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INTRODUCTION

Marine microbial communities are a fundamental 
driver of global biogeochemical cycles. Photosynthetic 
plankton form the energetic foundation of virtually all 
pelagic ecosystems, while cycling among broader net-
works of individuals plays a key role in the regulation 
of Earth's climate (Guidi et al.,  2016). While individ-
ual metabolic processes and functional traits are often 
well correlated with environmental conditions (Cohen 
et al.,  2021; Marañón et al.,  2012; Thomas et al.,  2012; 
Ustick et al., 2021), our ability to predict when and where 
individual taxa become important is complicated by an 
extremely high degree of taxonomic diversity. Indeed, 
among the approximately 1028 microbial cells living in 
the ocean (Flombaum et al., 2013), recent bioinformatic 

surveys have identified the existence of up to 150,000 
genera of marine eukaryotes in the photic layer alone (de 
Vargas et al., 2015).

In addition to this raw taxonomic diversity, globally 
important metabolisms and functional traits often ap-
pear broadly distributed across the tree of life, and in 
any given environment may be performed equally well 
by a large number of individual taxa. There is thus a 
high degree of functional redundancy in marine ecosys-
tems (Louca et al., 2016), with the selection of traits and 
function occurring irrespective of taxonomic classifica-
tion. For example, global metagenomic analysis points 
to high taxonomic dissimilarity among functionally 
very similar communities (Louca et al., 2018; Sunagawa 
et al.,  2015). Likewise, single- cell genomic analyses 
have shown extremely high levels of genetic divergence 
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Abstract

Marine microbial communities are extremely complex and diverse. The number 

of locally coexisting species often vastly exceeds the number of identifiable niches, 

and taxonomic composition often appears decoupled from local environmental 

conditions. This is contrary to the view that environmental conditions should 

select for a few locally well- adapted species. Here we use an individual- based eco- 

evolutionary model to show that virtually unlimited taxonomic diversity can be 

supported in highly evolving assemblages, even in the absence of niche separation. 

With a steady stream of heritable changes to phenotype, competitive exclusion may 

be weakened, allowing sustained coexistence of nearly neutral phenotypes with 

highly divergent lineages. This behaviour is robust even to abrupt environmental 

perturbations that might be expected to cause strong selection pressure and 

an associated loss of diversity. We, therefore, suggest that rapid evolution and 

individual- level variability are key drivers of species coexistence and maintenance 

of microbial biodiversity.
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among coexisting cells from the same taxonomic group 
(Kashtan et al., 2014; Rynearson & Armbrust, 2000).

This pattern of functional redundancy brings a new 
perspective to a longstanding question in marine micro-
bial ecology, namely ‘how it is possible for a number of 
species to coexist in a relatively isotropic or unstructured 
environment all competing for the same sorts of materials’? 
(Hutchinson, 1961). As initially suggested by Hutchinson 
himself, many valid solutions to this ‘paradox’ exist 
(Record et al., 2013). Species compete for (and are lim-
ited by) a broad range of chemical and biological factors 
that enable coexistence (Tilman,  1977). It is also clear 
that even a well- mixed ocean is neither isotropic nor 
unstructured (d'Ovidio et al., 2010). Spatial partitioning 
can thus occur at many different scales and ecological 
equilibrium is often prevented by external perturbations 
(Litchman et al., 2009) and internal dynamics (Huisman 
et al., 1999) such that competitive exclusion can be indef-
initely postponed.

The mechanisms above work by partitioning coexist-
ing species into different niches or by separating them in 
time or physical space, but do not address the potential 
for more than one species to coexist within a single niche. 
An alternative perspective, provided by the neutral the-
ory of biodiversity (Hubbell, 2001), suggests that an un-
limited degree of diversity can be maintained within the 
same niche if species have effectively identical fitness in 
their shared environment.

While the neutral theory can explain some observed 
patterns of diversity (Hubbell, 2001), it is often criticized 
on the grounds that even tiny differences in fitness must 
eventually lead to competitive exclusion (in the absence 
of other mechanisms; Hardin, 1960; Loreau, 2004). This 
is argued to be particularly true in microbial popula-
tions, for which huge population sizes tend to diminish 
the importance of stochastic effects that might delay ex-
clusion (Louca et al., 2018). All other things being equal, 
even a relatively small increase in fitness is expected to 
rapidly fix within the population, in a selective sweep 
(Hermisson & Pennings, 2017; Louca et al., 2018).

While these ecological considerations suggest that 
neutrality is an unlikely outcome in microbial com-
munities, the degree to which species can coexist is 
also known to be affected by evolution (Kremer & 
Klausmeier,  2017). Laboratory cultures may display a 
high level of phenotypic convergence among traits that 
are strongly correlated with fitness (Blount et al., 2018), 
suggesting differences in many trait values and their as-
sociated fitness may be minimized through time. On one 
hand, convergent evolution can maintain diversity by 
eliminating the fitness differences that lead to exclusion 
(Hubbell, 2006; Scheffer & van Nes, 2006). On the other, 
the same processes can eliminate complementary differ-
ences in phenotype that support coexistence, thus driv-
ing a steady decline in biodiversity (Sauterey et al., 2014; 
Shoresh et al.,  2008). Among these modelling studies, 
a common feature is that the evolving community is 

represented as discrete populations differentiated by 
ecophysiological traits. This precludes the examination 
of potentially important processes of birth, death and 
mutation occurring at the individual level, or of the sub-
stantial variation known to underlie a given set of trait 
values. These individual- level processes require consid-
eration. For example, individual- based models (IBMs) 
have shown that phenotypic noise among individuals in 
large populations may be sufficient to add variation to 
the outcomes of local competitions, allowing extended 
coexistence of highly similar populations (or even pop-
ulations of equal average fitness) within the same niche 
(Menden- Deuer et al., 2021). This suggests that compet-
itive exclusion may proceed much more slowly given re-
alistic levels of noise between genotype and phenotype 
when populations have the same or very similar average 
fitnesses (although this does not explain why small dif-
ferences in average fitness would not eventually lead to 
exclusion).

In this article, we address questions of functional and 
taxonomic diversity using an ecological and evolution-
ary (eco- evo) model that makes no prior assumptions 
regarding the differentiation of populations, species or 
ecotypes. Instead, the community is resolved at the in-
dividual level, with species and populations treated as 
emergent properties based on genetic rather than phe-
notypic distance. To achieve this, we take an established 
eco- evolutionary model (Beckmann et al., 2019) and add 
a neutral genomic component that allows us to track de-
scent and diversity under a range of scenarios. With sim-
ulations based on realistic ecophysiological parameters, 
we show that virtually unlimited diversity is a natural 
consequence of highly abundant evolving populations, 
with rapid trait evolution allowing lineages to avoid 
competitive exclusion despite even sharp changes in en-
vironmental conditions.

An individual- based model of microbial evolution

The eco- evolutionary model provides a very simple rep-
resentation of a closed marine microbial ecosystem, with 
state variables for nutrients, individual phytoplankton 
cells and organic detritus (Beckmann et al., 2019). The 
phytoplankton community is represented as a collection 
of individual cells that take up nutrients and increase 
in size as a function of their environmental conditions 
and ecophysiological traits. Cells divide into two daugh-
ter cells once they have doubled in biomass relative to 
a predefined threshold. Cells die through a stochastic 
process, producing organic detritus that is remineralised 
to inorganic nutrient at a fixed linear rate. Individual 
cells differ only in terms of their optimal temperature 
for growth, which is passed from generation to genera-
tion with some error, allowing for evolution by selec-
tion (Figure 1). Here, heritable variation is modelled as 
a random walk in a one- dimensional trait space, which 
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represents the organisms' thermal optima. Heritable 
changes in trait values may be attributable to any com-
bination of genetic and epigenetic mutations, as well as 
transgenerational plasticity that can affect the trait in 
question. These changes need not correspond directly 
to genetic point mutation rates, but rather to the per- 
generation rate of trait value change, which can be af-
fected by all or some of these processes. Hereafter, we 
refer to heritable trait changes generically as ‘mutation’, 
regardless of the molecular cause of the change. A more 
detailed description of the individual- based model can 
be found in Appendix A and Beckmann et al. (2019).

In addition to the model components laid out by 
Beckmann et al.  (2019), each simulated individual is 
assigned two heritable but ecologically neutral charac-
teristics: a binary string that undergoes a single random 
bit flip at each generation, and a ‘colour trait’ encoded 
as a three- element vector (red, green and blue) that also 
varies randomly from generation to generation (see 
Methods). The binary genome can be thought of as rep-
resenting a two- base equivalent to a non- coding RNA 
or DNA sequence. Given that (a) genomes are identical 
at the point of division, (b) changes in the genomes are 
not under selection and (c) genomes acquire mutations 
at a fixed rate, the binary genome can be used as a mo-
lecular clock. Changes through time accrue according to 

a 2- base version of the Jukes and Cantor  (1969) model 
of base substitutions (Appendix  A). The colour trait is 
included primarily for visualization, with closely related 
individuals appearing with similar colours (Figure 1).

Phenotypic and genotypic diversity within a 
single niche

Beckmann et al.  (2019) initially ran their model with a 
total nutrient load of 5  μM N and a constant environ-
mental temperature of 15°C. The model converged to 
a steady- state with individuals occupying a Gaussian 
distribution of thermal optima (15 ± 0.855°C) centred on 
the environmental temperature. We repeated this experi-
ment, running the model for 1000 years and obtaining an 
identical trait distribution.

We use the new bioinformatic components of the 
model to explore the mechanisms by which this trait dis-
tribution arises. Using the neutral binary genome to esti-
mate the genealogy of the population, Figure 2 shows the 
estimated pairwise distance matrix for 1000 individuals 
sampled at the end of the 1000- year simulation. Although 
the simulation only includes a single thermal niche, we 
see multiple distinct genotypic clusters coexisting within 
that niche, each with many tens of thousands of genera-
tions worth of genetic divergence from the others.

In order to explain this prolonged coexistence within 
a single niche, we will examine mechanisms of pheno-
typic and genetic diversity within the simulation.

F I G U R E  1  Genealogy in the IBM after 7 days of growth at 
a constant environmental temperature. Terminal nodes at the 
perimeter represent live cells that have descended from the initial 
seed at the centre. Each non- terminal node represents a cell division, 
with branch lengths linearly proportional to the time between 
divisions. Nodes are coloured according to the thermal optimum 
of each dividing cell (red prefers warmer and blue prefers colder). 
Branch colours correspond to value of the neutral rgb gene. Note 
that branch colours change gradually along branches, such that 
related individuals have similar colours. Extinct lineages are not 
shown.

F I G U R E  2  Estimated divergence matrix for 1000 cells sampled 
at the end of a 1000- year simulation, as derived from the binary 
genome. The estimated number of generations since the most- recent 
common ancestor is shown according to the right- hand colour scale. 
The lower colour scale shows each individual's neutral colour trait.
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Within niche phenotypic diversity

Figure  3a shows the simulated distribution of traits at 
the end of the 1000- year simulation. In a system with-
out mutation, selection would drive the system towards 
dominance by a single optimally adapted phenotype. 
This can be seen in Figure 3b, in which the dashed line 
shows the expected net growth rates of different pheno-
types at an ecological equilibrium (when nutrients are 
depleted to the minimum level required to support the 
best- adapted phenotype; Tilman, 1980, see Appendix B). 

This fitness landscape shows that only the optimal phe-
notype can achieve a non- negative net growth rate, and 
thus all other phenotypes should eventually go extinct. 
While the associated timescales of extinction (calculated 
as the inverse of the fitness landscape and shown by the 
solid line in Figure  3b) indicate that some phenotypes 
close to the optimum may take an extremely long time to 
go extinct, this is not sufficient to explain the trait distri-
bution seen in Figure 3a –  in a simulation of 1000 years 
duration, the timescales of exclusion suggest a much nar-
rower distribution of surviving phenotypes.

F I G U R E  3  Trait distribution and mechanisms of coexistence. Panel (a) shows the eco- evolutionary equilibrium distribution of phenotypes 
as a function of the thermal optimum minus the environmental temperature (Topt -  T). Panel (b) shows the equilibrium net growth rate (or 
fitness landscape) in the absence of mutations (dashed line) and the associated time scales of competitive exclusion (solid line; calculated under 
the assumption that limiting nutrients are drawn down to the equilibrium requirement of the best- adapted species -  see Appendix B). Time 
scales of competitive exclusion are calculated as the inverse of the net growth rate. Panel (c) shows the equilibrium balance of births- deaths 
vs. mutation. Mutation acts as a sink for the best- adapted phenotypes and as a source for maladapted phenotypes, thus supporting a broad 
distribution of traits with equal (zero) fitness.
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Figure 3c shows that the equilibrium trait distribution 
is maintained by a mutation- selection balance (Zhang & 
Hill, 2005), with imperfect heritability of traits serving 
to level out differences in net growth rate across the trait 
axis. A net excess of births over deaths around the opti-
mal phenotype is exactly balanced by a mutational flux 
of individuals towards less favourable parts of the trait 
axis. This flux likewise supports a net excess of deaths 
relative to births further away from the optimal trait 
value.

Overall, the opposing forces of mutation and selec-
tion serve to flatten the fitness landscape (the solid line 
showing zero net growth in Figure 3c), which in princi-
ple would allow unlimited coexistence across the trait 
space. In practice, the breadth of the trait distribution 
is limited by the increasing likelihood of extinction for 
less well- adapted (and hence less abundant) phenotypes. 
Nonetheless, the constant divergent flux of individuals 
provides a degree of standing trait variability.

Within niche genotypic diversity

Is this mutational flattening of the fitness landscape suf-
ficient to support the sustained divergence of genotypes 
seen in Figure 2? To explore this question, we modified 
the IBM to track the evolutionary trajectories of all sim-
ulated lineages, recording the time and phenotype (i.e. 
thermal optimum) associated with every cell division 
throughout the simulation.

This is shown in Figure 4a, which shows both the emer-
gent abundance distribution during the first 15 years of 
the ‘constant temperature’ simulation described above 
and the evolutionary trajectories of 20 individuals that 
were sampled during the fifteenth year of that simula-
tion. Each of these sampled cells can be tracked back 
through the generations to the initial seed, providing an 
exact genealogy with complete information regarding 
phenotypic changes at each generation.

The plotted trajectories in Figure  4a indicate that 
individual lineages, while centred around the optimal 
temperature, show considerable phenotypic variability 
throughout the simulation. This pattern again occurs 
through a balance of mutation and selection, as lineages 
move around the optimal trait value in a constrained 
random walk. Here, the introduction of trait variability 
is tempered at each generation as individuals with ther-
mal optima further from the environmental temperature 
are less likely to successfully reproduce.

The simulated pattern of descent suggests two related 
characteristics. First, individual lineages are not asso-
ciated with a single constant fitness on which selection 
can consistently act over long periods (even though the 
trait itself may be strongly and consistently correlated 
with fitness; Menden- Deuer et al.,  2021). Second, dif-
ferent lineages tend to exhibit similar average fitness 
over reasonably long time scales (decades or more). As 

a consequence, our simulations show extended coexis-
tence of divergent lineages (Figure 2). While such a high 
degree of lineage divergence should be expected within 
a homogeneous population (Kingman,  1982), it occurs 
here for a group of competing and evolving lineages with 
clear differences in phenotype and associated fitness.

These results demonstrate that small random varia-
tions in individual fitness can give rise to identical aver-
age fitness, allowing populations to coexist indefinitely 
(Menden- Deuer et al., 2021). In the following section, we 
will further test whether this mechanism is sufficiently 
robust to work in a temporally varying environment, 
under which adaptation to changing conditions might 
serve to accelerate competitive exclusion.

Dynamic environmental forcing

Beckmann et al.  (2019) explored the behaviour of the 
model in response to a number of alternative environ-
mental forcing scenarios, with the simulated populations 
showing a clear adaptive response to each. We repeat 
those experiments here with identical model parameters 
(Table  A.1), but over a slightly extended timescale of 
15 years. Figure 4b,c shows the results of these simula-
tions, which in all cases are ecologically consistent with 
the results presented by Beckmann et al. (2019).

In Figure  4b, we introduced a sinusoidal annual 
cycle of ±5°C on top of the mean temperature of 15° 
(red lines). As was the case in a constant environment, 
the lineage tracking highlights a very high degree of 
lineage coexistence. Furthermore, while the 20 indi-
viduals sampled towards the end of the simulation are 
broadly distributed in terms of their thermal optima 
(between 13 and 17°C), they are descended from indi-
viduals with a narrower distribution of thermal optima 
early in the simulation. This is highlighted in Figure 5, 
which shows the 5th to 95th percentiles of the abun-
dance distribution of all individuals throughout the 
simulation alongside the equivalent percentiles of the 
lineages sampled towards the end of the simulation. 
While the abundance distributions show that a signif-
icant number of individuals did adapt to the extremes 
of temperature, the lineage distributions show that 
very few of these survived to the end of the simulation. 
Adaptation to the extremes of temperature therefore 
appear to be an evolutionary dead- end in this simula-
tion, with phenotypes better adapted to the mean tem-
perature most likely to survive in the long run.

In panels c and d of Figure 4, we explored the response 
of the system to an extreme change in the environmental 
forcing at t = 5 years. In panel c we instantly increased 
the average temperature by 5°C, while in panel d we 
added a strong daily temperature cycle (with the tem-
perature changing instantly between 10 and 20°C every 
12 h). The eco- evolutionary responses to these changes 
again reflect the findings of Beckmann et al.  (2019), 
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with the simulated trait distribution either adapting to 
the warmer temperature (panel c) or branching into two 
distinct ecotypes adapted to the warmer and colder ex-
tremes of the fluctuating temperature range (panel d). In 
both cases, the plotted evolutionary trajectories reveal 
that the traits of sampled lineages all began changing 
towards the new optimal traits before the change in en-
vironmental conditions. While these changes increased 
the likelihood of extinction in the old environment, they 
provided a critical fitness advantage once the conditions 
changed.

In contrast to the classic pattern of a ‘hard’ selective 
sweep (Hermisson & Pennings, 2017; Maynard Smith & 
Haigh, 1974), through which a single beneficial mutation 
is fixed within a population, the patterns of evolution 
shown in Figure 4 are each characteristic of a ‘soft’ selec-
tive sweep (Hermisson & Pennings, 2017). When the en-
vironment changes (Figure 4b to d), standing phenotypic 

variation and rapid evolution allow multiple lineages to 
be carried through to the new environment, allowing 
greater coexistence within a single niche than might 
otherwise be predicted from the competitive exclusion 
principle.

Hard vs. soft selective sweeps

To more precisely quantify the degree to which evolu-
tion can ‘soften’ selective sweeps and maintain diversity 
in our simulations, we can compare each of the simu-
lations above in terms of how many distinct lineages 
are carried through to the end of the simulation from 
earlier points in time. Among any 100 individuals ran-
domly sampled at the end of a simulation, the expected 
number of unique ancestors they share must decrease as 
we move backwards through their evolutionary history. 

F I G U R E  4  Eco- evolutionary plankton dynamics during four 15- year simulations with the IBM. Each simulation was seeded at t = 0 with a 
single cell with a thermal optimum of 15°C. Grayscale contours in each panel show the distribution of individuals among phenotypes through 
time. The branching lines show the genealogy of 20 cells sampled at random from cells alive during the final year of the simulation. Thermal 
phenotype is shown with the y coordinate, time of division with the x coordinate. Branch colours correspond to value of the neutral colour 
trait. The red lines show the range of environmental temperatures throughout each simulation: Panel (a) -  constant temperature; panel (b) 
-  sinusoidally varying temperature (mean 15°C, period 1 year, amplitude 10°C); panel (c) -  a constant temperature of 15°C increasing to 20°C 
at t = 5 years; panel (d) -  constant temperature until t = 5 years, and then changing between 10 and 20°C every 12 h (i.e. a squarewave with mean 
15°C, period 1 day and amplitude 10°C).
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For a large and phenotypically homogeneous population 
in a constant environment, this pattern of coalescence is 
expected to occur very slowly by ecological drift, as indi-
cated by the thick black lines in Figure 6 (see Appendix C 
and Halley & Iwasa, 2011).

In microbial populations under selection, coales-
cence is often predicted to happen much more rapidly, 
with a single beneficial mutation fixing very rapidly in a 
hard selective sweep (Louca et al., 2018). Panel a shows, 
however, that in a constant environment the simulated 
pattern of coalescence very closely follows the neutral 
model, with over 90% of the lineages remaining distinct 
through 800 generations. Furthermore, coalescence is 
only slightly accelerated with the introduction of a sea-
sonal temperature cycle (Panel b). The sudden change 
in temperature of 5°C (Panel c) does introduce a rela-
tively hard selective sweep, albeit with just under one 
third of the lineages successfully adapting to the change 
in conditions. The selective sweep is considerably less 
severe with the introduction of a daily temperature cycle 
(Panel d).

While these latter two experiments do lead to a sig-
nificant loss of diversity, the introduced environmental 
perturbations are unrealistically severe, with tempera-
ture changing by 5– 10°C in an instant. In panels (e) and 
(f), we introduce more realistic (although arguably still 
severe) changes, adding a 0.5°C per year warming (from 
the end of year 5) to the experiments with a constant 
temperature (e) and an annual cycle (f). In the absence 
of the seasonal cycle, this warming trend had almost no 
effect on the pattern of coalescence (panel e). However, 

when introduced to a simulation with a seasonal cycle, 
the warming trend led to a markedly more rapid loss of 
diversity. This likely occurs as yearly increases in tem-
perature favour species adapted to the warmest part 
of the annual cycle over those adapted to the coldest 
temperatures.

DISCUSSION

Perspectives on microbial life in the ocean are increas-
ingly shaped by the vast amounts of molecular informa-
tion made available by modern sequencing techniques 
(Mock et al.,  2016). Despite a large and growing num-
ber of papers that provide realistic exceptions to the 
so- called paradox of the plankton (Record et al., 2013), 
patterns of taxonomic diversity are regularly interpreted 
through a perspective of competitive exclusion and niche 
partitioning. A high degree of coexistence is often at-
tributed to (potentially cryptic) niche separation (Louca 
et al., 2018)— but this strictly requires one hidden niche 
dimension for every additional coexisting species at 
equilibrium.

The neutral theory of biodiversity (Hubbell,  2001) 
provides an alternative view, attributing patterns of tax-
onomic diversity to the stochastic nature of births and 
deaths. Clusters of distinct individuals can emerge in the 
absence of any selective pressures, driven by the random 
process of ecological drift. Here, we show a similar re-
sult, but identify a clear mechanism by which neutrality 
can repeatedly emerge through rapid evolution driven 

F I G U R E  5  Evolutionary history of cells sampled in the last year of the simulation compared to abundance distributions throughout the 
simulation. The smooth black lines show the 5th to 95th percentiles of the abundance distribution at each point in the simulation. Evolutionary 
trajectories of 1000 cells sampled during the final year of a simulation are shown as grey lines. The 95th percentiles of this distribution are 
shown by the jagged black lines. Most of the cells sampled in the last year of the simulation (including those adapted to extremes of the 
temperature range) are descended from ancestors with thermal optima closer to the mean environmental temperature. Most of the cells that 
were adapted to extremes of temperature early in the simulation do not have descendants alive at the end of the simulation.
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by genetic, heritable epigenetic and heritable plastic 
changes.

This pattern of indefinite (albeit stochastic) coexis-
tence can be understood from two perspectives. From a 
phenotypic perspective, the ecological components of the 
model point to dominance by a single ‘optimal’ pheno-
type under constant environmental conditions (Figure 3b). 
However, the mutational flux of individuals from better to 
worse adapted phenotypes effectively flattens the fitness 
landscape (Figure  3c), allowing unlimited coexistence. 
Alternatively, from a lineage- based perspective, organisms 
do not have perfectly fixed traits from one generation to 
the next, and lineages thus occupy a distribution of traits 
around the optimal value. Over long periods, the average 

fitness of different lineages converge to effectively identical 
values, again allowing much longer periods of coexistence 
(set by population genetic rather than ecological consider-
ations; Figure 6b).

These results are driven by a mutation- selection 
balance that requires a dependable and relatively high 
rate of heritable trait changes. Following (Beckmann 
et al.,  2019), we included heritable trait changes in 
the thermal optimum as Gaussian noise with a stan-
dard deviation of 0.1°C. While this may seem high, 
it is worth noting that thermal tolerance is affected 
by many genetic (Chakravarti et al.,  2020) and oth-
erwise heritable factors (McGuigan et al.,  2021) and 
there are thus many potential pathways for this trait 

F I G U R E  6  Patterns of coalescence under different environmental scenarios. Axes (a– d) correspond to the experiments shown in Figure 4. 
Axes (e– f) show results from two additional experiments: (e) 0.5°C per year warming applied from the end of year 5, (f) as for e, but with an 
annual cycle of ±5°C. in each case coalescence patterns are shown for 100 randomly selected phylogenies, in comparison the neutral model 
(black lines, mean ± 1 s.d.). inset panels show biomass as a function of time (x axis) and thermal optimum (y axis) for each experiment.
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to evolve (Schaum et al.,  2018). Thermal tolerance is 
also known to evolve extremely rapidly in response to 
environmental changes (~200 generations), even when 
such changes rely entirely on de novo variation and 
take place in asexual populations (Jin & Agustí, 2018; 
O'Donnell et al.,  2018). Our simulated evolutionary 
trajectories (Beckmann et al., 2019) are not grossly out 
of alignment with responses observed in laboratory 
cultures (O'Donnell et al., 2018) or implied from field 
observations (Thomas et al.,  2012). Further, running 
simulations with slower mutation rates prevented the 
model from showing any meaningful evolutionary re-
sponse at all. Populations either remained unchanged 
(in response to sinusoidal forcing) or went extinct (in 
response to sudden temperature changes). Given the 
sheer size of microbial populations, and the ease with 
which they may generate the variation required to 
adapt extremely rapidly in laboratory experiments, the 
high rates of heritable trait change used in this model 
are reasonable.

It should however be noted that rarer and more sto-
chastic trait changes might not lead to similar patterns 
of soft selective sweeps and extended coexistence. If a 
single large beneficial trait change occurs in isolation, 
it is likely to displace all other lineages over a timescale 
related to the associated increase in fitness. For exam-
ple, we ran several simulations for which mutations 
occurred 10 times less frequently, but with a tenfold 
increase in variance. While this gave an identical rate 
of trait diffusion over many generations, the increased 
stochasticity of the simulation led to harder sweeps 
and rapid competitive exclusion in response to envi-
ronmental change. Furthermore, evolution along a sin-
gle trait axis (in this case thermal tolerance) presents 
a fairly large target for beneficial changes. It remains 
to be seen what patterns of coalescence will emerge in 
a model where evolutionary changes occur in multiple 
traits simultaneously. In a much larger multidimen-
sional trait space, beneficial changes are likely to occur 
much less predictably, potentially shifting the system 
towards harder selective sweeps and stronger compet-
itive exclusion.

These caveats notwithstanding, rapid evolution al-
lows neutrality to emerge through a process of conver-
gent and imperfect evolution and we see the sustained 
coexistence of phenotypically similar but genetically dis-
tinct lineages. This is a defining characteristic of func-
tional redundancy (Louca et al., 2016; Louca et al., 2018). 
The assumptions of our model demonstrate that this 
phenomenon does not require the existence of additional 
hidden niche dimensions. Furthermore, our simulations 
suggest that high numbers of lineages are able to tra-
verse even abrupt changes in environmental conditions 
(Figure 4), with the adaptive response to environmental 
changes underpinned by standing phenotypic variation 
and a steady stream of heritable trait changes, rather 
than the emergence of a single beneficial mutation. 

These patterns of evolution are characteristic of soft se-
lective sweeps, which require either standing variation or 
a consistent supply of new beneficial mutations —  both 
of which are extremely likely in highly abundant and rap-
idly reproducing microbial populations. Indeed, we were 
able to demonstrate the presence of soft sweeps in mod-
elled populations on the order of only one million cells, 
somewhat less than the estimated 1027 Prochlorococcus 
cells currently alive in the ocean, or even the estimated 
effective population size of 1013 in a well- mixed parcel of 
sea water (Kashtan et al., 2014).

Despite the inclusion of selection and environmen-
tal variability, our comparisons to the neutral model of 
coalescence suggest that hard selective sweeps are only 
likely to occur in the model under extremely rapid envi-
ronmental changes that seem unlikely to occur over large 
spatial scales in a well- mixed ocean. Several of our sim-
ulations remain consistent with a strictly neutral theory 
(Halley & Iwasa, 2011; Kingman, 1982), which predicts 
that the expected timescale of diversity loss will be pro-
portional to the effective population size (Equation C.5). 
For the aforementioned well- mixed population of 
Prochlorococcus, this is much longer than required to 
explain the observed (Kashtan et al.,  2014) millions of 
years of divergence.

Our findings suggest that rapid evolution likely plays 
a key role in the coexistence of phenotypically similar 
but genetically distinct species in microbial communi-
ties, with functional redundancy emerging through con-
vergent evolution. Nonetheless, our simulations remain 
highly idealized, in particular neglecting to account 
for dispersal and mixing of communities in a three- 
dimensional environment. Further work is therefore re-
quired to explore the significance of soft selective sweeps 
in a metacommunity context.
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A PPEN DI X A

Model description

I N DI V I DUA L -  BASED ECO - EVO MODEL

The eco- evo model we develop builds upon the 
individual- based model (IBM) presented by Beckmann 
et al.  (2019). The model represents a closed system, in 
which individual phytoplankton (bi) grow as a function 
of temperature and nutrient availability, divide and die 
stochastically. Dead phytoplankton enter a detrital pool 
(D), which is converted back to inorganic nutrient (N) via 
a linear remineralisation term.

Cellular growth of individual phytoplankton (μi) is de-
fined in relation to a theoretical maximum of μ0 that is 
modified by temperature-  and nutrient- dependent func-
tions (ℱT and ℱN).

 Here, μ0 is the maximum doubling rate and b0 is the refer-
ence cellular biomass (Beckmann et al., 2019).

The thermal tolerance function decreases growth rate 
as the environmental temperature T deviates from a phy-
toplankton's thermal optimum (Topt). The breadth of the 
associated thermal niche is given by θ.

Nutrient limitation is implemented with a Monod (1950) 
function, with a half- saturation constant of kN.

Individuals increase their cellular biomass at a rate 
set by their physiological traits (μ0, Topt, etc.) and the 

environmental conditions (T and N). Each cell grows 
until it reaches or surpasses a division threshold, which 
is set to twice its minimum viable biomass of b0. When 
this point is reached, the cell's biomass is divided equally 
between two daughter cells.

Mortality is applied stochastically, with cells having 
a fixed probability of death (γ0), at each time step. The 
number of live cells in the model thus changes according 
to the balance of individual divisions and deaths at each 
time step.

The overall phytoplankton biomass concentration in 
the model is calculated diagnostically as the sum of the 
biomass of all live cells.

where M is the number of live cells and V is the volume of 
the modelled culture. Note that we regulate the number of 
cells in the model by controlling the culture volume. We do 
not use the concept of super- individuals°.

In contrast to the phytoplankton, which is treated as a 
collection of individuals, the nutrient and detrital pools 
are treated as homogeneous bulk variables. At each time 
step, uptake from the nutrient pool is taken as the sum 
of uptake by all individual cells, while production of de-
tritus is taken as the combined biomass of all dying cells. 
Remineralisation from the detrital pool to the nutrient 
pool proceeds as a linear function of detrital biomass at 
each time step, with a mass- specific rate of τ.

where idie is the index of all cells dying in a particular time 
step.

Evolution
Trait variation and inheritance are implemented in the 

IBM by assigning each newly divided cell the thermal 
optimum of its parent, perturbed by a value drawn from 
a Gaussian distribution with mean zero and standard de-
viation σM.

Changes in the thermal optimum affect the likelihood 
of survival by increasing or decreasing the individual's 
growth rate (Equation  A.2), with better- adapted indi-
viduals more likely to be reproduced in each subsequent 
generation.

(A.1)
dbi

dt
= �i = �0 ⋅ b0 ⋅ ℱT ⋅ ℱN
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Lineage tracking

At each cell division, we assign the two daughter cells a 
unique identity number. We also record the thermal opti-
mum, time of division and the identity of the parent cell. 
This record is purged of extinct lineages at the end of 
each year in order to maintain the size of the associated 
files at a manageable level. This approach allows us to 
reconstruct evolutionary trajectories in the model with 
complete accuracy, as shown in Figure 4.

Ecologically neutral colour trait

While precise, the lineage tracking approach is also very 
expensive computationally and produces vast amounts 
of data. As an alternative approach, we added an eco-
logically neutral colour trait to identify closely related 
individuals.

The neutral colour trait is encoded as a heritable three- 
element vector that corresponds to a unique colour in the 
red- green- blue (rgb) colour space.

The rgb vector is replicated at each cell division and 
each element then immediately undergoes a muta-
tion, drawn from the standard normal distribution 
(�∼ [0, 1] ).

As the value of the rgb vector has no effect on the fit-
ness of the individual, changes in the rgb genome through 
generations are mathematically equivalent to a Gaussian 
random walk in a three- dimensional space. The expected 
euclidean distance between two rgb vectors d̂ rgb is there-
fore given as a function of the number of generations (tgen)  
since their most recent common ancestor

With a standard deviation of

Here, c is a correction factor that accounts for the number 
of dimensions, nrgb, using the ratio of two gamma functions.

While the distance between individuals in the rgb 
colour space can be used to estimate the time since 
their most recent common ancestor, the ratio of 
Equations A.8 and A.7 suggest an expected coefficient 
of variation (c.v.) of (2c)−1. For a three- element rgb vec-
tor, the expected euclidean distance will be broadly 
distributed, with a standard deviation of ±44% of the 
expected value. Even if the rgb vector is extended to in-
clude 50 dimensions, the c.v. only drops to ±10%. This is 
somewhat imprecise (as shown in Figure A.1a), but the 
colour trait will be useful for identifying closely related 
individuals (e.g. Figure 1).

Binary genome

While the neutral colour trait is useful for visualization, 
it lacks the precision required to accurately track descent 
in the model. To achieve this we instead turn to the bi-
nary genome, for which each individual in the simulation 
is assigned a binary string of L = 2150 bits.

In practice, the long binary string can be efficiently 
encoded as a 50- element vector of floating point values, 
with 53 bits stored in the significand of each double- 
precision element. (We could have stored 64 bits as un-
signed integer values, but this was not computationally 
efficient given our code structure.)

At each generation, the binary genome is inherited from 
the parent cell and undergoes a single random bit- flip with 
a probability of pmut = 1. The bit to be flipped is drawn 
from a discrete uniform distribution; Rbin

∼ [1,L].

With one randomly selected bit flipped at an aver-
age rate of once every 1∕pmut generations, the expected 
normalized Hamming distance between two binary ge-
nomes (d̂ bin) is given as a function of the number of gen-
erations (tgen) since their most recent common ancestor.

with a standard deviation of

These two equations (visualized in Figure A.1b) show 
that d̂ bin increases predictably with the number of gen-
erations, saturating at 0.5 as the number of mutations 
approaches the length of the binary genome (L). The 
non- linearity of the apparent trend is attributable to 
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unobservable multiple flips of the same bits (homo-
plasy), as predicted by the two- base Jukes and Cantor 
model (black line).

It is also clear that d̂ bin increases in a much more pre-
dictable way than d̂ rgb (as long as the number of muta-
tions remains less than approximately half the number of 

bits in the binary genome). This makes it a much better 
candidate for use as a molecular clock.

Accordingly, the estimated number of generations, t̂gen 
since the divergence of any two lineages can be estimated 
from the simulated Hamming distance, d, between their 
binary genomes.

F I G U R E  A . 1  Theoretical and simulated accumulation of differences in the neutral genomes. Panel (a): RGB genome. The black lines 
shows the expected accumulation of Euclidean distances between the 50- element rgb genomes (dashed lines are ±1 standard deviation). Panel 
(b): Binary genome. The black lines show the expected rate of accumulation of bitwise differences between 2350- bit binary genomes (±1 
standard deviation). In both cases, the thick red lines indicate the estimated number of generations relative to the true number of generations 
(±1 standard deviation). Pale lines show the simulated distribution of pairwise distances or estimated divergences among 25 individuals. While 
both genomes are encoded as 50- element double precision vectors, it is clear that the binary genome gives a much more precise estimate of the 
number of generations, as long as the true number of generations is less than approximately half the number of bits.

F I G U R E  A . 2  Phylogeny and neutral genome of 100 individuals sampled at the end of a simulation similar to the one shown in Figure 4d 
(but with a population of only ~5000). The dendrogram in panel (a) represents an estimated phylogeny derived from the binary genomes. Panel 
(b) shows the first 128 bits of the associated binary genomes. Zeros are black, while are ones shown with their neutral colour trait. The right- 
hand colour scale shows the thermal optima of each individual (red = warm, blue = cold).
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with standard deviation

Equation A.12 and Figure A.1b demonstrate that the 
binary genome can be used to estimate divergence with a 
high degree of precision, as long as tgen < L∕2 (N.B. longer 
simulations can be resolved by decreasing the probabil-
ity (pmut) of a bit flip at each generation)
The demonstrated precision of the binary clock 
(Figure A.1) allows us to reconstruct the simulated phy-
logeny without the expense of recording every single 
division event. The basic principles of the binary clock 
are shown in Figure  A.2. The dendrogram in Panel a 
shows the estimated phylogenetic tree for 100 individu-
als sampled from a simulation similar to the one shown 
in Figure 4d (but with a much smaller population size of 
~5000 to allow a more structured tree). Panel b shows the 
first 128- bits of the corresponding binary genomes (one 
row for each of individual). The known distance matrix 
from the lineage tracking is compared to the equivalent 
distance matrix estimated from the binary genome in 
Figure A.3.

A PPEN DI X B

EQUILIBRIUM SOLUTIONS IN FIGURE 3
Figure 3 was created using the ‘trait- diffusion’ version of 
the model, as described by Beckmann et al. (2019). In this 
version of the model the community is represented by the 

201- element vector, ��⃗P, corresponding to 201 different ther-
mal optima. The equation for phytoplankton growth is 
then

Here, �⃗𝜇 is the nutrient-  and temperature- limited gross 
growth rate, �  is a trait- diffusion matrix that describes 
the fraction of daughter cells diverted to neighbouring 
phenotypic compartments at each generation, and γ0 is 
the linear mortality rate.

Figure 3a shows the equilibrium biomass distribution 
of ��⃗P in a constant environment, plotted as a function 
of the thermal optimum minus the environmental tem-
perature (Topt -  T). This is identical to the trait distribu-
tion produced by the individual- based model used in the 
rest of the manuscript. The equilibrium birth- deaths in 
Figure 3c are given by �⃗𝜇 ⋅ ��⃗P − 𝛾0 ��⃗P. The equilibrium mu-
tation rates are given by � ��⃗P

In contrast to the results shown in Figure  3a and c, 
Figure  3b shows the equilibrium fitness landscape 
around the optimally adapted population Popt in a sys-
tem without mutation (i.e. �  is replaced by a zero matrix). 
This system reaches an equilibrium when the growth rate 
of the best- adapted species (T = Topt) is exactly matched 
by the mortality rate.

Given that ℱT (T ) = 1 when T = Topt, at equilibrium the 
following is true for the optimally adapted population

(A.11)t̂gen = −
1

4pmut

ln(1 − 2d)

(A.12)� t̂gen =
1

pmut

√

d(1 − d)

4L(1−2d)2

(B.1)d ��⃗P

dt
= �⃗𝜇 ⋅ ��⃗P − � ��⃗P − 𝛾0 ��⃗P

(B.2)�0 ⋅ ℱN (N) ⋅ ℱT (T ) = �0

(B.3)�0 ⋅ ℱN (N) = �0

F I G U R E  A . 3  Heat maps showing pairwise distance matrices for the same 100 cells are presented in Figure A.2. Panel (a) shows known 
distances based on the lineage tracking. Panel (b) shows distances estimated from the neutral binary genomes. In each panel, the left- hand 
colour scale shows the thermal optima of the sampled cells (red/blue = warm/cold adapted). The right- hand colour scale shows the genealogical 
divergence in generations. The bottom colour scale shows the neutral colour traits of the sampled cells.
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As all phenotypes have identical nutrient traits, the net 
growth rate (or fitness) of each phenotype can then be 
calculated as

This is zero for the optimally adapted phenotype, and 
less than zero for all others. The exclusion time scale is 
simply the negative of the inverse of this value.

A PPEN DI X C

NEUTRAL MODEL OF LINEAGE COALESCENCE
Simulated rates of coalescence through time in Figure 6 
are compared to predictions of a neutral theory model 
(Halley & Iwasa,  2011; Kingman,  1982). Going back-
wards in time, for a population of N individuals the 
per generation probability of a single coalescence event 
among k lineages is given by

This gives an expected waiting time for coalescence T 
(in generations) of 

with a standard deviation of

The expected number of lineages can also be expressed 
as a function of time t (in generations),

where k0 is the number of sampled lineages at t = 0 and thalf 
is given by

(B.4)�net = �0 ⋅ ℱT (T ) − �0

(C.1)p =
k(k − 1)

2N

(C.2)�T = p−1

(C.3)�T =

√

1 − p

p2

(C.4)k(t) =
k0

1 +
t

thalf

(C.5)thalf =
2N

k0

Model parameter Symbol Value Units

Total nutrient load Nt 5 mmol N m−3

Maximum cellular growth rate μ0 ln2 d−1

Minimum cellular biomass b0 5 × 10−10 mmol N

Nutrient half- saturation kN 0.15 mmol N m−3

Linear mortality rate γ0 0.1 d−1

Remineralisation rate Τ 0.25 d−1

Thermal optimum Topt Variable °C

Breadth of thermal niche Θ 6 °C

Standard deviation of ‘mutations’ σM 0.1 °C

Time step Δt 1/24 d

Volume of growth culture V 10−4 m3

TA B L E  A . 1  Standard model 
parameters
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