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Oscillometry is the blood pressure (BP) measurement principle of most automatic

cuff devices. The oscillogram (which is approximately the blood volume oscillation

amplitude-external pressure function) is measured, and BP is then estimated via an

empirical algorithm. The objective was to establish formulas to explain three popular

empirical algorithms in the literature—the maximum amplitude, derivative, and fixed ratio

algorithms. A mathematical model of the oscillogram was developed and analyzed to

derive parametric formulas for explaining each algorithm. Exemplary parameter values

were obtained by fitting the model to measured oscillograms. The model and formulas

were validated by showing that their predictions correspond to measurements. The

formula for the maximum amplitude algorithm indicates that it yields a weighted average

of systolic and diastolic BP (0.45 and 0.55 weighting) instead of commonly assumed

mean BP. The formulas for the derivative algorithm indicate that it can accurately estimate

systolic and diastolic BP (<1.5 mmHg error), if oscillogram measurement noise can be

obviated. The formulas for the fixed ratio algorithm indicate that it can yield inaccurate

BP estimates, because the ratios change substantially (over a 0.5–0.6 range) with arterial

compliance and pulse pressure and error in the assumed ratio translates to BP error

via large amplification (>40). The established formulas allow for easy and complete

interpretation of perhaps the three most popular oscillometric BP estimation algorithms

in the literature while providing new insights. The model and formulas may also be of

some value toward improving the accuracy of automatic cuff BP measurement devices.

Keywords: arterial compliance, blood pressuremeasurement, cuff device, cuff-less device, derivative oscillometry,

fixed ratios, mathematical model, oscillometry

INTRODUCTION

Oscillometry is the blood pressure (BP) measurement methodology of most automatic cuff devices
and can potentially be extended to achieve cuff-less and calibration-free monitoring of BP via
widely used smartphones (Chandrasekhar et al., 2018a,b). Figure 1A illustrates the oscillometric
BP measurement principle. The external pressure of an artery is swept between supra-systolic
and sub-diastolic BP levels, and the external pressure is measured and high-pass filtered to
yield oscillations indicative of the blood volume. Since the arterial compliance is dependent on
transmural pressure (= BP—external pressure), the peak-to-peak amplitude of the blood volume
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oscillations varies with the external pressure. BP is then estimated
from the oscillation amplitude vs. external pressure function
(i.e., “oscillogram”) via an algorithm. Figure 1B shows popular
oscillometric BP estimation algorithms in the literature. The
maximum amplitude algorithm estimates mean BP (i.e., the time
average of instantaneous BP over the cardiac cycle) as the external
pressure at which the oscillogram has peak value (Mauck et al.,
1980; Drzewiecki et al., 1994). The fixed ratio algorithm estimates
each of diastolic BP and systolic BP as the external pressure at
which the oscillogram is some population-based fraction of its
peak value (Geddes et al., 1982; Drzewiecki et al., 1994). The
derivative algorithm estimates diastolic BP and systolic BP as
the external pressures at which the oscillogram has maximum
and minimum slope, respectively (Drzewiecki and Bronzino,
2006; Forouzanfar et al., 2015). Note that these algorithms are
believed to be related to commercial device algorithms, which are
proprietary (VanMontfrans, 2001; National High Blood Pressure
Education Program/National Heart, 2002; Alpert et al., 2014).

The three algorithms are empirically-inspired rather than
theoretically-based. In other words, they may have been
conceived with the aid of reference BP measurements rather
than first principles. Hence, it is difficult to understand their
capabilities and limitations in estimating BP. As a result, the
algorithms have previously been examined via mathematical
modeling of oscillometry. More specifically, sensitivity analyses
were applied to computational oscillometric models to determine

FIGURE 1 | Oscillometric blood pressure (BP) measurement principle, which is employed by most automatic cuff devices, and associated algorithms. (A) The external

pressure (Pe) of an artery is swept via cuff inflation/deflation, and Pe (i.e., cuff pressure) is measured and high-pass filtered to yield oscillations (O). Systolic BP (Ps),

mean BP (Pm), and/or diastolic BP (Pd ) are then estimated from the oscillogram [peak-to-peak amplitude or envelope difference of the oscillation (O) vs. Pe function]

via an empirical algorithm. (B) Popular algorithms include the maximum amplitude, derivative, and fixed ratio algorithms (Ng and Small, 1994). Symbols of the features

detected by each algorithm are defined as illustrated (see Glossary for text description).

the factors that affect the accuracy of the maximum amplitude
algorithm (Ramsey, 1979; Ursino and Cristalli, 1996; Baker et al.,
1997; Raamat et al., 1999) and fixed ratio algorithm (Drzewiecki
et al., 1994; Ursino and Cristalli, 1996; Raamat et al., 2011; Liu
et al., 2013). Here, we built upon the past modeling efforts by
deriving parametric formulas to explain the popular oscillometric
BP estimation algorithms and employing patient data to establish
exemplary parameter values and to validate the formulas. The
resulting closed-form expressions allow for easier and more
complete interpretation of all three popular algorithms while
providing new insights that are in contrast to some currently held
beliefs about these algorithms.

THE FORMULAS

To derive formulas to explain the popular oscillometric BP
estimation algorithms, we began with a previous mathematical
model of the oscillogram, then extended this model, and finally
formulated and solved the pertinent equations.

Mathematical Model
The previous oscillogram model (Liu et al., 2016, 2017) is similar
to other such models (Drzewiecki et al., 1994; Babbs, 2012)
and is based on three major assumptions. First, the artery is
purely elastic with a sigmoidal blood volume-transmural pressure
relationship (V = f (P)). Second, the tissue around the artery
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FIGURE 2 | Previous mathematical model of the oscillogram (Liu et al., 2016, 2017). (1) The envelope difference of the unmeasured arterial blood volume (V ) vs.

external pressure (Pe) function is equal to the difference in the x-axis reversed blood volume-transmural pressure relationships (f (P− Pe)) evaluated at P = Ps and

P = Pd . (2) This envelope difference is equal to the envelope difference of the blood volume oscillation (V, i.e., high-pass filtered blood volume) vs. Pe function. (3) By

assuming incompressible tissue around the artery and a linear and static cuff pressure-air volume relation, the latter envelope difference is proportional to the envelope

difference of the measured oscillation (O) vs. Pe function (i.e., oscillogram) through a k (reciprocal of cuff compliance) scale factor. (The cuff-pressure-air volume

relations shown are from two actual cuffs called dura_cuff and bladder_cuff.) (4) The oscillogram may thus be represented as O = kf (Ps − Pe) − kf (Pd − Pe).

FIGURE 3 | Extended mathematical model of the oscillogram. (A) Parametric model of the arterial compliance curve [g = df
dPe

in Equation (3)] that is physiologic and

readily leads to formulas for explaining the oscillometric BP estimation algorithms of Figure 1. The model parameters α and β reflect the compliance curve widths

over negative and positive transmural pressures, respectively, while γ denotes the compliance curve height. (B) Model of the derivative of the oscillogram

(dO/dPe = kg (Pd − Pe)− kg (Ps − Pe)) obtained from the derivative of the model shown in Figure 2 and the arterial compliance curve model shown in (A). (C) Model

of the oscillogram obtained by integrating the derivative model shown in (B).

is incompressible. Third, the cuff pressure-air volume relation is
both static and linear such that the peak-to-peak amplitude of the
measured oscillations (1O) is proportional to the peak-to-peak
amplitude of the arterial blood volume oscillations (1V) via a
constant k, which reflects the reciprocal of the compliance of the
cuff. Figure 2 shows pictorially that these assumptions lead to the
following model of the oscillogram:

1O = kf (Ps − Pe) − kf (Pd − Pe) , (1)

where Ps and Pd are systolic and diastolic BP, and Pe is the
external pressure of the artery.

We built upon this previous model by first differentiating
Equation (1) with respect to Pe to yield the following model of
the derivative of the oscillogram:

d1O

dPe
= kg (Pd − Pe) − kg (Ps − Pe) , (2)
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where g (·) is the derivative of f (·) and represents the arterial
compliance curve. We then conceived a parametric function for
g (·) that fits experimental data, leads to closed-form expressions,
and has a continuous, first derivative (to facilitate the derivation
of some of the expressions) as follows:

g (P) = γ e
P
α

(

−
P

α
+ 1

)

u (−P) + γ e
− P

β

(

P

β
+ 1

)

u (P) , (3)

where u (·) is the unit-step function, and α, β , and γ are positive-
valued parameters. As shown in Figure 3A, α and β reflect
the arterial compliance curve widths over negative and positive
transmural pressures, respectively, while γ denotes the height of
the curve. Consistent with a sigmoidal blood volume-transmural
pressure relation and experimental data (Drzewiecki et al., 1994),
Equation (3) yields a skewed, unimodal arterial compliance curve
that peaks near zero transmural pressure.

Substituting Equation (3) into Equation (2) yields
the extended model of the derivative of the oscillogram
as follows:

d1O

dPe
= kγ e

Pd−Pe
α

(

−
Pd − Pe

α
+ 1

)

u (− (Pd − Pe))

+kγ e
−

Pd−Pe
β

(

Pd − Pe

β
+ 1

)

u (Pd − Pe)

−kγ e
Ps−Pe

α

(

−
Ps − Pe

α
+ 1

)

u (− (Ps − Pe))

−kγ e
−

Ps−Pe
β

(

Ps − Pe

β
+ 1

)

u (Ps − Pe) . (4)

Integrating Equation (4) over Pe yields the extended model of the
oscillogram as follows:

1O = kγ

(

(Pd − Pe + 2β) e
−

Pd−Pe
β − (Ps − Pe + 2β) e

−
Ps−Pe

β

)

u (Pd − Pe) + kγ

(

2 (α + β) + (Pd − Pe − 2α) e
Pd−Pe

α

− (Ps − Pe + 2β) e
−

Ps−Pe
β

)

(

u(Pe − Pd)− u(Pe − Ps)
)

+kγ

(

(Pd − Pe − 2α) e
Pd−Pe

α − (Ps − Pe − 2α) e
Ps−Pe

α

)

u (Pe − Ps) . (5)

Figure 3B illustrates the model predicted derivative of the

oscillogram of Equation (4), while Figure 3C shows the model

predicted oscillogram of Equation (5). These predictions

qualitatively correspond to experimental data (see, e.g.,

Figure 1A). However, the extended model does carry a fourth
assumption that the arterial compliance curve has a specific
shape defined by Equation (3) with maximal value precisely at
zero transmural pressure.

Formula for the Maximum Amplitude
Algorithm
As shown in Figure 1B, the maximum amplitude algorithm
estimates mean BP (Pm) as the external pressure at which the

oscillogram has maximum value (Pmax). A formula for Pmax may
be found by setting Equation (4) to zero with Pe = Pmax and
invoking Pd < Pmax < Ps (see Figure 3B) as follows:

kγe
(Pd−Pmax)

α

(

−
Pd − Pmax

α
+ 1

)

= kγe
−

(Ps−Pmax)
β

(

Ps − Pmax

β
+ 1

)

. (6)

The relevant solution to this equation is readily given as follows:

Pmax =
α

α + β
Ps +

β

α + β
Pd. (7)

The final formula of Equation (7) indicates that the maximum
amplitude algorithm yields a weighted average of systolic BP and
diastolic BP where the weighting is determined by the arterial
compliance curve widths.

Formulas for the Derivative Algorithm
As shown in Figure 1B, the derivative algorithm estimates
diastolic BP and systolic BP as the external pressures at which
the oscillogram has maximum slope (Pmaxslope) and minimum
slope (Pminslope), respectively. A formula for Pmaxslope may be
found by employing Equation (4) with Pe = Pmaxslope, invoking
Pmaxslope < Pd (see Figure 3B), and taking the derivative and
setting the equation to zero as follows:

γe
−

(

Pd−Pmaxslope

)

β

(

Pd − Pmaxslope

β2

)

= kγe
−

(

Ps−Pmaxslope

)

β

(

Ps − Pmaxslope

β2

)

. (8)

The solution to this equation is given as follows:

Pmaxslope = Pd −
PP

e
PP
β − 1

, (9)

where PP = Ps − Pd is the pulse pressure. Using a similar
procedure but with Pminslope > Ps (see Figure 3B), the following
formula for Pminslope results:

Pminslope = Ps +
PP

e
PP
α − 1

. (10)

The final formulas of Equations (9) and (10) indicate that
the derivative algorithm underestimates diastolic BP and
overestimates systolic BP by an amount that is dependent on both
PP and the arterial compliance curve widths.

Formulas for the Fixed Ratio Algorithm
As shown in Figure 1B, the fixed ratio algorithm estimates
diastolic BP as the external pressure at which the rising portion
of the oscillogram is some ratio of its maximal value (PRd , where
Rd is the assumed diastolic ratio) and systolic BP as the external
pressure at which the falling portion of the oscillogram is some
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ratio of its maximal value (PRs where Rs is the assumed systolic
ratios). Formulas for the true ratios [TRd and TRs, i.e., the
amplitude of the oscillogram at the actual systolic BP/diastolic
BP (e.g., invasive BP values) divided by the maximal oscillogram
amplitude] may be derived by substituting Ps or Pd and Pmax for
Pe into Equation (5) as follows:

TRd =
1O|Pe=Pd

1O|Pe=Pmax

=
2β − (PP + 2β)e

− PP
β

2 (α + β) − (PP + 2(α + β))e
− PP

α+ β

. (11)

TRs =
1O|Pe=Ps

1O|Pe=Pmax

=
2α − (PP + 2α)e−

PP
α

2 (α + β) − (PP + 2(α + β))e
− PP

α+ β

. (12)

The final formulas of Equations (11) and (12) indicate that
the true ratios vary with PP and the widths of the arterial
compliance curve.

To derive formulas for indicating how much error in the
presumptive systolic ratio (Rs − TRs) translates to error in
systolic BP (PRs − Ps), two cases must be considered. One
case is an assumed ratio leading to systolic BP underestimation.
In this case, the systolic ratio error may be determined from
the middle term in Equation (5) along with Equation (12)
as follows:

Rs − TRs =
1O|Pe=PRs

1O|Pe=Pmax

− TRs

=
2 (α + β) +

(

Pd − PRs − 2α
)

e
Pd−PRs

α −
(

Ps − PRs + 2β
)

e
−

Ps−PRs
β − 2α + (PP + 2α) e−

PP
α

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

. (13)

By assuming small systolic BP error (PRs ≈ Ps) and neglecting

the terms e
Pd−PRs

α ≈ e−
PP
α (as justified in the Results section),

Equation (13) may be linearized as follows:

Rs − TRs ≈

2β −
(

Ps − PRs + 2β
)

(

1−
Ps−PRs

β

)

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

≈
Ps − PRs

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

. (14)

The other case is an assumed ratio leading to systolic
BP overestimation. In this case, the systolic ratio
error may be determined from the last term in
Equation (5) along with Equation (12) as follows:

Rs − TRs =
1O|Pe=PRs

1O|Pe=Pmax

− TRs

=

(

Pd − PRs − 2α
)

e
Pd−PRs

α −
(

Ps − PRs − 2α
)

e
Ps−PRs

β − 2α + (PP + 2α) e−
PP
α

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

. (15)

By likewise simplifying Equation (15), the identical equation
on the right-hand-side of Equation (14) results. Solving for

PRs in this common equation thus yields the following small
error formula:

PRs ≈ Ps −
(

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

)

(Rs − TRs) . (16)

An analogous formula for translating diastolic ratio error to small
diastolic BP error may be derived using a similar procedure but

neglecting terms e
−

Ps−PRd
β ≈ e

− PP
β and is given as follows:

PRd ≈ Pd +
(

2 (α + β) − (PP + 2 (α + β)) e
− PP

α+ β

)

(Rd − TRd) . (17)

The final small error formulas of Equations (16) and (17) indicate
that error in the presumptive ratios maps to error in BP by
a scale factor determined by PP and the arterial compliance
curve widths.

MATERIALS AND METHODS

To determine the parameter values and demonstrate the
validity of the mathematical model and formulas, we analyzed
patient data.

Patient Data
We leveraged previously collected, de-identified patient
data. These data are described in detail elsewhere
(Cheng et al., 2012, 2013). Briefly, we started with data
typically comprising two consecutive oscillometric cuff
pressure waveforms via repeated inflation/deflation cycles
of an upper arm cuff device (WatchBP Office, Microlife AG,
Switzerland) and a reference brachial BP waveform via an
intra-arterial catheter in the opposite arm from 33 cardiac
catheterization patients before and after sublingual nitroglycerin
administration. We excluded data based on three criteria: (1)
invasive diastolic BP < the minimum Microlife device cuff
pressure of ∼60 mmHg or invasive systolic BP > the maximum
Microlife device cuff pressure (to preclude inaccurate detection
of the maximum and minimum slopes of the oscillogram); (2)
obvious artifact in the oscillometric cuff pressure waveforms
(which is not accounted for by the formulas) or unsteady

brachial BP waveforms (to preclude unreliable reference
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B

FIGURE 4 | Model and formula parameter values obtained by fitting the model of Figure 3C to measured oscillograms from patients (M = 35 measurements before

and/or after nitroglycerin (NTG) from N = 21 patients). (A) Model parameters and formula parameters for the maximum amplitude algorithm [see Equation (7)]. The

parameters α and β again reflect the arterial compliance curve widths over negative and positive transmural pressures, respectively (see Figure 3A). (B) Formula

parameters for the derivative and fixed ratio algorithms. The two histograms on the left show the values of the BP errors in the formulas for the derivative algorithm

[see Equations (9) and (10)], while the histogram on the right shows the values of the scale factor mapping ratio error to small BP error in the formulas for the fixed ratio

algorithm [see Equations (16) and (17)]. PP, pulse pressure; µ, mean value; SE, standard error.

measurements) as ascertained by visual inspection; or (3)
inter-arm cuff BP differences > 10 mmHg (to likewise preclude
unreliable reference measurements). A total of 28 baseline
and 26 nitroglycerin measurement sets from 21 patients (age
of 64 ± 14 years; 80% male; BMI of 27.2 ± 4.8 kg/m2; 24%
diabetic; and 63% hypertensive) remained for analysis. The 54
total measurement sets comprised two measurement sets before

nitroglycerin in 11 subjects and after nitroglycerin in eight
subjects as well as one measurement set before nitroglycerin
in six subjects and after nitroglycerin in ten subjects. Fourteen
of the subjects had measurement sets both before and after
nitroglycerin. The data notably covered a wide BP range (95–180
mmHg for reference systolic BP and 58–88 mmHg for reference
diastolic BP).
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FIGURE 5 | Validation results for the formula for explaining the maximum amplitude algorithm [see Figure 1 and Equation (7)]. Correlation and Bland-Altman plots of

Pmax (external pressure at which the oscillogram peaks) predicted by the formula vs. Pmax measured from the oscillogram via the maximum amplitude algorithm (left

plots) and of invasive mean BP (Pm) vs. measured Pmax (right plots). R is the correlation coefficient; µ, mean of the errors (bias error); and σ , standard deviation of the

errors (precision error).

Data Analysis
We first constructed the oscillogram from the measured
oscillometric cuff pressure waveforms. Our procedure was similar
to that described elsewhere (Liu et al., 2016). Briefly, we (1)
band-pass filtered the measured waveforms to extract the cuff
pressure oscillations; (2) detected the maxima and minima of
the oscillations; (3) filtered these extrema as a function of cuff
pressure with a 10-mmHg rectangular window; (4) linearly
interpolated the discrete data; and (4) subtracted the so-obtained
upper and lower envelopes to yield the oscillogram.

We then analyzed the oscillograms to assess the validity of the
model and to determine exemplary formula parameter values.
In particular, we set Ps and Pd in Equation (5) to the average

invasive systolic BP and diastolic BP during the time period of

the oscillogram and set kγ in the equation so as to equate the
peak values of the model predicted and measured oscillograms.

We then estimated the two remaining free parameters, α and
β , by (1) varying the parameters over a physiologic range (0 <

α, β < 30); (2) computing the mean squared error between

the model predicted oscillogram and the middle of the measured
oscillogram (i.e., the oscillogram over the “foot-to-foot” cuff
pressure range, wherein foot is defined analogously to the onset
of a BP pulse) for each candidate pair of parameters; and (3)
identifying the parameter pair that yielded the minimum mean
squared error. We evaluated the model in terms of the root-
mean-square of the fitting error between themodel predicted and
measured oscillograms normalized by the root-mean-square of
the measured oscillogram as well as comparisons of the average
α and β estimates using paired t-tests and expectations based on
known physiology.

We finally analyzed the oscillograms to assess the validity
of the formulas themselves. More specifically, we applied the

popular algorithms to estimate BP from the oscillograms. To
mitigate noise, especially when applying the derivative algorithm,
we first fitted an asymmetric normal function similar to Equation
(19) (see Discussion section), but with a non-zero mean value,
to the middle of the oscillogram using the MATLAB fmincon
function (interior-point algorithm). To establish the fixed ratio
values, we computed the ratios at the invasive systolic BP and
diastolic BP for each oscillogram and then averaged the ratios.
We then assessed the formula predictions, with α and β set to
their estimated values and Ps and Pd set to their invasive BP
values, against the algorithm estimates in terms of a correlation
plot and Bland-Altman plot (difference in the predicted and
measured values vs. the accurate measured values rather than
the average of the two values). Note that whenever repeated
oscillometric cuff pressure waveforms were available, we averaged
the pair of results.

RESULTS

We provide results to first demonstrate the validity of the
mathematical model and provide exemplary parameter estimates
and to then validate the formulas themselves.

Mathematical Model and Parameter
Estimates
The mathematical model of Equation (5) was able to fit
the oscillograms with a normalized-root-mean-squared-error
(NRMSE) of 8.5 ± 0.5% (mean ± SE). Figure 4A illustrates
the resulting model parameter estimates. The β estimates were
larger than the α estimates (13.8 ± 0.7 vs. 11.4 ± 0.9 mmHg;
p = 0.03), which is consistent with the expected right-skewed
compliance curve (Drzewiecki et al., 1994). The β estimates
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FIGURE 6 | Validation results for the formulas for explaining the derivative algorithm [see Figure 1 and Equations (9) and (10)]. (A) Correlation and Bland-Altman plots

of Pmaxslope and Pminslope (external pressures at which the oscillogram has maximal and minimal slopes) measured from the oscillogram via the derivative algorithm vs.

invasive diastolic BP (Pd ) and invasive systolic BP (Ps). Consistent with the formula predictions, the bias errors are small. The appreciable precision errors are due to

measurement noise, which is not considered by the formulas. (B) A representative oscillogram (before any filtering or model fitting) and its derivative illustrating the

impact of typical high frequency measurement noise (due to, e.g., respiration, heart rate variability, and motion) on the correspondence between the detected

Pminslope/Pmaxslope and Ps/Pd .

also increased after nitroglycerin administration (15.4 ± 1.2 vs.
12.8 ± 0.9 mmHg; p = 0.007), which is consistent with the
expected drug-induced increase in arterial compliance over the
physiologic positive transmural BP regime, while the α estimates
did not change following the intervention (11.7 ± 1.6 vs. 10.8 ±
1.2 mmHg; p= NS).

Formula for the Maximum Amplitude
Algorithm
The maximum amplitude algorithm detects the external pressure
at which the oscillogram peaks (Pmax), which has commonly
been believed to denote mean BP. However, the formula of
Equation (7) predicts that Pmax is instead a weighted average of
systolic BP and diastolic BP. Figure 5 (left) shows correlation
and Bland-Altman plots of Pmax predicted by the formula
vs. Pmax measured via the maximum amplitude algorithm.
For comparison, Figure 5 (right) likewise shows invasive mean
BP (Pm) vs. measured Pmax. As can be seen, the formula

predicted Pmax well and clearly better than Pm, especially at
higher pressures.

Formula for the Derivative Algorithm
The derivative algorithm detects the external pressures at which
the oscillogram has maximum slope (Pmaxslope) to estimate
diastolic BP and minimum slope (Pminslope) to estimate systolic
BP. The formulas of Equations (9) and (10) predict that the
BP errors of the derivative algorithm are PP

(e
PP
β −1)

for diastolic

BP and PP

(e
PP
α −1)

for systolic BP. Figure 4B shows histograms

of the estimated PP

(e
PP
β −1)

and PP

(e
PP
α −1)

. Since these errors

are small (0.9 ± 0.4 or −1.4 ± 0.4 mmHg), the formulas
predict that the derivative algorithm should yield accurate BP
estimates. Figure 6A shows correlation and Bland-Altman plots
of Pmaxslope and Pminslope measured via the derivative algorithm
vs. invasive diastolic BP (Pd) and invasive systolic BP (Ps). As
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FIGURE 7 | Validation results for the formulas for explaining the fixed ratio algorithm (see Figure 1). (A) Correlation and Bland-Altman plots of TRs and TRd (true

systolic and diastolic ratios, i.e., the ratios of the oscillogram evaluated at the actual BP levels) predicted by the formulas of Equations (11) and (12) vs. TRs and TRd

measured by evaluating the oscillogram at invasive systolic BP and diastolic BP. (B) Analogous plots of PRs − Ps and PRd − Pd (BP errors of fixed ratio algorithm)

predicted by the small error formulas of Equations (16) and (17) vs. PRs − Ps and PRd − Pd measured as the difference between the BP estimates via application of the

fixed ratio algorithm (with ratios given by the average of the measured TRs and TRd over all the patients) to the oscillogram and the invasive BP values.

can be seen, the bias errors (mean of the errors) are small,
which is consistent with the formula predictions. However,
the precision errors (standard deviation of the errors) are
appreciable. The reason is surely due to derivative-induced
amplification of oscillogram noise, which is common and often
of high frequency character (due to, e.g., respiration, heart rate
variability, and motion) but not considered by the formulas.
Figure 6B illustrates a representative example of the impact of
noise in the patient data on the derivative of the oscillogram
before any filtering.

Formulas for the Fixed Ratio Algorithm
The fixed ratio algorithm detects the external pressures at which
the descending portion of the oscillogram is some assumed
constant ratio of its maximal amplitude (PRs ) to estimate systolic
BP and at which the ascending portion of the oscillogram is some
assumed constant ratio of it maximal amplitude (PRd ) to estimate
diastolic BP. The true systolic and diastolic ratios (TRs and TRd)
in the formulas of Equations (11) and (12) are defined as the
ratios at which these externals pressures correspond to the actual
BP levels. Figure 7A shows correlation and Bland-Altman plots
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FIGURE 8 | Summary of the established formulas for explaining popular oscillometric BP estimation algorithms.

of TRs and TRd predicted by the formulas of Equations (11) and
(12) vs. TRs and TRd measured by evaluating the oscillogram
at invasive systolic BP and diastolic BP. As can be seen, these
formulas were generally able to predict the true ratios, which
varied widely (over a 0.5–0.6 range). PRs −Ps and PRd −Pd in the
formulas of Equations (16) and (17), respectively, represent the
systolic BP and diastolic BP errors of the fixed ratio algorithm.
Figure 7B shows analogous plots of PRs − Ps and PRd − Pd
predicted by the small error formulas of Equations (16) and (17)
vs. PRs − Ps and PRd − Pd measured as the difference between
the BP estimates of the fixed ratio algorithm (with ratios given
by the average of the measured TRs and TRd over all patients)
and the invasive BP values. Note that these formulas neglected

e−
PP
α and e

− PP
β , which is now justified by the small BP error terms

of the formulas for the derivative algorithm (see Figure 4B).
As can be seen, the formulas of Equations (16) and (17) were

able to predict small BP errors but, as expected, became less
accurate with increasing errors. Figure 4B additionally shows the

histogram of the estimated 2 (α + β)−(PP + 2 (α + β)) e
− PP

α+ β

(the scale factor mapping ratio error to BP error) in the formulas
of Equations (16) and (17). These estimates indicate that a ratio
error of 0.2 (e.g., the assumed ratio is 0.5 but the true ratio is 0.7)
would yield about an 8 mmHg BP error (39.0± 1.7 times 0.2).

DISCUSSION

This study is generally about mathematical modeling of the
oscillometric BP measurement principle. While recent studies
have employed such modeling toward improving oscillometric
BP estimation accuracy (Babbs, 2012; Forouzanfar et al.,
2012; Mukkamala et al., 2012; Liu et al., 2016, 2017), the
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purpose of this study was to establish parametric formulas with
exemplary parameter values to explain three popular empirical
algorithms in the literature for oscillometric BP estimation:
(1) maximum amplitude, (2) derivative, and (3) fixed ratio
algorithms (Figure 1). To derive the closed-form expressions,
we extended a previous mathematical model of the oscillogram
(Figures 2, 3) and then employed the extended model to
formulate and solve the pertinent equations. To determine the
formula parameter values, we fitted the model to oscillograms
measured from patients covering a wide BP range (Figure 4).

A key step was to define a parametric function to represent the
arterial compliance curve in the model (Equation 2) that is able
to fit experimental data while leading to analytical solutions. We
also sought a function that has a continuous, first derivative to
readily arrive at the solutions. To satisfy these desired attributes,
we conceived the function of Equation (3) (Figure 3A) and
showed that the model with this function (Equation 5) can fit
the measured oscillograms (8.5 ± 0.5% error). Other parametric
functions to define the arterial compliance curve include an
asymmetric exponential function (Baker et al., 1997; Babbs, 2012)
and an asymmetric normal function as follows:

gexp (P) = γexpe
P

αexp u (−P) + γexpe
− P

βexp u (P) , (18)

gnorm (P) = γnorme
−

(

P
αnorm

)2

u (−P) + γnorme
−

(

P
βnorm

)2

u (P) . (19)

Equation (18) can lead to closed-form expressions. However, its
first derivative is discontinuous, so the derivation is not as clean.
More importantly, Equation (18) does not allow for better fitting
of the measured oscillograms (9.3 ± 0.5% vs. 8.5 ± 0.5% error;
p = 4.8 × 10−4 via paired t-test after log transformation of
the data). While this quantitative difference in the fitting error
may not seem large, the fitting difference can be seen visually
through plots of model-predicted vs. measured oscillograms (see
Supplemental Figure 1). Equation (19) does allow for better
oscillogram fitting (7.7 ± 0.4% vs. 8.5 ± 0.5% error; p = 0.001).
However, this equation does not lead to closed-form expressions,
because, for example, the integral of a Gaussian cannot be
solved analytically.

While we have not proven that Equation (3) is the optimal
parametric arterial compliance curve function in terms of best
data fitting while yielding closed-form expressions, we did
demonstrate the validity of the resulting formulas by showing
that they can predict experimental data (Figures 5–7). Note
that these results also substantiate the secondary assumption
of Equation (3) that the arterial compliance curve peaks at
zero transmural pressure. For example, Figure 5 shows that the
formula of Equation (7) predicts Pmax detected by the maximum
amplitude algorithm with little bias (0.6 mmHg). If the peak of
the compliance curve were instead at an average of Y mmHg,
then the bias would have been−Y mmHg.

Figure 8 consolidates and summarizes all of the established
formulas. We interpret and discuss these formulas in
the following.

The formula for the maximum amplitude algorithm indicates
that the algorithm actually estimates a weighted average of

systolic BP and diastolic BP (0.45 and 0.55 weighting here) in
contrast to the commonly held belief that it yields an estimate of
mean BP (compare left plots with right plots in Figure 5) (Mauck
et al., 1980; Drzewiecki et al., 1994). An interesting coincidence is
that a popular estimate of mean BP is obtained from systolic BP
and diastolic BP as Pm = 0.4Ps + 0.6Pd (Bos et al., 2007). Since
this estimate is imperfect and generally becomes less accurate
with increasing pressure, it does not conflict with the new finding
here that the maximum amplitude algorithm does not estimate
mean BP. We also mention that, for this particular algorithm,
the parametric arterial compliance curve functions of Equation
(18) or (19) do lead to analytical formulas that likewise indicate
that the algorithm yields a weighted average of systolic BP and
diastolic BP instead of mean BP.

The formulas for the derivative algorithm (Figure 8)
predict that the algorithm will overestimate systolic BP and
underestimate diastolic BP but only by a small amount (<1.5
mmHg here), as PP is often substantially larger than the arterial
compliance curve widths such that the two compliance curves
in the model (Equation 2) are well-separated (Figure 3B). We
also mention that the parametric arterial compliance curve
of Equation (18) indicates that the derivative algorithm yields
systolic BP and diastolic BP without any error (Babbs, 2012).
This prediction is in contrast to a previous study indicating that
the algorithm appreciably overestimates auscultation systolic
BP (+9% bias error) and underestimates auscultation diastolic
BP (−6% bias error) (Drzewiecki and Bronzino, 2006). These
larger BP bias errors may be explained to a significant extent
by the fact that auscultation underestimates systolic BP and
overestimates diastolic BP (Noninvasive sphygmomanometers.
Part 2: Clinical validation of automated measurement type.,
2009). However, the formulas do not consider measurement
noise. Since differentiation amplifies noise, common high
frequency oscillogram measurement artifact due to, for example,
respiration, heart rate variability, and motion is a major factor
that can introduce appreciable BP precision errors in practice
(Figure 6) (Babbs, 2012). Hence, the formulas suggest that
if a robust algorithm for faithfully detecting the maximum
and minimum slopes could be developed, the accuracy of
oscillometric BP measurement could be significantly enhanced.
The first two formulas for the fixed ratio algorithm (Figure 8)
indicate that the true systolic and diastolic ratios vary with the
arterial compliance curve widths and PP and thus considerably
(0.5–0.6 in Figure 7A). This prediction is consistent with those of
previous computational sensitivity analysis and modeling studies
of the fixed ratio algorithm (Drzewiecki et al., 1994; Ursino and
Cristalli, 1996; Rein Raamat et al., 2011; Babbs, 2012; Liu et al.,
2013). However, these earlier studies only provided qualitative
rather than exact relationships. The true ratio formulas here may
be examined to glean further insight. By taking the derivative
with respect to each of the three parameters (α, β , PP), it can
be deduced that the numerator and denominator of the true
ratio formulas (which are the same functions but with different
parameter values) increase as each parameter increases and
then plateau with further parameter increases. It can then be
inferred that the true systolic ratio increases with increasing α

and decreases with increasing β and PP, while the true diastolic
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ratio increases with increasing β and decreases with increasing
α and PP. The last two formulas for the fixed ratio algorithm
(Figure 8) indicate that error in the presumptive ratios translates
to significant BP errors (e.g., a ratio error of 0.2 leads to an 8
mmHg BP error here). Note that the scale factor that maps ratio
error to BP error is identical to the denominator of the true ratio
formulas (Figure 8). Hence, the scale factor increases with α,
β , or PP. Similarly, this prediction is consistent with and builds
upon the previous computational sensitivity analysis studies
(Drzewiecki et al., 1994; Ursino and Cristalli, 1996; Rein Raamat
et al., 2011; Liu et al., 2013). However, these formulas are only
valid for small errors, and larger ratio errors may be amplified
even more to yield very large BP errors (Figure 7B). In sum, the
fixed ratio algorithm may be generally inaccurate.

In conclusion, oscillometry is the BP measurement principle
of most automatic cuff devices and has thus been a workhorse in
hypertension management. This principle may also be emerging
as a means for achieving cuff-less and calibration-free BP
monitoring via smartphones (Chandrasekhar et al., 2018a,b) and
may thus improve hypertension awareness and control rates.
Oscillometric devices estimate BP from themeasured oscillogram
via an empirical algorithm. In this study, we explained perhaps
the three most popular empirical algorithms in the literature
(Ng and Small, 1994) through formulas. We specifically derived
formulas based on a mathematical model of the oscillogram,
determined exemplary formula parameter values by fitting the
model to patient oscillograms, and validated the model and
formulas using patient data. The resulting formulas are not
merely confirmatory of present knowledge and past studies. In
fact, the formula for themaximum amplitude algorithm indicates
that the algorithm estimates a weighted average of systolic BP and
diastolic BP rather than the commonly held belief that it estimates
mean BP. Furthermore, the formulas for the derivative algorithm
indicate that the algorithm can estimate systolic BP and diastolic
BP with small bias errors, which is in contrast to a previous
study indicating that it appreciably overestimates systolic BP and
underestimates diastolic BP (Drzewiecki and Bronzino, 2006).
The formulas for the fixed ratio algorithm add to previous
modeling studies by indicating the precise dependency of the
true ratios on arterial properties and the precise mapping of
small ratio errors to small BP errors. In these ways, this study
facilitates understanding of the capabilities and limitations of the
important algorithms in estimating BP. The study may also be
of some value toward improving algorithm accuracy, which has

been called for in recent clinical publications (Picone et al., 2017;
Muntner et al., 2019). For example, an optimization algorithm
to fit the oscillogram model to the measured oscillogram [see
(Babbs, 2012; Forouzanfar et al., 2012; Mukkamala et al., 2012;
Liu et al., 2016, 2017)] may more accurately estimate BP.
Alternatively, a simpler algorithm to faithfully identify the
maximum and minimum oscillogram slopes in the presence
of noise could allow the derivative algorithm to achieve low
precision error.
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GLOSSARY OF SYMBOLS (IN ORDER OF
APPEARANCE IN FIGURES)

Pe: external pressure of an artery or measured cuff pressure
O: oscillations via high-pass filtering of Pe
1O: peak-to-peak amplitude of O
1O vs. Pe: oscillogram from which blood pressure (BP) is

estimated via an algorithm
Ps: systolic BP
Pm: mean BP (i.e., time average of instantaneous BP over the

cardiac cycle)
Pd: diastolic BP
Pmax: Pe at which the oscillogram peaks, which is an estimate

of Pm via the maximum amplitude algorithm
Pmaxslope: Pe at which the oscillogram has maximal slope,

which is an estimate of Pd via the derivative algorithm
Pminslope: Pe at which the oscillogram hasminimal slope, which

is an estimate of Ps via the derivative algorithm
PRd : Pe at which the amplitude of the rising portion of the

oscillogram is an assumed constant ratio of its maximal value
(Rd), which is an estimate of Pd via the fixed ratio algorithm

PRs : Pe at which the amplitude of the falling portion of the
oscillogram is an assumed constant ratio of its maximal value
(Rs), which is an estimate of Ps via the fixed ratio algorithm

f (·): function relating transmural pressure (P − Pe) to
blood volume (V), i.e., “arterial blood volume-transmural
pressure relationship”

1V : peak-to-peak amplitude of V
k: reciprocal of the cuff compliance, i.e., scale factor that relates

1V to 1O
g (·) = df /dP: “arterial compliance curve”
α: parameter representing the width of the compliance curve

over negative transmural pressure
β : parameter representing the width of the compliance curve

over positive transmural pressure
γ : parameter denoting the height of the compliance curve
TRs : amplitude of the falling portion of the oscillogram at the

true Ps (e.g., invasive Ps) divided by the maximal oscillogram
amplitude, i.e., “true systolic ratio”

TRd : amplitude of the rising portion of the oscillogram at the
true Pd (e.g., invasive Pd) divided by the maximal oscillogram
amplitude, i.e., “true diastolic ratio”
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