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Abstract

Medicinal chemistry patents contain rich information about chemical compounds.

Although much effort has been devoted to extracting chemical entities from scientific lit-

erature, limited numbers of patent mining systems are publically available, probably due

to the lack of large manually annotated corpora. To accelerate the development of infor-

mation extraction systems for medicinal chemistry patents, the 2015 BioCreative V chal-

lenge organized a track on Chemical and Drug Named Entity Recognition from patent

text (CHEMDNER patents). This track included three individual subtasks: (i) Chemical

Entity Mention Recognition in Patents (CEMP), (ii) Chemical Passage Detection (CPD) and

(iii) Gene and Protein Related Object task (GPRO). We participated in the two subtasks of

CEMP and CPD using machine learning-based systems. Our machine learning-based sys-

tems employed the algorithms of conditional random fields (CRF) and structured support

vector machines (SSVMs), respectively. To improve the performance of the NER sys-

tems, two strategies were proposed for feature engineering: (i) domain knowledge fea-

tures of dictionaries, chemical structural patterns and semantic type information present

in the context of the candidate chemical and (ii) unsupervised feature learning algorithms

to generate word representation features by Brown clustering and a novel binarized

Word embedding to enhance the generalizability of the system. Further, the system out-

put for the CPD task was yielded based on the patent titles and abstracts with chemicals

recognized in the CEMP task.

The effects of the proposed feature strategies on both the machine learning-based

systems were investigated. Our best system achieved the second best performance

among 21 participating teams in CEMP with a precision of 87.18%, a recall of 90.78%
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and a F-measure of 88.94% and was the top performing system among nine participat-

ing teams in CPD with a sensitivity of 98.60%, a specificity of 87.21%, an accuracy of

94.75%, a Matthew’s correlation coefficient (MCC) of 88.24%, a precision at full recall

(P_full_R) of 66.57% and an area under the precision-recall curve (AUC_PR) of 0.9347.

The SSVM-based CEMP systems outperformed the CRF-based CEMP systems when

using the same features. Features generated from both the domain knowledge and un-

supervised learning algorithms significantly improved the chemical NER task on

patents.

Database URL: http://database.oxfordjournals.org/content/2016/baw049

Introduction

Chemical compounds and drugs mentioned in scientific

text are crucial for many computational applications in the

biomedical domain, such as drug repurposing (1) and con-

struction of gene–chemical interaction pathways (2). In

addition to the development of chemical/drug databases

such as PubChem (3), ChEBI (4), ChemSpider (5) and

DrugBank (6), extensive efforts have been applied for ex-

traction of chemical information from rich textual sources

such as biomedical literature. For example, the BioCreative

IV Chemical and Drug Named Entity Recognition

(CHEMDNER) challenge promoted the development of

chemical NER systems for scientific literature, by provid-

ing a large-scale standard corpus (7). Typical approaches

applied to chemical NER in representative systems such as

Whatizit (8), OSCAR3/4 (9, 10), ChemSpot (11) and

tmChem (12) included dictionary lookup (8), machine

learning-based models (9, 10, 12) and hybrid methods that

combined a dictionary with a machine learning-based clas-

sifier (11). In addition to a set of common NER features

used widely in different genres, features generated from do-

main knowledge (12, 13) and unsupervised learning meth-

ods (14, 15) showed promising results in chemical NER for

biomedical literature in the past.

Medicinal chemistry patents are another important

source for text mining approaches to assist in drug devel-

opment (16), which has been attracting increasing atten-

tion from the Pharma and Biotech industries in recent

years (17). Compared with other biomedical texts such as

clinical notes and scientific literature, patents have their

own document formats, linguistic structures and terminol-

ogies (18). There are some previous studies that focus on

chemical NER from patents (19–27). The chemical data-

sets annotated for patents were usually small (28), of

which the most commonly used corpus contained only

40 patents released by ChEBI (19–23). To enlarge the

training dataset for patent chemical NER, several studies

leveraged the corpora from other resources, such as the

CHEMDNER corpus built from biomedical literature (22,

23), and the DDI corpus (20, 23) built from both

DrugBank and biomedical literature. As seen in literature,

the major approaches for building chemical NER systems

for patent text were dictionary lookup (19, 21, 25, 27) and

machine learning-based methods using conditional random

fields (CRF) algorithm (19–24, 29). Efforts were also made

to validate the recognized chemicals using the semantic

similarities between chemical pairs (22, 23). However, no

comparative evaluation of different chemical NER systems

has been conducted on a large annotated corpus of patents.

Moreover, it is also not clear how different types of fea-

tures contribute to the performance of chemical NER sys-

tems for patent documents.

To promote the development of NER systems for medi-

cinal chemistry patents, the Spanish National Cancer

Research Center (CNIO), Universidad Politecnica de

Madrid and University of Navarra co-organized a challenge

on CHEMDNER for patents (CHEMDNER patents), as a

part of BioCreative V challenge (Track 2) (30). This chal-

lenge included three individual subtasks: (i) Chemical Entity

Mention Recognition in Patents (CEMP), (ii) Chemical

Passage Detection (CPD) and (iii) Gene and Protein Related

Object task (GPRO). Subtask 1, as the main task of this

challenge, was a typical NER task. Subtask 2 required par-

ticipants to identify the sections (the title or abstract) of the

patent that contained the chemical. Subtask 3 was to iden-

tify mentions of gene and protein related objects. The chal-

lenge organizers provided manually annotated abstracts

from medicinal chemistry patents (21 000 abstracts in total),

of which 7000 abstracts were used as the training set, 7000

abstracts were used as the development set and the remain-

ing 7000 abstracts were used as the test set.

In this article, we describe our systems for the CEMP

and CPD tasks. We first used a rule-based module for sen-

tence segmentation and tokenization, and then built ma-

chine learning-based NER classifiers using either CRF (31)

or structured support vector machines (SSVMs) (32). CRF

has been widely used for chemical NER from biomedical
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literature and patents. SSVM has not been applied to pa-

tent text yet, but it has shown the state-of-the-art perform-

ance in chemical NER from biomedical literature (14). To

evaluate the effectiveness of different types of features, a

baseline system was built using a set of common NER fea-

tures, which have been proved to be effective in different

domains (14, 33). Two additional sets of features were

then employed to adapt the baseline NER system to patent

text: (i) domain knowledge features such as chemical/drug

dictionaries, chemical structural patterns and semantic

type information present in the context of a candidate

chemical and (ii) word representation features generated

from large unlabeled corpora by unsupervised learning al-

gorithms including Brown clustering (34) and a novel

binarized Word embedding method (35). Such word repre-

sentation features were assumed to contain latent syntac-

tic/semantic information of a word, thus improving the

generalizability of the NER systems. Then we also gener-

ated the outputs for the CPD task, by leveraging chemical

entities recognized in the patent titles and abstracts by the

CEMP task. Our best system achieved the second rank in

CEMP with a F-measure of 88.94% and the first rank in

CPD with a sensitivity of 98.60%, an accuracy of 94.75%

and a MCC of 88.24%.

Materials and Methods

Figure 1 shows the workflow of our systems for the CEMP

subtask, consisting of six components: (i) preprocessing,

which breaks a patent document into sentences and token-

izes each sentence using a rule-based approach; (ii) feature

extraction, which extracts different types of features from

the tokenized sentences; (iii) entity mention representation,

which represents entities as a sequence of specific tags; (iv)

machine learning model, which uses machine learning al-

gorithms to generate the NER model; (v) sentence align-

ment, which realigns the predicted tag sequences back to

named entities in the original sentence; (vi) post-process-

ing, which uses heuristic rules to reduce errors generated

by the machine learning model. The key components of the

systems are presented in the following sections in detail.

Dataset

The organizers collected medicinal chemistry patents from

Google patents using International Patent Classification

(IPC) code as the selection criteria. A total of 21 000 patent

abstracts were manually annotated with seven types of

chemical entities based on a pre-defined guideline. The

annotated abstracts were divided into three parts: a train-

ing set of 7000 abstracts, a development set of 7000 ab-

stracts and a test set of 7000 abstracts. Another 33 000

abstracts formed the test background set that was used to

avoid any manual correction of the predictions. We used

the training set to build chemical NER systems, which

were then validated and tuned using the development set.

The optimal systems were finally evaluated on the test set.

Table 1 lists the counts of each type of chemical entity in

the training and development datasets. The gold-standard

annotation of the test dataset has not yet been released by

the organizers.

Chemical entity recognition

In machine learning-based NER systems, the NER problem

is converted into a sequential labeling problem by repre-

senting each word using specific labels (36). In our study,

we used the BIO labels, a typical representation for named

entities, to represent chemical entities, where ‘B’, ‘I’ and

‘O’ denote the beginning, inside and outside of an entity,

respectively. Therefore, the chemical entity recognition

problem is converted into a sequential labeling problem

wherein the task is to assign one of the three labels to each

word. Figure 2 shows an example of the BIO representation,

where the chemical entity ‘1,6-naphthyridonecarboxylic

Figure 1. The workflow of our system for chemical named entity recog-

nition from patents.

Table 1. Statistics of the training and development datasets

of the BioCreative V CHEMDNER patents challenge

Types Training set Development set

ABBREVIATION 588 454

FAMILY 12 209 11 710

FORMULA 2239 2120

IDENTIFIER 99 125

MULTIPLE 140 141

SYSTEMATIC 9570 9194

TRIVIAL 8698 8298

ALL 32 955 32 042

*CHEMDNER patents: CHEMDNER from patent text.
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acid’ is represented as ‘1/B,/I 6/I -/I naphthyridonecarbox-

ylic/I acid/I’ after tokenization.

To investigate the effects of features derived from do-

main knowledge and word representation generated by un-

supervised learning in patent text, we first developed a

baseline chemical NER system that covers the most com-

mon NER features including bag-of-words, orthographic

information (word patterns, prefixes and suffixes), syntac-

tic information [POS (part of speech) tags] as well as

n-grams of characters, words, POS tags and their combin-

ations (unigrams, bigrams and trigrams) (14). Details of

each of the domain knowledge features and unsupervised

word representation features used in the systems are pre-

sented in the following sections.

Features from domain knowledge

Features derived from domain-specific knowledge sources

are described below:

Chemical pattern: Features representing characteristics

specific to chemicals were adopted from tmChem (37).

Furthermore, the annotation guideline for patents also con-

siders general chemical mentions to describe substituents

of the general Markush formula that is different from the

guideline for scientific literature in BioCreative IV. Hence,

the prefix and suffix of chemical functional groups and

structural words, such as ‘hydroxyl’, ‘benzyl’ and ‘cyclic’,

were also manually collected from the gold book of IUPAC

(http://goldbook.iupac.org/) as features of chemical

patterns.

The prefixes/suffixes features employed in our systems

are defined as the first and last m (m¼ 1,2,3) characters of

a token; while the n-grams of characters (n¼ 2, 3) are

defined as all the n-size contiguous character sequences of

a token. Both the features of prefixes/suffixes and n-grams

of characters are commonly used in general named entity

recognition systems. In contrast, the chemical affix features

are used to denote the functional groups or structures of

chemicals as domain-specific knowledge. For a more de-

tailed illustration of their differences, Table 2 lists the spe-

cific features of each type using the chemical name of

‘benzylamino’ as an example.

Gene lexicon: Since many medicinal chemistry patents

contain mentions of both chemical compounds and genes/

proteins, one type of false positive errors was caused by

mistakenly recognizing a gene/protein mention as a chem-

ical compound. Genes and proteins annotated in the train-

ing set were used as features to reduce such errors.

Semantic type in the Unified Medical Language System

(UMLS) (38): Given that NER is a sequential labeling

problem, the optimal decision made by the NER system is

based on the labels of tokens in the whole sentence. Thus,

the global context surrounding a candidate chemical is an

important factor to be considered. For this, the semantic

type information present in the context of a candidate

chemical was generated as a feature by matching the con-

cept terms in UMLS. Figure 3 shows an example of seman-

tic type annotation results.

ChemSpot: The output of the ChemSpot system is used

as a feature (11). ChemSpot classifies chemical mentions

into different types, similar to the annotation schema of

the CHEMDNER patents challenge. The output of

ChemSpot was considered as a pre-annotation of chemical

entities with BIO tags and chemical types. For example,

the feature for ‘hydrocodone’ was ‘B_ TRIVIAL’, instead

of a binary feature used in tmChem (37).

Unsupervised word representation features

Two types of word representation features were generated

from unlabeled patent documents:

Word embedding feature: Word embedding generates a

distributional word representation for each word in an un-

labeled corpus as a real-valued vector using neural networks

(39–41). We used the binarized Word embedding feature

proposed in 2014 by Guo et al. (35). The intuition of the

binarized embedding feature is to discretize the original real-

valued matrix of Word embeddings (41) and omit the insig-

nificant dimensions. Specifically, to convert the real values

Figure 2. An example of the BIO representation of chemical named entities.

Table 2. Illustration of features identified as prefixes/suffixes,

n-grams of characters and prefixes/suffixes of a chemical

named entity

Chemical name Benzylamino

prefixes/suffixes b, be, ben, ino, no, o

n-grams of characters be, ben, en, enz, nz, nzy, zy, zyl,

yl, yla, la, lam, am, ami, mi,

min, in, ino, no

Prefixes/suffixes of chemicals benzyl, amino
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in the original Word embedding matrix MV�D to discrete

symbolic values in [þ,�, 0], the positive mean

MEAN(j)þand negative mean MEAN(j)� for the jth dimen-

sion (column) of MV�D are first calculated as follows (42):

MEAN jð Þþ ¼ 1

Nþj

XV

i¼0

Mi;j; Mi;j > 0 (1)

MEAN jð Þ� ¼ 1

N�j

XV

i¼0

Mi;j; Mi;j < 0; (2)

where Nj
þ is the total number of rows with jth column

M.j>0, and Nj
� is the total number of rows with jth col-

umn M.j<0. Then the discrete-valued matrix M*V�D can

be derived by the following projection:

M�
i;j ¼

þ; if Mi;j > MEAN jð Þþ

�; if Mi;j < MEAN jð Þ�

0; otherwise

8>><
>>:

(3)

Values in the M�
i;j row of the corresponding word will

be used as its Word embedding features. An example of

word alkyl in Figure 4 illustrates the difference between

the real-valued and binarized features.

Brown clustering feature

Brown clustering builds a hierarchical cluster for words in

an unlabeled corpus according to the context similarity

among those words (34). The hierarchical path of a word

in the cluster was used as the word representation feature.

We followed the method in (43) to generate Brown cluster-

ing features. Specifically, the hierarchical clusters are repre-

sented by a binary tree. Words that are semantically/

syntactically similar are assumed to be in the same or close

clusters and have similar feature representations. For ex-

ample, both of the words, oxygen and nitrogen are repre-

sented as ‘110110110110’ from the hierarchical binary

tree generated from 500 Brown clusters.

Machine learning algorithms

We investigated two state-of-the-art machine learning al-

gorithms for chemical entity recognition: CRF (31) and

SSVM (32).

Rule-based post-processing

We also defined some simple rules to fix a number of obvi-

ous errors by the machine learning-based classifier. Some

examples are listed below:

Conduct a dictionary lookup by exact match in the ab-

stract, using the recognized entities as a lexicon. If there is

a string that matches the recognized entity, then label the

string as a new entity.

If there is unmatched parenthesis or square bracket in

an entity, consider it a false positive and remove it.

If there is a word indicating chemical structure in front

of or behind the entity, remove the entity and combine it

with the word as a new entity.

CPD

The CPD task required participants to identify the sections

(the title or abstract) of the patent that contained the chem-

ical. We directly leveraged the system output from the

CEMP task for CPD. Specifically, the system output for

the CPD task was derived based on the patent titles and ab-

stracts with chemicals recognized in the CEMP task.

Experiments and evaluation

In this study, we started with a baseline system that imple-

mented common features including bag-of-word, ortho-

graphic information, morphological information and POS.

Then we evaluated the effects of two sets of features: do-

main knowledge features and unsupervised word represen-

tation features, by adding each of them incrementally to

the baseline systems. Finally, the post-processing step was

added on top of the whole set of features.

Figure 3. An example of semantic type annotation for context feature extraction.

Figure 4. A comparison between real-valued and binarized embedding features.
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The Word embedding features in our study were gener-

ated from the deep neural network algorithm, which

required a large-scale corpus to tune parameters (39).

Considering the challenge time limitation, we used the en-

tire set of abstracts (624, 954) of MedLine with well-for-

matted text published in 2013 as the corpus to generate

Word embedding features. Another participant team of

this challenge also used the latest Wikipedia dump as well

as the 2013 release of MedLine for Word embedding (44).

On the other hand, Brown clustering features were gener-

ated from a hierarchical clustering algorithm with rela-

tively less number of parameters (34). Therefore, we

directly used the set of abstracts (54 000) provided in the

2015 CHEMDNER patents challenge as the corpus for

generating features using Brown clustering. To generate

Word embedding features, we implemented the ranking-

based deep neural network algorithm according to the

paper from Collobert (39) using Java. Parameters sug-

gested in (39) were used to train the neural network with a

hidden layer size of 300, a fixed learning rate of 0.01, and

an embedding dimension of 50. It took about three weeks

to train the Word embedding model. To generate Brown

clustering features, we used the implementation from

‘https://github.com/percyliang/Brown-cluster/’ and set the

number of clusters to 500. It took about 24 h to generate

Brown clusters.

We used CRFsuite (http://www.chokkan.org/software/

crfsuite/) and SVMhmm (http://www.cs.cornell.edu/peo

ple/tj/svm_light/svm_hmm.html) as implementations of

CRF and SSVM, respectively. Their parameters were opti-

mized on the development set while the models were

trained on the training set.

Because the gold standard of the test set is not released

yet, we report the performance of combining different

types of features on the development set. Systems with op-

timal performance on the development set were submitted

to the challenge and officially evaluated by the organizers

using the test set. The performance of our systems on the

test set is also reported.

The official evaluation portal provided by the

CHEMDNER patents organizers were used to calculate

the strict micro-averaged precision (P), recall (R), and

F-measure for the CEMP task, and sensitivity, specificity,

accuracy, Matthew’s correlation coefficient (MCC) and

precision at full recall (P_full_R) for the CPD task.

Results

Table 3 shows the performance of the CRF-based and

SSVM-based classifiers on the development set for the

CEMP task, with each of the domain knowledge features

and unsupervised word representation features added in-

crementally. The SSVM-based system outperformed the

CRF-based system when using the same features. The dif-

ferences in F-measure between them ranged from 0.3% to

0.8%. Each additional feature improved the performance

of both the CRF-based and SSVM-based systems. Among

the four types of domain knowledge features, the

ChemSpot feature contributed maximally to the improve-

ment as compared to the others (CRF: 0.19%, SSVM:

0.20%). Among all the features, the Brown clustering fea-

ture contributed the most to the performance improvement

(CRF: 0.50%, SSVM: 0.43%). The highest F-measures

achieved by the CRF-based and SSVM-based systems were

86.96% and 87.74%, respectively. Post-processing further

enhanced the F-measures to 87.22% for the CRF-based

system and 87.89% for the SSVM-based system.

As the systems utilizing all types of features and the

post-processing step demonstrated the optimal perform-

ance on the development set, we used the same setting for

the test set. Performance of the systems for the CEMP task

and CPD task on the test set is shown in Tables 4 and 5, re-

spectively. As expected, the SSVM-based system built from

the training and development sets achieved the best

Table 3. The performance of CRF-based and SSVM-based CEMP systems with different types of features on the development

dataset (%)

Method CRF SSVM

P R F-measure P R F-measure

Baseline 85.05 86.18 85.61 85.63 87.78 86.53

þChemical pattern 85.28 86.16 85.72 (þ0.11) 85.82 87.74 86.61 (þ0.08)

þGene lexicon 85.53 86.29 85.91 (þ0.19) 85.81 87.92 86.76 (þ0.15)

þSemantic type 85.48 86.52 86.00 (þ0.09) 85.77 88.27 86.87 (þ0.11)

þChemSpot 82.49 90.24 86.19 (þ0.19) 82.86 91.82 87.07 (þ0.20)

þWord embedding 82.30 91.06 86.46 (þ0.27) 82.73 92.43 87.31 (þ0.24)

þBrown clustering 86.34 87.58 86.96 (þ0.50) 86.10 89.44 87.74 (þ0.43)

þPost-processing 86.02 88.45 87.22 (þ0.26) 85.88 89.99 87.89 (þ0.15)

*CRF: conditional random fields; SSVM: structural support vector machine; CEMP: Chemical Entity Mention Recognition in Patents.
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performance on both tasks. The F-measure of 88.94%

ranked second among all participating teams for the

CEMP task, and the sensitivity of 98.60%, the accuracy of

94.75%, the MCC of 88.24% and the P_full_R of 66.57%

ranked first for the CPD task.

Discussion

In this study, we conducted a systematic investigation to

assess the contribution of different types of features and

machine learning algorithms to chemical NER in patents.

Experimental results showed that both features generated

from domain knowledge and unsupervised learning algo-

rithms made significant improvements to the chemical

NER systems for patents. Specifically, the SSVM-based

CEMP systems outperformed the CRF-based CEMP sys-

tems when using the same features. Our best system based

on SSVM achieved the second rank in CEMP with the F-

measure of 88.94% and the first rank in CPD with the sen-

sitivity of 98.60%, accuracy of 94.75% and MCC of

88.24%, demonstrating the usefulness of the proposed fea-

tures for chemical NER in patents.

Comparison between different features

Currently, the ChemSpot system and unsupervised Word

embeddings applied in our systems were generated from

biomedical literature due to the challenge time limitation.

Both of them led to a significant improvement of the recall

and a drop in the precision. On the other hand, the Brown

clustering features generated from the unlabeled patent cor-

pus created a balance between precision and recall on top of

these two features. This indicates that there are similarities

between the two genres of literature and patents, as well as

fundamental differences. Therefore, features generated from

biomedical literature helped to recognize more chemicals,

but also increased noise in the system. Overall, unsupervised

word representation features contributed a higher perform-

ance enhancement than domain knowledge features using

the same machine learning algorithms (CRF: 0.58% vs.

0.77%, SSVM: 0.54% vs. 0.67%), demonstrating that un-

supervised word representation features have more effective

generalization ability over domain knowledge for machine

learning-based CEMP systems.

Moreover, additional experiments were conducted after

the challenge, to further examine the effect of Word embed-

ding features generated from a large corpus of patents. A

new set of Word embedding features were generated using

patent abstracts from the United States Patent and

Trademark Bulk (USPTO) provided by Google. Patents

from the years of 2002 to 2014 were employed, which con-

tained 5 062 891 abstracts in total. Then new experiments

were conducted by replacing the original Word embedding

features generated from the literature into the new features.

By combining domain knowledge features and new Word

embedding features, we got an enhanced performance of

86.3% precision, 87.6% recall and 87.0% F-measure for

the CRF-based system, and 86.2% precision, 89.4% recall

and 87.8% F-measure for the SSVM-based system. This

performance was already comparable to the optimal per-

formance of using all the original features. However, when

Brown clustering features were further added, no add-

itional improvement was yielded. This indicated that the

contribution from unsupervised word representation fea-

tures had an upper bound. Adding more features does not

necessarily enhance the overall performance continuously.

Comparison between different machine learning

methods

As illustrated in Table 3, SSVM-based system outper-

formed the CRF-based system in the current NER task,

Table 4. The performance of CRF-based and SSVM-based systems on the test set for the

CEMP task (%)

Training dataset Algorithm P R F-measure

Train þ development CRF 87.56 89.64 88.59

Train þ development SSVM 87.18 90.78 88.94

*CRF: conditional random fields; SSVM: structural support vector machine; CEMP: Chemical Entity Mention

Recognition in Patents. Top performance in each column is bolded.

Table 5. The performance of CRF-based and SSVM-based systems on the test set for the CPD task (%)

Training dataset Algorithm Sensitivity Specificity Accuracy MCC P_full_R

Train þ development CRF 98.32 87.27 94.59 87.85 66.27

Train þ development SSVM 98.60 87.21 94.75 88.24 66.57

*CRF: conditional random fields; SSVM: structural support vector machine; CPD: chemical passage detection. Top performance in each column is bolded.
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when the same feature sets were used. In our previous stud-

ies, we have obtained similar findings on other NER tasks

using the same experimental setup for the CRF and SSVM

algorithms (14, 33, 45). Moreover, works from other

groups also demonstrated the advantage of SSVM over

CRF for different sequential labeling tasks, using the same

(32, 46) or a different implemental tool for SSVM (47).

Specifically, SSVM-based system gained a much higher re-

call than CRF-based system with a slight sacrifice of the

precision, and thus, boosted the overall F-measure. The

major reason for it was the basic difference between the

two algorithms: CRF is a representative sequence labeling

algorithm, which is a discriminative undirected probabilis-

tic graphical model (31), whereas SSVM is a large margin-

based discriminative algorithm for structural data, such as

sequences, bipartite graph and trees (32). By combining the

advantages of both CRF and SVM, SSVM demonstrates a

stronger generalizability over different NER tasks (14, 33,

45, 47).

Error analysis

By manually checking the errors generated by our chemical

NER system, we found that the major causes of NER

errors included (i) mistakenly recognizing gene and protein

mentions as chemicals, (ii) breaking long chemicals into

multiple chemicals, (iii) recognizing a long chemical par-

tially, (iv) unmatched punctuations of parenthesis and

square brackets and (v) missing chemicals from uncommon

sentence context. An example for each type of error is

listed in Table 6. For errors of type (i), a comprehensive

dictionary of genes and proteins could be used to remove

such false-positive errors. To correct errors of types (ii)–

(v), a partial solution could be the use of post-processing

rules as employed in our study. However, more patterns of

chemical structures tailored to the patent text should be

further explored to improve the performance of our

system.

For future work, in addition to the error-addressing

methods as discussed above, preprocessing tools built

specifically for chemical text tokenization need to be inves-

tigated, as pointed out in (14). A refined preprocessing

module could potentially improve the later stage feature

extraction and the final chemical NER performance.

Moreover, efforts could be made to further adapt the cur-

rent features to patent text, such as retraining existing

chemical NER systems (e.g., ChemSpot) using the anno-

tated patent corpus.

Conclusions

In this study, we proposed machine learning-based

approaches for the chemical NER task in the CHEMDNER

challenge and investigated the contributions of domain

knowledge features and unsupervised word representation

features. Our systems achieved top-ranked performances in

both the CEMP and CPD tasks, demonstrating the effective-

ness of the machine learning algorithms (e.g., SSVM) and

proposed features in the chemical NER task for patent

documents. Currently, an executable package of patent

chemical named entity recognition is shared with the com-

munity, which could be downloaded from the link: https://

sbmi.uth.edu/ccb/resources/patentChemNER.htm.
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