high demand due to the limited accessible number of candidate materials.
Jia et al. created an aldehyde biosensor based on a responsive photonic hydrogel formed
through self-assembled carbon-Fe3O4 NPs and in situ photopolymerized polyacrylamide
hydrogels [206]. Table 5 summarizes the notable features of the inorganic nanocomposite
hydrogel-based biosensors introduced in this section. Despite organic nanocomposites
(polymeric and carbon-based nanocomposites), the mechanism of electrochemical sensing
varies depending on the type of inorganic materials. Still, photochemical identification is
retained for the hydrogels containing inorganic additives.
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Table 5. Collection of some of the pertinent nanocomposite hydrogel applications for biosensing.

Additives Analyte Sensing Method LOD Ref.

Ag NPs@PEG
Fe3+

Fluorescence
45 µM

[198]
Thiosulfate 60 µM

ALP Vanadium Electrochemical 230 nM [207]

Aptamer@carboxylated PPy
nanotubes Dopamine Electrochemical 1.0 nM [208]

Au nanorod@SiNP-doped
TiO2-chitosan

Dichlovos
Electrochemical

5.3 nM
[200]

Fenthion 1.3 nM

Au NPs Glucose Electrochemical 370 nM [209]

AuNCs modified DNA-aptamer Progesterone (P4) Electrochemical 1.0 ng/mL [210]

Carbon dots microRNA-21 in breast
cancer cells Fluorescence 0.03 fM [211]

Carbon-encapsulated Fe3O4
NPs@PAAm Formaldehyde Colorimetric - [206]

CNCs Strain sensor Electrochemical - [212]

Co3O4@GO Glucose Electrochemical
(Voltammeter) 250 µM [190]

Fe3O4@SiO2(F)@meso-SiO2
nanoparticles glucose Fluorescence quenching 0.46 mM [196]

GO

Glucose Optical, Electrochemical 25 µM [213]

Biochemical oxygen
demand Fluorescent

0.4 mg [214]

Antibiotic 25 mg/L [189]

Strain sensor Electrochemical - [215]

GO/PANI BSA
Near-infrared

light-responsive
electrochemical

15 nM [216]

Ionic liquid hydrogel-Au
nanoballs-MoSe2

Carcinoembryonic
antigen (CEA) Photo-electrochemical

(Photocurrent)

11.2 nM [121]

Ionic liquid-AuNP and ZnCdHgSe
QDs

Human epididymis
protein 4 (HE4) 15.4 nM [217]

Laponite@VBA Glucose Electrochemical (Current) 200 mM [199]

Lignocellulose nanofibers/LC Strain and pressure
sensor Electrochemical - [218]

MSA-capped CdTe QDs Dopamine Fluorescent 50 nM [203]

N-doped porous carbons Acetaminophen Electrochemical 1.2 nM [193]

NiCo2O4 nanoflowers@3D
nitrogen-doped graphene

Glucose
Optical, Electrochemical

390 µM
[192]

Hydroperoxide 136 µM

PANI

Ascorbic acid
Spectrometric (Infrared)

1.28 mM

[219]Dopamine 44 µM

Uric acid Electrochemical 46 µM

Xanthine Optical 9.6 nM [194]

Pd@Au NPs microRNA let-7a
(miRNA let-7a) Electrochemiluminescence 1.49 fM [220]

PDA@Ag NPs Epidermal Electrical - [195]
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Table 5. Cont.

Additives Analyte Sensing Method LOD Ref.

PEDOT/PSS Strain sensor Electrochemical - [221]

PEG@ CdSe/ZnS QDs Phenol Fluorescence quenching 1.0 mM [202]

PEG@Ag NW
neuronal stem cells

(NSC)-derived neural
differentiation

Fluorescent Neurite length
(30–140 mm) [205]

Plasmonic silver nanocubes

Glucose

Optical 2.29 mM [222]

PPy Electrochemical
(Amperometry) 4.0 µM [223]

Pt NPs@3D graphene Electrochemical
(Voltammeter) 5.0 mM [191]

Pt NPs@PANI

Triglycerides

Electrochemical
(Amperometry)

70 µM

[224]Lactate 60 µM

Glucose 200 µM

Uric acid 70 µM

[110]Cholesterol 300 µM

Triglycerides 200 µM

SA-B-DAPPy Strain sensor

Electrochemical

- [225]

SiO2
Strain and pressure

sensor - [226]

TEGO Human-body motion
and glucose

Electrochemical and
mechanical 200 nM [227]

Thioglycolic acid-QDs and
N-Acetyl-l-cysteine-QDs Fe3+ ion Optical, Fluorescent 14 nM [228]

Ag NPs: Silver nanoparticles, Ag NW: silver nanowire, ALP: Alkaline phosphatase, Au NPs: Gold nanoparticles,
BSA: Bovine serum albumin, CdSe: Cadmium selenide, CdTe: Cadmium telluride, CNCs: Cellulose nanocrystals,
Co3O4: Cobaltosic oxide, Fe3O4: Iron(II, III) oxide, GO: Graphene oxide, LC: Lignin-based carbon, MoSe2:
Molybdenum diselenide, MSA: Mercaptosuccinic acid, NiCo2O4: Nickel cobaltite, PAAm: poly(acrylamide),
PANI: Poly(aniline), PDA: Polydopamine, PEDOT/PSS: Poly(3,4-ethlenedioxythiophene)/poly(styrenesulfonate),
PEG: Poly(ethylene glycol), PPy: Poly(pyrrole), Pt NPs: Platinum nanoparticles, PVA: polyvinyl alcohol, QDs:
Quantum dots, SA-B-DAPPy: Sodium alginate (SA) and dopamine functionalized polypyrrole, Si NPs: Silicon
nanoparticles, SiO2: Silicon dioxide, TEGO: thermally exfoliated graphene oxide, TiO2: Titanium dioxide, VBA:
vinylbenzyl triethylammonium chloride, ZnCdHgSe: Zinc cadmium mercury and selenium, ZnS: Zinc sulfide.

6. Conclusions and Future Perspectives

Biosensors have become a standard analytical tool in various fields, especially health-
care and biomedicine. Despite their several advantages, many challenges such as dynamic
range, stability, chemical reactions, etc., obstruct their applications. Consequently, great
efforts are focused on developing novel materials and structures to enhance analytical
features to reach commercialization.

Polymers and nano-scaled materials have many advantages that can answer and over-
come many of the issues faced before. Their combination for the creation of nanocomposite
materials provides an exciting opportunity to complement both materials and bypass the
disadvantages seen for each material alone.

One of the most critical requirements in polymer nanocomposites synthesis is the
creation and then dispersion of the homogenous matrix, which plays an essential key role in
the composite’s physical and chemical features. Unfortunately, most applied processes are
not feasible economically or cannot deal with poor interfacial adhesion and agglomeration
of nanoparticles. Some approaches, such as layer-by-layer assembly and electrospinning,
could be applied to create perfectly homogenous polymeric matrices but are not suitable
for scaling up or commercialization. The melting process is economically achievable among
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all the alternative methods, but the final polymeric matrices mostly show poor and non-
homogeneous dispersion. Reinforcing the melting process with high shear mixing methods
like twin-screw extruding might guarantee adequate dispersion.

Protection and proper orientation of the functional groups in nanocomposites is
another challenge that can be overcome by 3D or 4D printing to further enhance the
final product’s mechanical properties. It is also important to solve the altered rheological
properties resulting from the polymer chain flexibility restriction after nanocomposite
integration in the polymer matrices. Hence, selecting nanocomposites with suitable sizes
and shapes may provide decent interactions between the polymer and nanomaterials.

Modifying the polymers by changing their morphology, optimum aspect ratio, surface
roughness, or introducing functional groups can prevent the possible structural defects
related to the synthesis process conditions (temperature, pressure, density, and speed
rate). For example, under high temperatures, the chance of having a structure with fewer
hollows and porosities is higher. However, these conditions can impose a high cost and
waste of materials that must be considered during the design and manufacturing phase.
Consequently, developing cost-effective synthesis approaches with commercialization
prospects will be interesting.

We have discussed polymer and nano-scaled nanocomposite materials to develop
sensing platforms throughout the current review paper. The diversity of these materials
show important advances in improving various sensing features such as sensitivity, selec-
tivity, LOD, storage, etc. We hope that these advances will significantly bridge the gap
between R&D-based experiments and approved clinical and commercial applications.
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