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Abstract

Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough descrip-

tion of these synaptic signals is essential for understanding neurotransmitter release and the

generation of a postsynaptic response. However, the complexity of synaptic current trajecto-

ries has either precluded an in-depth analysis or it has forced human observers to resort to

manual or semi-automated approaches based on subjective amplitude and area threshold

settings. Both procedures are time-consuming, error-prone and likely affected by human

bias. Here, we present three complimentary methods for a fully automated analysis of spon-

taneous excitatory postsynaptic currents measured in major cell types of the mouse retina

and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold

methods, while the third represents a novel machine learning-based algorithm. Comparison

with frequently used existing methods demonstrates the suitability of our algorithms for an

unbiased and efficient analysis of synaptic signals in the central nervous system.

Introduction

The analysis of spontaneous excitatory and inhibitory postsynaptic events [1–4] in neurons

still relies to a large extent on the manual inspection and processing of current traces.

Although several software packages promise automated peak detection, the overall process is

extremely time consuming, often counterintuitive, and is mainly based on the expertise of a

human observer and even expert observers suffer from fatigue, making consistent results diffi-

cult to obtain Furthermore, human bias is another flaw with manual analysis, as even experts

can have pre-existing hypothesis which can impact the accuracy of analysis even when fatigue

is not a factor. People are attributed to have extraordinary abilities with respect to sense-mak-

ing and reasoning, but they are also susceptible to an innate bias that unconsciously shapes

their decision-making [5]. A bias acts like a filter, which funnels information into diverse

channels in order to avoid impending sensory overload. However, this filtering can lead to

major errors and misinterpretations as it unknowingly infiltrates the analysis of complex sig-

nals. For example, a pre-existing hypothesis may influence decision-making and it may make
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one unconsciously ignore contrary evidence [6]. In psychological science, the so-called

anchoring effect is described as the tendency to focus selectively on a subset of the available

information when making decisions [7].

In order to eliminate these sources of error in the analysis and subsequent interpretation of

spontaneous postsynaptic events, it was our intention to develop algorithms, which make the

results reliable and reproducible and simultaneously minimize expenditure of time.

Spontaneous synaptic events in a discrete time series can be described as frequently occur-

ring anomalies. Anomaly detection is a wide area subject to extensive research [8]. A common

approach includes ARMA, ARIMA and ARIMAX [9–11], where the unsupervised learning

model will be trained to predict the regular behaviour of the signal in order to determine non-

regular events. However, applying these models to time series of spontaneous activity leads to

very slow calculations and a rather poor fit to the data; such models are based on different

assumptions about the nature of signals and thus are not able to identify the inherent logic of

the signal. Given these drawbacks, it is not possible to use the forecast approach to test for

abnormal noise variance. General noise testing methods [12] are also not adequate for the

analysis of spontaneous activity time series. The noise in synaptic signals is similar to analytical

noise like white or red noise. This neuronal noise results from the binding of neurotransmitter

molecules to their cognate receptors, thereby triggering the opening of ion channels and the

subsequent diffusion of ions along their electrochemical gradients. Thus, its spectrum and

time correlation is complex and cannot be easily simulated. Kernel or rolling value methods

also fail to detect events properly in time series of spontaneous activity. Although persistent

tests are able to detect the rising edge of an event, calculation costs are high compared to a

slope algorithm with preset threshold values. Finally, the change point detection method [13]

has a non-intuitive parametrization, and the detected signal change points do not correlate

with measured events. Taken together, current methodological approaches summarized in this

section do not appear to be adequate for an unbiased automated analysis of spontaneous syn-

aptic events.

Therefore, we generated and compared three different procedures for a computer-based

analysis of spontaneous excitatory postsynaptic currents (spEPSCs). Two approaches are

based on threshold methods considerably more advanced than those already available, whereas

the third approach relies on a machine learning-based algorithm.

Results

To overcome the potentially error-prone subjective identification of synaptic events, we aimed

at developing novel approaches for an automated data analysis. Spontaneous synaptic currents

were recorded with the patch-clamp technique from different retinal cell types including hori-

zontal cells, AII amacrine cells, ganglion cells, ON and OFF cone bipolar cells, and rod bipolar

cells. Retinal neurons were routinely filled with a fluorescent dye and identified according to

their morphology and location in vertical and horizontal slice preparations of the mouse ret-

ina. In addition, spontaneous synaptic events were recorded from neurons in a primary culture

of mouse auditory cortex after 21 days in vitro.

The first method—the so-called “simple” algorithm—is based on a simple threshold

approach that detects local extreme values. To identify these as events, their maximum ampli-

tude and preceding slopes are measured and compared to preset threshold values. To ensure

consistent results, the recorded signals are processed using a Blackman-Harris kernel with a

width of 21 to filter the data by a 50 kHz sampling rate.

The second algorithm is called “slope”, and it is based on the analysis of the positive and

negative slopes of an event. We calculate the first derivative of the filtered signal and define
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positive and negative threshold values. In general, an event is characterized by an inward cur-

rent, starting with a steep negative slope, which exceeds the preset threshold value and thus

activates a negative trigger. Following a local minimum, the positive slope of the decaying

phase eventually falls below the threshold, which designates the endpoint.

The third, machine learning-based algorithm depends upon unsupervised trained kernels,

which describe the state of an event at a certain point in time (“autoclassifier”). Only if the sig-

nal passes through all states, it will be declared as an event. Fig 1a displays these states as win-

dows of 128 time steps assigned to different clusters. The labels of the clusters are randomly

chosen by the k-means algorithm, whereas the order corresponds to the event age. It should be

noted that this figure merely approximates a visual representation, as the information of the

latent domain can only be interpreted by the classifier but not by a human observer. The auto-

classifier is based on features, not on shapes. Nevertheless, internal processes of this method

can be depicted quite clearly in this way, thus providing some insight into how the black

box of the autoclassifier works. Fig 1b shows the dimension-reduced autoencoder information

with colours assigned to the clusters outlined in Fig 1a. We reduced the latent domain of the

autoencoder with the unsupervised umap algorithm [14], which only affects the latent domain

information but not the assigned clusters, from originally eight to two dimensions. Interest-

ingly, the resulting projection shows a regular organization: The radius of a polar coordinate

system centered on the projection functions as a separation criterion for noise, whereas its

angle corresponds to the age of the event in the analysed time window (Fig 1b). The border

between the first and last cluster is located at θ� 265˚, and the event state ages clockwise from

cluster 4 to 1. Since the reduction from eight to two dimensions involves a loss of information,

Fig 1. a Signal density and common signal of horizontal cells of the different clusters. All graphs have the same scale. The signals comprise 128 time

steps, each time step being 40 μs. The graphs are sorted in chronological order. The shaded areas show the density of data points, and the red line

represents the approximated shape of the state based on a Nadaraya-Watson-estimator. b Dimension-reduced latent domain generated by the umap

algorithm. The 2D umap values are mapped to polar coordinates with a center at x1 = 4.95 and x2 = 4.1. The colours represent the different clusters that

were determined with the k-means algorithm. Radial black lines indicate the approximated borders of the clusters. The blue cluster in the centre (2)

represents windows containing only noise. Starting with cluster 4, the chronological order of the clusters in a is represented as a clockwise rotation.

Axes with trivial, normalized or abstract values are not shown to increase the information value of the figures, as these axes do not provide usable

information.

https://doi.org/10.1371/journal.pone.0273501.g001
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clusters 3 and 4 appear blurred, and cluster 5 partly contains areas from other clusters. We

refer to the Methods section for a more detailed description of signal processing and classifica-

tion algorithms.

To evaluate the performance and compare the results of these newly developed algorithms,

we analyzed the same synaptic current trajectories with four other methods. First, we used the

commercial software MiniAnalysis (Synaptosoft Inc., Fort Lee, NJ) in a manual detection and

a semi-automated analysis mode, which we will refer to as “ma-manual” and “ma-auto”,

respectively. Second, we used the multi-step threshold algorithm of the software Neuromatic

[15], based on the work of Kudoh and Taguchi [16] (designated as “kudoh”). Finally, we

employed the threshold-based algorithm by Muthmann et al. [17] that was originally designed

to detect events in multi-electrode array (MEA) recordings (designated as “muthmann”).

Fig 2 shows a representative current trace from a retinal horizontal cell (a) and a cell from

cortex primary culture (b), each displaying multiple synaptic events. The positions of the

events detected by each algorithm are indicated by vertical lines. Both signals clearly differ

with regard to amplitude and event duration, making it rather difficult to implement a gener-

ally applicable algorithm that is not trained on a specific cell type. Large events were detected

by all methods, although some jitter with respect to timing was apparent in each case. In con-

trast, smaller events lacking a well-defined baseline were identified only by some methods.

Time series of horizontal cells usually displayed a rather irregular sequence of synaptic events

with changing amplitudes and kinetics, and a clearly discernible baseline was mostly lacking.

As a consequence, it was especially difficult in this cell type to determine the beginning of an

event, to measure its peak amplitude with respect to a variable baseline, and to reliably distin-

guish between signals and noise. Thus, it is not surprising that the different methods show a

slightly larger deviation in the number and positions of events found in signals from horizontal

Fig 2. Representative time series of spontaneous synaptic activity measured in (a) a retinal horizontal cell and (b) a cultured cortical neuron

(upper panel), and peak positions of events detected by the algorithms specified on the left (lower panel). “ma-manual” and “ma-auto” were carried

out with the MiniAnalysis software package, “kudoh” refers to the multi-step threshold algorithm of [16], and “muthmann” to the MEA software

package [17]. “autoclassifer”, “simple” and “slope” are novel algorithms described in the main text.

https://doi.org/10.1371/journal.pone.0273501.g002
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cells as compared to those of cortical neurons. However, the three newly developed algorithms

show a relatively high concordance for both cell types. In contrast, the “muthmann” algorithm

originally used for MEAs clearly reveals its limitations when applied to horizontal cells. In

most of the datasets, this approach misses distinct events resulting in a reduced number of

peaks. The output of the “kudoh” algorithm is also considerably different. This algorithm

interprets virtually every current fluctuation in horizontal cells as an event, whereas it fails to

detect obvious events in cortical cells. In these cells, the “simple” algorithm also detects rela-

tively few events. This is caused by the larger range of event amplitudes, and it could be

improved by optimized filtering before detecting local extreme values.

Fig 3 provides an overview of event detection performances of all algorithms used in this

study. The matrices represent the percentages of missed events in direct comparison between

the algorithms for all cell types. Darker shades represent a low coverage, whereas lighter shades

indicate highly concordant analysis results. It is rather complicated for any algorithm to fully

cover the event characteristics of these diverse cell types. Additionally, the lack of a ground

truth for cell types with a low signal-to-noise ratio makes the validation of the accuracy of the

algorithms difficult. False positives, events that were wrongly detected, increase the missing

rates of the remaining algorithms. In most cases, the algorithms “slope”, “simple” and “auto-

classifier” show quite similar results, although the “autoclassifier” generally detects fewer

events. As compared to the other algorithms, “threshold” and “ma-auto” differ most, suggest-

ing a rather high error rate in event detection. Apparently, “ma-auto” often does not recognise

obvious events. In some cases, the suggested peak position is neither at the minimum, nor do

the other parameter values correspond to the expected shape of an event. Even through

numerous iterations in the manual adjustment of parameters, ideal values could not be deter-

mined. Of course, continuous readjustment makes the process of manual evaluation more dif-

ficult and time-consuming.

Table 1 specifies the mean number of events per current trace detected by each algorithm

and its speed relative to manual detection for retinal horizontal cells and cultured cortical neu-

rons. The number of events is calculated as the mean of all traces under study. As the length of

Fig 3. Comparison of algorithm performances in event detection. The matrices show the rates of events missed by an algorithm related to a reference

for various cell types.“ma-manual” and “ma-auto” were carried out with the MiniAnalysis software package, “kudoh” refers to the multi-step threshold

algorithm of [16], and “muthmann” to the MEA software package ([17]). “autoclassifer”, “simple” and “slope” are novel algorithms described in the

main text.

https://doi.org/10.1371/journal.pone.0273501.g003
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individual current traces as well as the mean duration of events differ between horizontal cells

and cortical neurons, the count of mean events is different between the two datasets. To evalu-

ate the performance of each algorithm with respect to manual analysis, its speed is measured

and normalized to the time necessary for manual detection (estimated as 10 min per 5 s cur-

rent trace). In horizontal cells, the “slope” algorithm identifies most events, followed by “sim-

ple” and “autoclassifier”. These algorithms detect near to or more than twice as many events

compared to the “ma-manual” approach. The threshold-based algorithms “kudoh” and “muth-

mann” perform rather poorly in the analysis of complex horizontal cell current trajectories

with 1333 and 1309 events per second, respectively (see also Fig 3). When a stable baseline is

present as in recordings of cultured cortical neurons, the divergence of algorithm perfor-

mances appears not as pronounced. With respect to “ma-manual”, the “slope” algorithm dis-

plays the fastest performance, whereas the “autoclassifier” is relatively slow. The

“autoclassifier” calculates the state for every time step, which is a convolution-like operation

and therefore computationally expensive. Thus, the “autoclassifier” is always slower than both

non-machine learning algorithms, but it is still considerably faster than “ma-manual”

detection.

For a more comprehensive description of detected events, we measured duration, peak

amplitude, 10%� 90% rise time, and time constant of exponential decay of individual

spEPSCs. Fig 4 shows the respective kernel density distributions for events identified with the

algoritms “slope”, “autoclassifier”, and “ma-manual”. All other algorithms do not provide

these parameters, and therefore they are not considered here. We decided to display the data

as kernel density distributions instead of histograms, since the choice of bin width influences

the shape and thus the interpretation of the distributions.

In case of horizontal cells, we observe major differences between manual and automated

approaches (Fig 4b). Manually detected events are characterized by small amplitudes and

rather fast kinetics, whereas events identified by the “autoclassifier” algorithm appear larger

with slower kinetics (see the pronounced tail in the 10%� 90% rise time and decay time distri-

butions). With respect to duration and amplitude, results obtained with the “slope” algorithm

are located between the two other approaches, whereas they are more similar to the “autoclas-

sifier” concerning rise and decay times.

Differences between manual and automated detection appear less pronounced for cultured

cortical neurons, which display a rather distinct baseline. The second peak at around 10 ms in

the decay time distribution is likely attributable to a computing error in the software for the

manual detection. To obtain a valid peak shape, parameters must be adjusted in a way that the

decay time occasionally overlaps with the following rise time. Therefore, this second peak is

considered an artefact.

Table 1. Table showing the mean number of events and the relative speed of the specified algorithms normalized to “ma-manual” analysis.

horizontal cell cortical neuron

mean events / s relative speed mean events / s relative speed

to length to events to length to events

ma-manual 474.1 1 1 13.84 1 1

ma-auto 576.9 1 / 214 1 / 260 28.98 1 / 36 1 / 76

kudoh 1333 1 / 50 1 / 139 60.17 1 / 10 1 / 43

muthmann 1309 1 / 74 >1 8.244 1 / 169 1 / 101

autoclassifier 759.2 1 / 2 1 / 3 11.97 1 / 4 1 / 4

simple 984.5 1 / 375 1 / 779 10.85 1 / 921 1 / 722

slope 1208 1 / 15 1 / 38 21.49 1 / 974 1 / 1513

https://doi.org/10.1371/journal.pone.0273501.t001
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Discussion

In this study, we present three novel algorithms for a fully automated analysis of spontaneous

excitatory postsynaptic currents measured in several cell types of the mouse retina as well as in

a primary culture of mouse auditory cortex. Two approaches rely on considerably advanced

threshold methods, whereas the third approach is based on machine learning algorithms.

In principle, it is rather difficult to evaluate algorithms, which apparently have no pre-deter-

mined “correct” solution. By analysing spontaneous synaptic activity, it is impossible to reli-

ably distinguish between noise and a true neuronal response caused by release of a single

presynaptic vesicle. Detected events might include false positives, whereas actual events could

also mistakenly be defined as noise. Nevertheless, the algorithms presented here outperform

already existing and previously used methods. In addition to a fast and unbiased approach,

which most of the other algorithms also accomplish, our event detection is very robust. Events

are reliably and consistently identified and analysed across the entire data set comprising sev-

eral cell types from distinct regions of the central nervous system. Other algorithms, especially

“muthmann”, which was the most unreliable in our tests, repeatedly produced time windows

with no events despite visual evidence to the contrary. Additionally, third-party algorithms are

often quite sensitive to noise, and they utilise a counterintuitive and/or time consuming trial

and error-based procedure to determine appropriate detection parameters. This concerns in

particular the software package Mini Analysis, which produced the highest rate of false posi-

tives in the semi-automated analysis.

Algorithms already in common use are compared with the three novel approached

described in this study (see Table 2). Thus, for example, the “autoclassifier” algorithm is

completely insensitive to noise, which eliminates the need for potentially error-prone filtering.

The algorithm is highly reliable, and its inherent logic based on feature-driven detection

Fig 4. Kernel density distributions of the event parameters duration, amplitude, 10%-90% rise time and time constant of decay as determined by

“ma-manual”, “autoclassifier”, and “slope” algorithms for horizontal cells (a) and cultured cortical neurons (b). Since the sum of the integrals of

the distributions is scaled to 1, the areas represent the set size of each distribution related to the others.

https://doi.org/10.1371/journal.pone.0273501.g004
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distinguishes this approach from the other algorithms. Since the “autoclassifier” is trained

unsupervised, its decision making is completely unbiased. Only special hardware and software

requirements as well as the necessary expertise for training slightly limits the general applica-

tion of this machine learning algorithm. Simple and very robust in its application and also par-

ticularly intuitive is the parametrization of both “simple” and “slope” algorithms. However, the

most critical parameter here concerns the lower limit of the signal amplitude, above which a

deviation from baseline will be considered an event. This parameter, which likely corresponds

to the release of a single vesicle from a single active zone, could not be reliably estimated with

any of the algorithms investigated.

Across the cell types under investigation, we find a considerably higher agreement between

our novel algorithms than between the manual and the computer-based methods. This, of

course, is most likely due to the previously described bias, which inevitably occurs during

manual evaluation. This human bias impedes the reproducibility of the results carried out by

different researchers, and it therefore clearly reduces the reliability and significance of the

analysis.

With the exception of horizontal cells, which only receive excitatory glutamatergic input

from photoreceptors, all other neuronal cell types investigated here receive both excitatory and

inhibitory synaptic input. However, the algorithms presented in this study only consider

Table 2. Overview of algorithms applied for analysis of spEPSCs.

Algorithm Benefits Disadvantages

manual analysis (Mini Analysis Program v 6.0.7) • researcher as expert

• multiple parameter setting

• complex decision making

• time consuming

• biased

• not reproducible

• few events detected

• difficult to define valid parameter settings

• software outdated and not supported anymore

• software not freely available

semi-automated analysis (Mini Analysis Program v 6.0.7) • fast • difficult to define valid parameter settings

• software outdated and not supported anymore

• software not freely available

• counterintuitive handling

• rate of false positives is very high

kudoh algorithm [16] • extremely fast

• efficient code

• code is freely available

• counterintuitive procedure to find detection parameters

• event detection not as robust as “slope” or “simple”

• only serialized processing

muthmann algorithm (MEA analysis [17]) • code is freely available

• easy to implement

• extremely sensitive to noise

• most unreliable results in our analysis

• no event check

autoclassifier • unbiased

• feature driven

• insensitive to noise (no filtering needed)

• decision making as black box

• specialized hardware and software needed

• slow

simple threshold algorithm • extremely fast

• suitable for parallel processing

• robust

• intuitive parametrization

• less sophisticated event check

slope threshold algorithm • fast

• robust

• intuitive parametrization

• only serialized processing

https://doi.org/10.1371/journal.pone.0273501.t002
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excitatory, but not inhibitory currents. Inhibitory events are significantly longer [3], exceeding

the 128 time steps of the “autoclassifier”, and thus they need to be analysed with a different

parametrization. Similarly, the “slope” algorithm has a preset value for the maximum duration

of an event. The possibility to also analyse inhibitory currents, and multi-channel recordings

with extended methodologies, will be addressed in prospective versions of the algorithms.

Finally, we would like to introduce the option of an easy-access application of the algorithms

in order to make them applicable for the analysis of synaptic signals independent of computa-

tional expertise.

Methods

In this study, we compare novel event-detecting algorithms with already existing methods.

Therefore, we briefly describe the workings of the Mini Analysis Program (“ma-manual” and

“ma-auto”), the Neuromatics software (“kudoh”), and a software package dedicated to the

analysis of MEA signals (“muthmann”). Our newly developed algorithms are described in

greater detail thereafter.

Manual and semi-automated detection with the software package Mini
Analysis Program Version 6.0.7
Detection parameters were adjusted manually following preset values including amplitude and

area threshold, the period to search for a local maximum and decay time, and the stretch of

baseline before a peak. The parameters were chosen and optimised to match visual characteris-

tics of spontaneous currents. We distinguished between an entirely manual analysis, in which

each peak was identified and selected individually by eye, and a semi-automatic analysis. The

latter was carried out using the “Non-Stop Analysis” function with suitable parameters set-

tings. The same set of parameters was used for both manual and semi-automatic analysis. In

addition, a manual correction of the semi-automatic results was omitted in order to ensure the

comparability of the results.

Kudoh algorithm

Since selling and support of the MiniAnalysis software package has been aborted, the software

Neuromatic [15] is now widely used. The event-detecting algorithm is based on a multi-step

threshold mechanism [16]. The algorithm iterates over every time step and waits for a forward

slope trigger. If the initial search indicates an event, the on set point is set by iterating over the

time steps until the signal value exceeds a predetermined noise level. Starting from the on set

point, the signal peak is determined by a forward iteration followed by a backward iteration.

The peak detection compares mean values in the near vicinity to a reference point, leading to

an approximation of the peak position. With increasing noise, however, the peak detection

deteriorates significantly. Finally, kinetic parameter are calculated by fitting of a multi-expo-

nential function based on [18]. We did not carry out this fitting procedure, since we were only

interested in event detection.

Muthmann algorithm

For analysing data obtained with micro electrode arrays (MEAs), a threshold-based detection

approach was developed. This algorithm searches the baseline of the signal and approximates

the noise level statistically [17, 19]. An event will be detected if the signal exceeds the predeter-

mined noise level. We used a threshold factor of 4 with respect to the median absolute
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deviation of the band pass-filtered signal. Current traces were preprocessed with a 0.1–2 kHz

3-pole Bessel filter before analysing the baseline and the noise level (see [17]).

Autoclassifier

In general, an autoencoder produces an unsupervised transformation of a dataset to an

abstract image domain. We extended this concept to allow for a state-based interpretation of

synaptic signals, which is completely free of bias and only depends on its own characteristics.

Fig 5 shows the concept of our autoencoder extension, which we termed autoclassifier.

The image domain of an autoencoder represents the trained states of a signal, whereas the

decoder reconstructs the signal from this domain. Thus, it is mandatory that the image domain

contains all necessary information. Encoder and decoder have to agree in the interpretation of

the signal. The resulting domain necessarily represents the signal information as an abstract

logic. A clustering of sample data in the image domain results in groups of common states,

and a classifier will be trained to identify these states. The combination of encoder and classi-

fier interprets short sections of the current signal as states, which are further analysed.

Fig 5. Schematic illustration of the autoclassifier concept.

https://doi.org/10.1371/journal.pone.0273501.g005
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The training was performed on different cell types and applied to splits as described in the

data acquisition below. The autoencoder and classifier are trained with supervised algorithms,

but the autoclassifier creates its inherent logic unsupervised, like an autoencoder.

Autoencoder. Encoder and decoder are constructed with three feedforward layers. A win-

dow of 128 data points with a sample rate of 25 kHz was used, so the input of the autoencoder

represents 5.12 ms of the signal. Brief events fit completely in this window, whereas longer

events extend beyond this time frame, but can be analysed as well. This is limited to an event

duration of maximal 3 times as long as an average trained event.

Fig 6 shows the structure of the autoencoder. All layers are dense layers; thus, the layers are

fully connected. The encoder starts with 1024 followed by 256 neurons. Both layers use the

“relu” activation. To provoke a sparse layout of the connections, both layers are regulated with

the L1 norm with a value of 5 � 10−6. The final layer of the encoder consists of 8 neurons which

are “softmax”-activated and not regulated. The decoder mirrors the structure of the encoder.

The first two layers are “relu”-activated and regulated as the encoder layer. The last layer has

128 neurons that are linearly activated to allow the reconstruction of the signal window.

The autoencoder is the combination of encoder and decoder. The dataset taken from [4]

was preprocessed and randomly cut into 50 � 103 windows with a length of 128 time steps each.

The encoder was trained for 100 epochs with “ADAM” as optimizer with an initial learning

rate of 1 � 10−3, “Huber” function as loss and a batch size of 32. 10 � 103 addition random sam-

ple windows were used for validation. The learning process was tracked after each epoch. If

the model did non improve within 10 epochs, the learning rate was reduced by the factor 0.2

Fig 6. Schematics of the components of an autoclassifier and the data preprocess. a autoencoder model, b classifier model, c data preprocess

https://doi.org/10.1371/journal.pone.0273501.g006
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until a minimum learning rate of 1 � 10−6 was reached. The learning process resulted in a loss

of 3.3877 � 10−4 and a validation loss of 2.5864 � 10−4.

Clustering. The autoencoder transforms a signal window of 128 time steps into an eight-

dimensional domain and then it inverts this transformation to reconstruct the original signal.

To reconstruct the signal based on compressed information, the image domain needs to be

systematic. We assume that there is a finite number of states that can be identified by

clustering.

From the training data of the autoencoder, 60 � 103 sample windows were randomly chosen

and transformed to the image domain by the encoder. The resulting samples were scaled by a

robust scaler that removed the median and scaled the data according to the interquartile

range. These scaled samples build the database for clustering.

It is possible to interpret the clustering directly based on the autoencoder. Grouped by the

labels, the clusters can be interpreted as time series. A Nadaraya-Watson-Estimator with a pre-

defined Gaussian kernel creates a hypothetical common time series for a group. The mean of

the L2 norm between the common time series and the clustered ones is a value of the fit as

metric. The cluster algorithm and the number of clusters was not chosen by an interpretation

of the position similarity in the image domain, but rather by the similarity of the time series.

We evaluated the function space of clustering algorithm and cluster number by brute force

and chose a combination by the elbow method. The combination of the k-means algorithm

with seven clusters resulted in an adequate fit with a small number of clusters. By increasing

the number of clusters, the resulting difference between the samples and the common time

series will decrease until the number of clusters reaches the number of samples, and the differ-

ence disappears. However, the result of the umap transformation shown in Fig 1b that the

number of clusters is a insignificant value, because the encoded domain defines a semi-contin-

uous logic, which will be discretized by the clusters.

Fig 1a shows the resulting clusters. The common signal was estimated using the Nadaraya-

Watson algorithm with a kernel width of 2.0 related to 128 time steps. Table 3 summarizes the

number of samples and the resulting root mean square values (RMS), which are based on the

preprocessed data for the machine learning, of the difference between the samples and the

common signal. The clusters can be ordered in a way that they show an event in different time

steps. In this specific case, the image domain of the autoencoder can be interpreted as the

time-related position of the peak in the analysed window. The clusters 4, 3, 0, 6 and 5 are

equally distributed and show similar RMS values. Cluster 1 occurs more often and has a

smaller RMS value. Based on the shape of the common signal of cluster 1, this cluster could

also be interpreted as a rising noise signal. Cluster 2 represents the time window without any

event, which is the most frequent case. The lack of a specific signal results in a reduced RMS

value.

Table 3. Data of the different clusters.

order cluster count RMS

noise 2 17275 0.048

1 4 6538 0.073

2 3 6699 0.073

3 0 6490 0.075

4 6 6930 0.073

5 5 6912 0.071

6 1 9156 0.066

https://doi.org/10.1371/journal.pone.0273501.t003
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Classifier. The classifier is build as a simple feed-forward model with three hidden layers,

8 input and 7 output variables (Fig 6b). The hidden layers use “relu” as activation, they are reg-

ulated with the L1 norm and a value of 1 � 10−3, and 30% of the weights were random dropout.

This prevents memorization in the overparameterized model and should provoke parallel and

sparse solution paths in the network. The output layer use “softmax” as activation. The model

is optimized with the “ADAM”-algorithm with an initial learning rate of 1 � 10−3 for 100

epochs with a batch size of 32. The categorical crossentropy was used as loss value. If the opti-

mizer reaches a plateau, the learning rate was reduced by the factor 0.2 until a minimum learn-

ing rate of 10−6 was reached. The 60 � 103 data samples of the clustering, which were extended

from the label information, were randomly split into 80% training and 20% validation data.

These results in a training accuracy of 93.69% and a validation accuracy of 98.00%.

The trained classifier interprets the image domain of the encoder and returns the corre-

sponding label related to the clustering. The encoder and the classifier can be combined like

the encoder with the decoder. The resulting autoclassifier interprets a time series window as

one of the labels that are founded by the clustering.

Data acquisition. We performed patch-clamp recordings of spontaneous synaptic events

from different retinal cell types including horizontal cells, AII amacrine cells, ganglion cells,

ON and OFF cone bipolar cells, and rod bipolar cells as described previously [20]. For identifi-

cation, retinal cell types were routinely filled with a fluorescent dye and characterized accord-

ing to their morphology and location in vertical and horizontal slice preparations of the mouse

retina. In addition, spontaneous synaptic events were recorded from neurons in a primary cul-

ture of mouse auditory cortex after 21 days in vitro.

Each data set had to be split and preprocessed before synaptic events could be analysed. To

prevent interference of the data, we split the data sets based on the measured sequences. Each

cell was measured with a fix automated sequence of multiple signal recording. These sequences

were randomly separated in to 80% training and 20% validating. Based on this, every test data is

like a new measurement and is independent of the training data. Due to the big amount of data

needed, only measurements of horizontal cells were included in this training process. In some

cases, the current trace displayed a floating baseline that needed to be adjusted. Current traces

were smoothed by a kernel with ten times the length of the time window to be analysed. By sub-

tracting the smoothed time series, the baseline was corrected. Assuming that all traces were suf-

ficiently long to include at least one large event, the trace was scaled to a range of [0. . .1]. Then,

the traces were divided into sections of a window size of 128 time steps. To reduce the amount

of data to be processed to a useful level, sections were chosen randomly: 50 � 103 random slices

of the training cells for training and 10 � 103 random slices of the validation cells for testing.

Fig 6c shows the schematic of data handling. The autoencoder was trained to use a series of 128

time steps with a sampling rate of 25 kHz. In case of a different sampling rate, the slices were

resampled accordingly.

Event detection

For event detection, the systematic signal generated by the autoclassifier had to be interpreted.

By sorting the clusters, an event should generate an ascending stair with a final step at the end

(Fig 7a, reverse state). The end of an event exists if a step can be detected. The start of an event

is determined by reversing the cluster order. The state signal starts at an event with a step fol-

lowed by a descending stair (Fig 7a forward state).

An event exists in the signal between a starting and an ending points, triggered by the for-

ward and reverse state signal. To compensate the noise in the state signals, these signals were

filtered with a short Blackman-Harris kernel of the length 17 time steps. The step was detected,
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if a slope of 0.51/step (based on the preprocessed data) was reached. In some cases, a start

point but no end point was triggered. To exclude these cases, events with a duration greater

than 10 ms were removed. Also, events with a duration shorter than 0.8 ms were removed.

Additionally, an event was considered valid if the proportion of the noise cluster was less than

25%.

Two non-machine learning based methods were used as a reference to validate the autoclas-

sifier-based approach. The first method detected events by local extreme values as shown in

Fig 7b. The step of the event had to exist between a local maximum and a local minimum. The

signal had to be filtered, since the local extreme values relayed on the noise of the measured

signal. An event step will be detected if the peak amplitude and the maximal slope of the step

exceed a threshold. This method can not detect the end of an event.

The second non machine learning method based on the direct detection of the slopes. An

event starts with a step. These steep slope are characteristic. By reaching the slope trigger, the

step of an event will be detected. After the step follows a recuperation in form of an exponen-

tial decay. The end of an event is near if the positive slope decreased to a threshold. This

threshold has to be as small as possible, but big enough that is sure that it will be triggered

within the event. Fig 7b shows this in the lower graph.

These step trigger are not precise to define the start of an event. We chose the approach to

linearize the step. Thus, the event start is the interception of the slope of the nearest inflection

point to the nearest zero slope point before the step and the value of this zero slope point.

Commonly, this interception point will be not on the signal, but represents a proper start time

and start value.

Event assigning

Eq (1) shows the thresholded distance matrix Cij represents all meaningful combinations of

events in the event sets a and b. By the threshold γ only combinations with a smaller distance

Fig 7. Examples of event detection with autoclassifier and threshold based method.

https://doi.org/10.1371/journal.pone.0273501.g007
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survive in the matrix.

Cij ¼

(
kai � bjk for kai � bjk � g
1 for kai � bjk > g

with g 2 Rþ ð1Þ

The assignment problem is given in Eq (2), where X 2 Bjaj�jbj is a sparse boolean matrix

with Xij = 1 if event ai is assigned with event bj. The optimizer assigned all events as long as

events in both sets are unassigned. This behavior can provoke fails. If an event that is not

assignable will be assigned, could be one or more other events fail. By choosing a suitable max-

imum distance γ only near events will be assigned.

min
X

i

X

j
CijXij ð2Þ
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3. Frech MJ, Pérez-León J, Wässle H, Backus KH. Characterization of the spontaneous synaptic activity

of amacrine cells in the mouse retina. Journal of neurophysiology. 2001; 86(4):1632–1643. https://doi.

org/10.1152/jn.2001.86.4.1632 PMID: 11600626

PLOS ONE A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents

PLOS ONE | https://doi.org/10.1371/journal.pone.0273501 September 19, 2022 15 / 16

https://doi.org/10.1523/JNEUROSCI.18-17-06776.1998
https://doi.org/10.1523/JNEUROSCI.18-17-06776.1998
http://www.ncbi.nlm.nih.gov/pubmed/9712649
https://doi.org/10.1152/jn.1998.80.3.1327
https://doi.org/10.1152/jn.1998.80.3.1327
http://www.ncbi.nlm.nih.gov/pubmed/9744942
https://doi.org/10.1152/jn.2001.86.4.1632
https://doi.org/10.1152/jn.2001.86.4.1632
http://www.ncbi.nlm.nih.gov/pubmed/11600626
https://doi.org/10.1371/journal.pone.0273501


4. Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/

dark transitions in horizontal cells of the mouse retina. European Journal of Neuroscience. 2015; 42

(9):2615–2632. https://doi.org/10.1111/ejn.13016 PMID: 26173960

5. Wall E, Blaha LM, Paul CL, Cook K, Endert A. Four Perspectives on Human Bias in Visual Analytics BT

—Cognitive Biases in Visualizations. Cham: Springer International Publishing; 2018. p. 29–42. Avail-

able from: https://doi.org/10.1007/978-3-319-95831-6_3.

6. Nickerson RS. Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Review of General Psy-

chology. 1998; 2(2):175–220. https://doi.org/10.1037/1089-2680.2.2.175

7. Cho I, Wesslen R, Karduni A, Santhanam S, Shaikh S, Dou W. The Anchoring Effect in Decision-Mak-

ing with Visual Analytics. In: 2017 IEEE Conference on Visual Analytics Science and Technology

(VAST); 2017. p. 116–126.

8. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM computing surveys (CSUR).

2009; 41(3):1–58. https://doi.org/10.1145/1541880.1541882

9. Faverjon C, Berezowski J. Choosing the best algorithm for event detection based on the intended appli-

cation: A conceptual framework for syndromic surveillance. Journal of biomedical informatics. 2018;

85:126–135. https://doi.org/10.1016/j.jbi.2018.08.001 PMID: 30092359

10. Wheelwright S, Makridakis S, Hyndman RJ. Forecasting: methods and applications. John Wiley &

Sons; 1998.

11. Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control. John Wiley

& Sons; 2015.
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