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Objective: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health
worldwide. In this study, the aim is to analyze diagnosis biomarkers in NAFLD and its
relationship with the immune microenvironment based on bioinformatics analysis.

Methods: We downloaded microarray datasets (GSE48452 and GSE63067) from the
Gene Expression Omnibus (GEO) database for screening differentially expressed genes
(DEGs). The hub genes were screened by a series of machine learning analyses, such as
support vector machine (SVM), least absolute shrinkage and selection operator (LASSO),
and weighted gene co-expression network analysis (WGCNA). It is worth mentioning that
we used the gene enrichment analysis to explore the driver pathways of NAFLD
occurrence. Subsequently, the aforementioned genes were validated by external
datasets (GSE66676). Moreover, the CIBERSORT algorithm was used to estimate the
proportion of different types of immune cells. Finally, the Spearman analysis was used to
verify the relationship between hub genes and immune cells.

Results: Hub genes (CAMK1D, CENPV, and TRHDE) were identified. In addition, we
found that the pathogenesis of NAFLD is mainly related to nutrient metabolism and the
immune system. In correlation analysis, CENPV expression had a strong negative
correlation with resting memory CD4 T cells, and TRHDE expression had a strong
positive correlation with naive B cells.

Conclusion: CAMK1D, CENPV, and TRHDE play regulatory roles in NAFLD. In particular,
CENPV and TRHDE may regulate the immune microenvironment by mediating resting
memory CD4 T cells and naive B cells, respectively, and thus influence disease
progression.
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INTRODUCTION

Nonalcoholic Fatty Liver Disease (NAFLD) is defined by the
presence of hepatic steatosis in the absence of significant alcohol
consumption or causes other than the metabolic disorders
constituting the metabolic syndrome, which is a leading cause of
chronic liver disease and affects about 10% of the world population
(Sven et al., 2020). Hepatic pathologies of NAFLD range from simple
hepatic steatosis to nonalcoholic steatohepatitis (NASH), even
developing into liver fibrosis, liver cirrhosis, and hepatic
carcinoma (Kabbany et al., 2017). With the increasing incidence
of obesity, diabetes, hyperlipidemia, and cardiovascular disease,
NAFLD has become increasingly prevalent, which represents the
hepatic manifestation of metabolic syndrome. The global prevalence
of NAFLDwill be increasing soon. Despite the enormous burden on
healthcare costs, there is no effective cure approved for NAFLD.
Lifestyle interventions are recommended as first-line management
in guidelines, but it is difficult to achieve favorable and persistent
outcomes in the real world regrettably (Polyzos et al., 2019).

With the drastic development of generation sequencing
technologies, systems biology techniques including genomics,
metabolomics, transcriptomics, and proteomics provide new
insight into solving this task. An increasing number of studies
have indicated that NAFLD is linked to metabolic disorders
(Huang and Kong, 2021; Luukkonen et al., 2021; Osborne
et al., 2021). Immunity is also involved in the development
and progression of NAFLD (Barrow et al., 2021; Huby and
Gautier, 2021; Song et al., 2021). Nonetheless, there is still a
lack of insensitive and targeted biomarkers that may be widely
used in the clinical setting, which causes significant challenges for
clinical diagnosis and treatment, especially for early diagnosis and
follow-up strategy.

Therefore, an exploration into the molecular mechanism in
NAFLD is necessary. To address these issues, we applied the
GEO database to mine DEGs between NAFLD patients and
normal patients, and determined the correlation between robust
biomarkers, immune microenvironment and nutrient metabolism.
Using various bioinformatics analysis methods, we described the
differential genes and verified these genes in the external gene
dataset, and finally screened CAMK1D, CENPV, and TRHDE. In
addition, we found compounds or environmental poisons that
might have a potential relationship with hub genes in the
comparative toxicology database, which provided an important
theoretical basis for the primary prevention and treatment of
NAFLD.

MATERIALS AND METHODS

Datasets and Data Preprocessing
Raw transcriptomic data from two microarray datasets
(GSE48452 and GSE63067) based on the GPL11532 and
GPL570 platforms, both taken from the liver tissue, were
downloaded from the GEO database. Normalization was
performed on the raw data using the sva package. PCA
showed that the aforementioned analysis method was better at
eliminating batch effects (Supplementary Figure.S1). Twenty-

one healthy liver control tissues, as well as 27 NAFLD liver tissue
samples, were ultimately included in the screening set. In
addition, we downloaded the GPL6244 platform–based
GSE66676, derived from liver wedge biopsies, as an external
validation dataset. Particular clinical characteristics of the
patients in the dataset are presented in Supplementary
Datasheet S1.

Screening and Validation of Hub Markers
As previous studies have done (Hu et al., 2022; Jiang et al., 2022),
differentially expressed genes (DEGs) were screened in
GSE48452 and GSE63067 in a batch-calibrated screening set.
DEGs between NAFLD samples and normal samples were
screened using the limma program package, with P. adj.
value <0.05 selected as the cutoff criterion. Considering the
situation of datasets, we did not set logFC as the threshold.
Subsequently, the core genes were further screened in the
aforementioned DEGs using a 10-fold cross-validation of
LASSO (glmnet package). Alternatively, support vector
machine–recursive feature elimination (SVM-REF) is a
support vector machine–based machine learning method that
builds on DEGs by removing support vector machine–generated
feature vectors (e1071 and msvmRFE program packages) to find
the optimal core genes. Simultaneously, we screened DEGs using
one-way logistic regression with NAFLD as the dependent
variable, using p < 0.001 as the threshold. In the WGCNA
analysis, all DEGs satisfying p. value <0.05 in normal and
NAFLD samples were used as input, and each sample
clustered well, with a shear line of 30 as the threshold, and
one outlier sample was excluded. Subsequently, a soft threshold
from 1 to 20 was used for topology calculation to determine the
optimal soft threshold of 6. The curve is smoothest when β was 6.
Based on the soft threshold, the relationship matrix was
converted to an adjacency matrix and then to a topological
overlap matrix (TOM) for mean linkage hierarchical
clustering, and the related modules were classified according
to TOM with the number of genes in each module not less
than 50. The gene module shear height in this study was 0.7, and
similar module merging was performed. In addition, GS and GS
of each module were calculated. In addition, GS and MM within
each module were calculated for scatter plots. Finally, the Pearson
method was used to calculate the correlation between the merged
modules and the occurrence of NAFLD.

Enrichment Analysis
GO enrichment analysis is a common bioinformatics method
used to search for comprehensive information on large-scale
genetic data, including BP, CC, and MF. In addition, KEGG
pathway enrichment analysis is widely used to understand
biological mechanisms and functions. At the same time, DO
enrichment analysis can be used to explore the diseases in which
the genes of interest are predominantly involved. Finally, GO,
KEGG pathway, and DO analyses were visualized using the GO
plot program package. Finally, primary signaling pathways
associated with core genes were further explored using the
cluster profile package and the GSVA package. The
h.all.v7.4.symbols.gmt gene set was downloaded from MSigDB,
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FIGURE 1 | Differentially expressed genes. (A,B) Differentially expressed genes (DEGs) were identified in GSE48452 and GSE63067, respectively, with
upregulated genes indicated in red and downregulated genes in green in the volcano plot; in addition, the heat map shows the top 10 differentially expressed genes. (C)
After batch correction, we again identified DEGs in the screening set using the limma package, and the volcano plot in red indicates upregulated genes and green
indicates downregulated genes. (D) The DEGs from the three aforementioned screens were crossed, resulting in the identification of 19 core DEGs.
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and the gene set was subjected to GSVA analysis with the gene
expression matrix to explore the regulatory pathways that may be
involved.

Construction of Hub Gene Regulatory
Network
First, potential miRNAs targeting hub genes were predicted using
mirDIP and Starbase databases, with the threshold set to
minimum score = very high, to identify the regulatory
network of miRs downstream of core genes. In addition, the
TRRUST database contains 800 human transcription factors
(TFs), and TF-core gene reciprocal pairs with p-values <
0.05 were selected to build upstream regulatory networks. In
addition, we queried the Comparative Toxicogenomic database
for compounds or environmental reads that might retain
potential relationships with core genes. Finally, the core gene
regulatory network was visualized based on the Networkanalyst
database (Supplementary Figures S2, S3).

Immune Analysis Algorithm
As previous studies have done (Lu et al., 2021; Shen et al., 2021),
the CIBERSORT algorithm calculates the proportion of different
immune cell types based on the expression levels of immune
cell–related genes. The output of the 22 infiltrated immune cells
was integrated to generate a matrix of immune cell fractions for
analysis (the CIBERSORT program package). The correlation of
core genes with the content of the 22 immune cell types was
calculated using the Spearman method.

Statistical Analysis
All statistical analyses were performed using R software (v.4.0.1).
Detailed statistical methods for transcriptome data processing are
covered in the aforementioned section. p < 0.05 was considered
statistically significant.

RESULT

DEGs in Different Datasets
In the beginning, we identified 50 differentially expressed genes
(DEGs) in GSE48452, and the volcano map shows 28 upregulated
genes as well as 22 downregulated genes; in addition, the heat
map shows the top 10 differentially expressed genes (Figure 1A).
In addition, 1725 DEGs were identified in GSE63067, and the
volcano map and heat map demonstrates 885 upregulated genes
as well as 840 downregulated genes (Figure 1B). In addition, after
batch correction, we again identified DEGs in the screening set
using the limma package, with the volcano map demonstrating
77 upregulated genes as well as 66 downregulated genes
(Figure 1C). Ultimately, we crossed DEGs from the three
aforementioned screens and ultimately identified 19 core
DEGs. In detail, TMEM154, TSPAN3, CAMK1D, TRHDE,
PEG10, ME1, SATB2, SNAP25, ANKRD18A, ISM1, and
SGCB were upregulated in NAFLD, while APOF, SYP, OPN3,
CENPV, IGF1, AMDHD1, P4HA1, and MRPL21 were
downregulated within NAFLD samples (Figure 1D).

Enrichment Analysis in DEGs
To explore the potential biological mechanisms of the 19 DEGs
and the development of NAFLD, KEGG analysis illustrated the
possible biological mechanisms of NAFLD development such as
glioma, hypertrophic cardiomyopathy, and other disease
processes (Supplementary Figure S2A). In addition, DO
analysis revealed 19 differential genes that may have shared
pathogenesis in diseases such as cell type benign neoplasm
(Supplementary Figure S2B). Meanwhile, the BP section of
the GO enrichment analysis suggested the important role of
the dicarboxylic acid metabolic process, pyruvate metabolic
process, etc. (Supplementary Figure S2C). Finally, we
downloaded the corresponding gene sets from MSigDB and
performed the GSVA analysis of the gene sets and gene
expression matrices to explore the potential pathways involved
in the pathogenesis of NAFLD, and the results showed that
allograft rejection, cholesterol homeostasis, complement, and
inflammatory response pathways have significant roles
(Supplementary Figure S2D). Interestingly, taken together,
the established chain of evidence suggests a possible
involvement of the immune system with the nutritional
metabolic system in NAFLD.

Integrated LASSO Analysis, Machine
Learning Algorithm, and Logistic Analysis
for Screening Hub Biomarkers
Among the aforementioned 19 DEGs, we further screened the
core genes using a 10-fold cross-validation of LASSO and finally
screened 12 potential genes (Figures 2A,B). At the same time, we
performed an in-depth screening of the differential genes using a
machine learning approach with SVM, and the results showed the
lowest RMSE values when all 19 genes were included (Figure 2C).
Finally, we performed a one-way logistic analysis of the
expression of the 19 DEGs, with NAFLD occurrence as the
dependent variable, and the final results of Moritu showed
that 15 genes entered the subsequent analysis (Figure 2D).

WCGNA Analysis Was Used for Further
Screening
To further link clinical information to key genes, the expression
of only 1,989 genes that met p. value <0.05 in the analysis of
differences between normal and NAFLD samples was used as
the input matrix in WGCNA analysis. The samples clustered
well, and one outlier sample was excluded using a shear line of
30 as the threshold (Figure 3A). Subsequently, a soft threshold
of 1–20 was used for topological calculations, and the optimal
soft threshold was determined to be 6 (Figure 3B). Based on the
soft threshold, the relationship matrix was converted to an
adjacency matrix and then to a topological overlap matrix
(TOM) for mean linkage hierarchical clustering, and the
related modules were classified according to TOM with no
less than 50 genes in each module, and the similar gene
modules were finally merged (Figure 3C), resulting in the
identification of three modules. In addition, to calculate the
correlation between genes within modules and clinical traits, we
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found that the green module included the highest correlation
with the occurrence of NAFLD (p = 0.83), so this was used as the
core module (Figure 3D). In addition, GS and MM were
calculated for 1,196 genes within the green module, and
correlation scatter plots were drawn (Figure 3E). We found a
direct correlation between GS and MM of genes within the core
module, which verified our speculation from another
perspective.

Exploring Predictive Value of Biomarkers
To identify core biomarkers, we cross-tabulated relevant genes
fromWGCNA, LASSO, Logistic, andmachine learning, and finally
identified seven biomarkers as our candidate genes (Figure 4A).
We performed ROC analysis on each of these seven genes in the
screening set, and the results showed that all genes had excellent
predictive performance in the screening set: CAMK1D (AUC =
0.859, Figure 4B), CENPV (AUC = 0.864, Figure 4C), OPN3
(AUC = 0.891, Figure 4D), SATB2 (AUC = 0.840 (Figure 4E),
SNAP25 (AUC = 0.868, Figure 4F), TRHED (AUC = 0.848,
Figure 4G), and TSPAN3 (AUC = 0.926, Figure 4H).

The Validation of Hub Biomarkers
To validate the accuracy of seven aforementioned genes, we performed
validation in an external validation set. In the dataset, also with liver
tissue sequencing, only CAMK1D, CENPV, and TRHDE obtained
differential expression between samples (Figure 5A), and in addition,
as shown in Figure 5B, ROC analysis also demonstrated better
predictive performance for three aforementioned biomarkers
(CAMK1D, AUC = 0.632; CENPV, ADU = 0.651; TRHED,
ACU = 0.676). In addition, we queried the Comparative
Toxicogenomics database for compounds or environmental
toxicants that may have potential relationships with core genes.
Finally, the core gene regulatory network was visualized based on
the Networkanalyst database (Supplementary Figures S3, S4).

The Analysis of Differences in Immune
Microenvironment
Considering the important role of the immune pathway in NAFLD
in the GSEA gene enrichment analysis, we used the CIBERSORT
algorithm to analyze the immune cell content in various tissues.

FIGURE 2 | Hub biomarker screening. (A,B) LASSO regression analysis. (C) Machine learning approach with SVM. (D) Logistic regression analysis.
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The results indicated higher levels of CD8 T cells, activated NK
cells, and follicular-helper T cells in normal samples; in NAFLD
tissues, only Macrophages M1 had a higher enrichment fraction
compared to normal liver tissue (Figure 6A). In addition, the
results of PCA analysis also showed a natural heterogeneity in the
distribution of immune cells between the two tissues (Figure 6B).
At the same time, the bar chart illustrates the general landscape of
immune cell distribution between the different tissues (Figure 6C).
Finally, as shown in Figure 6D, we performed a correlation
analysis of all immune cells in the CIBERSORT algorithm,
showing Macrophages M0 had the strongest negative
correlation with T cells CD4 memory resting (r = −0.47) and
T cells CD8 had the strongest positive correlation with Dendritic
cells resting (r = 0.64).

Correlation Hub Biomarkers With Immune
Infiltrating Cells
To explore the association of our identified core genes CAMK1D,
CENPV, and TRHDE with immune cell content, we performed
separate correlation analyses. Unfortunately, there was no

statistically significant correlation between the
CAMKD1 expression and the content of 22 types of
aforementioned immune cells (Figure 7A). In addition, the
CENPV expression had a significant negative correlation with
resting memory CD4 T cells, r = −0.581 (Figures 7B,D).
Simultaneously, TRHDE expression had a strong positive
correlation with naive B cells, r = 0.538 (Figures 7C,D). Based
on our results, we propose a speculation that the core genes
CENPV and CRHDE may be involved in disease progression and
regulate the immune microenvironment by mediating resting
memory CD4 T cells and naive B cells, respectively.

DISCUSSION

NAFLD is a disease spectrum of a series of liver diseases,
including simple fatty infiltration (steatosis) and fat and
inflammation [nonalcoholic steatohepatitis (NASH)), and
cirrhosis] without excessive alcohol consumption (<20 g a day
for women and <30 g a day for men is adopted). NAFLD is
associated with metabolic syndrome, including insulin resistance,

FIGURE 3 | WCGNA analysis was used for further screening. (A) Each sample clustered well, with a shear line of 30 as the threshold and one case of outlier
removed. (B) Topological calculations with soft thresholds from 1 to 20 to determine the optimal soft threshold of 6. (C) Based on soft thresholds, the relationship matrix
is converted to an adjacencymatrix and then to a topological overlapmatrix (TOM) for average link hierarchy clustering, which classifies the relevant modules according to
TOM. (D) Calculating the correlation between genes within modules and clinical traits, we found that the green module had the highest correlation with the
occurrence of NAFLD (p = 0.83). (E) The scatter plot of the correlation between GS and MM for 1,196 genes within the green module.
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hyperlipidemia, type 2 diabetes, and obesity. It is considered to
represent the hepatic manifestation of this syndrome (de Alwis
and Day, 2008; Anstee et al., 2011). An epidemiological model
predicts that the prevalence of NAFLD/NASH will continue to
increase and the mortality of associated diseases will double by
2030 (Estes et al., 2018). NAFLD is gradually becoming the
fastest-growing cause of HCC; many risk factors for NAFLD
are also independently associated with HCC, and screening for
NAFLD-related HCC is difficult, so the exploration of the
pathogenesis of NAFLD, related biomarkers, primary
treatment, and prevention is urgent (Ioannou, 2021). In our
study, we applied the GEO database to mine differential genes
in NAFLD patients versus normal patients to identify strong
biomarkers for correlation with the immune microenvironment.
We characterized the differential genes in NAFLD patients versus
normal patients by using various raw letter analysis methods and

validated these differential genes in an external genetic dataset,
finally screening for CAMK1D, CENPV, and TRHDE, and
illustrating the relevance of these biomarkers to the immune
microenvironment. In addition, we queried the Comparative
Toxicogenomics database for compounds or environmental
toxicants that may have potential relationships with core
genes, providing a historic theoretical basis for the primary
prevention and treatment of NAFLD.

Previous studies have shown that among multiple genetic risk
factors, an SNP in the gene-encoding patatin-like phospholipase
domain-containing 3 (PNPLA3) strongly predicts an increased
risk of developing NAFLD. The G allele of the PNPLA3 rs738409
(148M) variant is associated with an increased risk of NAFLD
development, and progression of NAFLD to NASH, liver fibrosis,
and even cirrhosis (Romeo et al., 2008; Valenti et al., 2010).
Epidemiological studies have shown that fatty acids (FAs) and

FIGURE 4 | Exploring the predictive value of biomarkers. (A) Cross-tabulation of relevant genes from WGCNA, LASSO, Logistic, and machine learning to identify
candidate genes. (B–H) ROC analysis of the aforementioned genes.
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palmitoleic acid levels in NAFLD patients predict increased risk
factors for CVD-related mortality and that the principal driver of
CVD in NAFLD patients is a mutagenic lipid profile caused by
increased hepatic lipogenesis. However, the specific pathogenesis
of dilated cardiomyopathy and hypertrophic cardiomyopathy
associated with the NAFLD process is unknown and needs to
be further explored (Lai et al., 2019; Soehnlein and Libby, 2021).
On the other hand, plasma amino acid concentrations have been
associated with the pathogenesis of NAFLD and the progression
of NASH, but the exact mechanisms are unclear. Concentrations
of AA are altered in metabolic diseases such as T2DM, NAFLD,
and obesity, and an established chain of evidence suggests that
AA concentrations are associated with insulin resistance. BCAA
has been of interest and may play a role in promoting peripheral
and hepatic insulin resistance and in accelerating the T2DM

process. In obese patients with NAFLD, fasting BCAA levels are
elevated and associated with peripheral insulin resistance,
possibly in relation to the liver being the site of protein and
amino acid metabolism. In contrast, however, serine and glycine
are found to be reduced in metabolic diseases such as NAFLD,
suggesting that glycine metabolism is associated with the
pathogenesis of NAFLD (Hyötyläinen et al., 2016; Gaggini
et al., 2018). In our study, through the KEGG analysis of
NAFLD, the DO analysis of the screened differential genes,
GO analysis, and GSVA analysis, we found that the
pathogenesis of NAFLD may involve the immune system and
the nutritional metabolic system.

To further validate the correlation between DEGs screened
from the database and NAFLD, LASSO regression analysis,
machine learning, and logistic regression analysis were

FIGURE 5 | Validation of hub biomarkers. (A) Candidate genes were validated in the external validation set, and those marked in red indicate differential expression
between samples. (B) ROC analysis of candidate genes in the external dataset, with blue annotations indicating good predictive performance for the gene.
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performed on 19 DEGs. Machine learning with SVM was chosen
over other tools because of its ability to function with
extraordinary accuracy and effective model. In addition, SVM
machine learning has a nonlinear processing characteristic that
allows it to produce a more accurate output than other
algorithms, even when the data contain a large variability.
However, in this study, when using the SVM’s machine
learning approach for in-depth screening of DEGs, RMSE only
showed a minimum when all genes were included. The weighted
gene coexpression network analysis (WGCNA) is a simple
method that allows the construction of gene expression
networks by aggregating highly related genes into modules, a
method that allows visualization of the most representative AMI
genes. These core elements of the biological network are more
likely to represent essential genes with more critical functions
(Langfelder et al., 2011). In order to identify the core biomarkers,
we crossed the relevant genes screened by the previous methods
and identified a total of seven candidate genes, and after ROC
analysis, we found that all seven genes had strong predictive
power. ROC analysis also demonstrated good predictive power
for these three core biomarkers. We have predicted potential

candidate compounds for these three hub genes, which are
important for both primary prevention and subsequent
targeted therapy in patients.

The CAMK1 family of calmodulin-dependent kinases is
widely expressed in hepatocytes, endothelial cells, immune
cells, and the essential nervous system (CNS) (Parkinson et al.,
2007; Wayman et al., 2008). CAMK1D may play a role in hepatic
gluconeogenesis (Rausch et al., 2018). Lina Xu et al., using
integrated Hi-C, Nanopore, and RNA sequencing techniques
to analyze liver tissues from normal and NAFLD mice, found
thousands of regions in the genome with 3D chromatin
organization and genomic rearrangements in the genome and
revealed genetic dysregulation accompanying these variants.
These genes were identified in NAFLD and were affected by
genetic rearrangements and spatial organization disruption.
Among them, CAMK1 expression was downregulated by
alternating CNV and SV, chromatin loop, domains, and
interaction matrix (Xu et al., 2021). In the type 2 diabetes
CDC123/CAMK1D GWAS (genome-wide association studies)
locus, rs11257655 affects transcriptional activity by altering the
binding of the protein complexes of FOXA1 and FOXA2, a

FIGURE 6 | Analysis of differences in the immune microenvironment. (A) The CIBERSORT algorithm was used to analyze the content of immune cells in different
tissues, and the red markers are the immune cells with different content in the two different samples. (B) PCA analysis of the distribution of different immune cells in
NAFLD and normal tissue samples. (C) A holistic view of the distribution of immune cells between different tissues. (D) Correlation analysis was performed on all immune
cells in the CIBERSORT algorithm.
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potential molecular mechanism in type 2 diabetes (Fogarty et al.,
2014). Christophe Fromont et al. first validated CAMK1D as a
target for diabetes therapy in an in vivo experiment (Fromont
et al., 2020). A single nucleotide polymorphism (SNP) genotyping
of 11,530 cases pointed out that SNP rs10906115A of CDC123/
CAMK1D was significantly associated with susceptibility to type
2 diabetes in the Japanese population (Imamura et al., 2011).
However, the specific mechanism of regulation of NAFLD by
CAMK1D is unclear. CENPV is a component of mitotic
chromosomes associated with cytoplasmic microtubules. Elena
Chiticariu et al. found that CENPV localizes to primary cilia in
interphase, regulates cilia levels of acetylated microtubulin (α-
tubulin), and is overexpressed in basal cell carcinomas and
adnexal skin tumors (Chiticariu et al., 2020). CENPV levels

are critical for cell viability, and either decreased or increased
protein levels lead to cell death. cENPV provides an interesting
link between the chromosomal passenger complex (CPC),
primary contraction of mitotic chromosomes, and peristomal
heterochromatin. The depletion of CENPV leads to a strong CPC
phenotype (difficulties in chromosome bi-orientation and a
failure to complete cytokinesis), followed rapidly by apoptotic
cell death (Tadeu et al., 2008). The function of the CENPV gene is
more organelle-specific and its role in the regulation of NAFLD
has not yet been reported, and determining its detailed role and
mechanism remains an exciting challenge for subsequent
research. TRHDE was reported to be a DNA methylation
marker for precancerous lesions in oral cancer (Shridhar et al.,
2016). The overexpression of the noncoding long RNA TRHDE-

FIGURE 7 | Correlation hub biomarkers with immune-infiltrating cells. (A–C) Analysis of the correlation between the hub gene and immune cell content, with those
marked in red indicating a statistically significant correlation between the gene and immune cells. (D)Once again, statistically significant correlations were made between
hub genes and immune cell content.
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AS1 inhibits lung cancer progression via the miRNA-103/
KLF4 axis (Zhuan et al., 2019). In a study of the genomic
signature of gliomas, TRHDE was found to be positively
correlated with the disease pathogenesis process (Liang et al.,
2017). In a study of the genetic basis of thyrotropin receptor
antibodies and hyperthyroidism in mice immunized with CXB
recombinant inbred strains, it was uncovered that the TRHDE
expression is controlled by thyroid hormones and is linked to
genes related to thyroid function, which represents an extremely
intriguing result (Aliesky et al., 2006). There are no studies on the
role of TRHDE in NAFLD, but it has been reported in oral cancer,
lung cancer, and glioma development, and its relationship with
thyroid hormones could be explored in depth.

Inflammation is a hallmark of NAFLD that continues to
progress to NASH and is characterized by a severe
dysregulation of different innate and adaptive immune cell
compartments, with immune cells regrouping in the liver and
being activated (Parthasarathy et al., 2020). We have presently
obtained two alternative views on the inflammatory response in
NAFLD. While dysregulated immune cells can further exacerbate
liver damage, the inflammatory response that occurs early in the
process of liver injury may be substantial for tissue healing and
repair (Wynn and Vannella, 2016; Eming et al., 2017). Our
analysis of the immune cell content of NAFLD and normal
tissues showed that normal tissues had higher levels of T cells
CD8, activated NK cells, and follicular-helper T cells, while only
Macrophages M1 had a relatively high enrichment fraction in
NAFLD samples. A study in triple-transgenic model pigs suggests
that CD8 T cells play a crucial role in adipose inflammation,
recruiting and activating macrophages after activation in adipose
tissue, which differs from our results for several reasons; we
speculate, first, that CD8 T cells may not be consistently highly
expressed throughout the development of the disease. Second,
CD8 T cells may act more early in the development of NAFLD,
and the exact cause and mechanism may need to be further
explored (Zhang et al., 2021). NK cells perform a fundamentally
meaningful role in liver fibrosis and are generally thought to
reduce fibrotic events by eliminating activated hepatic stellate
cells or altering the phenotype of hepatic macrophages. However,
previous studies have found NK cell dysfunction in some patients
with hepatocellular carcinoma and an association with a poor
prognosis (Cai et al., 2008). In an analysis of the differences in NK
cell surface markers and cell function correlations between
NAFLD and ordinary volunteers, it was discovered that
peripheral blood NK cells from NAFLD patients had reduced
abundance and function (Sakamoto et al., 2021). The regulatory
role of follicular-helper T cells (Tfh) is more in viral and
autoimmune hepatitis. Xiaowen Wang et al. showed that in
studies of blood from HBV-infected mice and patients with
chronic HBV infection, the Tfh cell response to HBsAg was
required for HBV clearance and that this response was blocked.
The inhibition of Treg cell activity with anti-CTLA4 neutralizing
antibodies restored the ability of Tfh cells to acquire HBV
infection and could be implemented in the treatment of
chronic HBV-infected patients. The dysregulation of the
immune response to Tfh also induces lethal autoimmune

hepatitis (Wang et al., 2018). The role of pro-inflammatory
Macrophage M1 in NASH is primarily to exert
immunomodulatory activity, with Macrophage
M1 accumulating in areas of inflammation to secrete pro-
inflammatory factors that exacerbate the progression of
inflammation (Sun et al., 2021). The increase or decrease in
the number of these immune cells can only suggest the
occurrence of immune dysregulation in NAFLD tissues and
the recruitment of some immune cells, which can be useful for
subsequent studies and can be used clinically to slow down the
progression of NAFLD or reverse the disease process to some
extent by regulating the level of immune cells. The most
significant negative correlation was demonstrated between
Macrophages M0 and resting memory CD4 T cells, indicating
that Macrophages M0 may be related to the activation of resting
memory CD4 T cells, CD8 T cells, and dendritic cells. The most
direct positive correlation between CD8 T cells and dendritic cells
resting suggests that CD8 T cells inhibit dendritic cell recruitment
through immune cell interactions during the NAFLD
recruitment. However, this is only speculation and further
experiments are needed to verify the exact relationship and
mechanism of action.

Is there a relationship between the infiltration of immune
cells and the screened hub biomarkers? To address this question,
we analyzed the correlation between CAMK1D, CENPV, and
TRHDE and immune cells, and finally found that CENPV
expression had a direct negative correlation with resting
memory CD4 T cells, and TRHDE expression had a strong
positive correlation with naive B cells; we venture to guess that
CENPV and TRHDE may regulate resting memory CD4 T cells
and naive B cells through certain pathways, and have an impact
on disease progression remission or recovery in NAFLD in
terms of immune and inflammatory responses. Despite our
findings, our conclusions need to be adopted with caution
due to the limitations of our study. Our study is limited to
the processing of previous data, and the timeliness and accuracy
of our findings need to be verified, which may provide a
reference for clinical diagnosis, but more detailed basic
experiments and clinical trials are needed to support our
findings before they can be applied to clinical treatment.
Moreover, NAFLD samples are difficult to obtain, and it is
difficult for us to conduct more assays.

In summary, we screened the GEO database for differential
genes in two datasets, GSE48452 and GSE63067, and performed
LASSO regression analysis, SVM machine learning analysis,
logistic regression analysis, and WGCNA analysis on the
differentially expressed genes. Seven candidate genes
(CAMK1D, CENPV, OPN3, SATB2, SNAP25, TRHED, and
TSPAN3) were finally screened, and three hub genes
(CAMK1D, TRHDE, and CENPV) were identified after the
external dataset validation. In GO analysis, we found that the
disease process in NAFLD is strongly associated with nutritional
metabolism and the immune system, and we identified more
excessive levels of macrophage M1 in NAFLD than in normal
tissue through immune cell content analysis. The ultimate
analysis of hub genes and immune cell correlations suggests
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that CENPV and TRHDE may influence the disease process in
NAFLD by regulating resting memory CD4 T cells and naive
B cells through certain pathways. This may additionally provide a
theoretical basis for subsequent clinical treatment.
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