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Abstract

A two-year experiment was conducted in the field to measure the combined impact of tilling
and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to
grain yield in maize cultivated in the presence of a cover crop. Four years after conversion
to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N
remobilization efficiency was observed both under no and high N fertilization conditions.
Moreover, we observed that grain yield and grain N content were higher under no-till condi-
tions only when N fertilizers were applied. Thus, agronomic practices based on continuous
no-till appear to be a promising for increasing N use efficiency in maize.

1. Introduction

Maize (Zea mays L.), also known as corn, is an essential dual-use food and energy crop, both in
terms of cultivated area and production of harvestable material. The yearly increase in maize
productivity worldwide has been much higher compared to other cereals, being on average 60
kg per ha every year since 1960 [1]. The total world production of maize reached a record of
877x10° kg in the 2011-2012 fiscal year [2]. Maize requires large amounts of nitrogen (N)
inputs for optimum grain and silage production, due mainly to the ability of the crop to pro-
duce large quantities of dry matter [3-5]. However, in several studies it has been shown that
increasing N fertilization above a certain threshold, neither leads to an increase in plant uptake
nor in grain production [6-8]. N use efficiency (NUE), originally defined by Moll et al. [9] as
the grain yield or biomass production yield obtained per unit of N available in the soil (already
present and originating from fertilizer application), is inversely proportional to the amount of
N fertilizer applied [10]. When the rate of N fertilization is too high, nitrate leaching occurs,
leading to multiple damaging effects on the diversity and functioning of non-agricultural bacte-
rial, animal and plant ecosystems [11,12]. In addition, fertilizer-derived N oxide emissions into
the atmosphere contribute to the depletion of the ozone layer [13], whilst volatilized ammonia
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is returned as wet or dry deposition, which can cause acidification and eutrophication. More-
over it has been reported than an excessive application of N fertilizers can even lead to a
decrease in grain yield [14,15]. Thus, improving NUE is particularly relevant for maize, for
which global NUE has been estimated to be less than 50% [16,17].

Both from a physiological and agronomic point of view, NUE is the result of two main bio-
logical processes: N uptake efficiency (NUpE) which corresponds to the amount of N taken up
per unit of available N, and N utilization efficiency (NUtE) which corresponds to the increase
in biomass or yield per unit of N taken up [18,19]. During the plant developmental cycle, a
number of complex physiological processes are involved in the control of plant NUE notably N
uptake, N assimilation and N translocation [9,18-20]. Cereals in general and maize in particu-
lar, need to remobilize the N accumulated in proteins in vegetative tissues and at the same time
take up and assimilate N after anthesis, in order to ensure storage protein deposition in the
grain. In maize, both N uptake and N remobilization processes contribute equally to NUE [21],
measurement of these two components was a major part of this study, which aimed at optimiz-
ing tillage practices for optimal soil N recovery.

It is well known that on top of mineral N fertilization, intensive mechanical cultivation prac-
tices such as tillage generally alters soil biological activity [22-24]. These intensive cultivation
practices create compaction zones in the soil [25-27], expose the soil surface to wind and water
erosion [28,29] and alter the soil organic matter (SOM) decomposition rate. Reicosky and
Archer [30] reported that larger amounts of CO, were released into the atmosphere as the
result of tillage, which, in turn reduced the soil carbon (C) content. In contrast, conservation
tillage practices under continuous cropping systems are known to improve SOM content [31-
36], notably by enhancing C accumulation in soil aggregates. Hence, compared to conventional
tillage, agricultural practices based on the use of conservation tillage are in many cases benefi-
cial in terms of crop yield improvement [37-39].

Moreover, it has been shown that both under tilling and no-till cultivation conditions, the
use of cover crops captures the excess mineral N remaining in the soil during winter and early
spring periods, thus limiting the amount of mineral N that can leach into ground water [40-
42]. Furthermore, several studies have demonstrated that due to their ability to fix atmospheric
N, legume cover crops have a beneficial impact on crop production [43-46] by increasing soil
fertility, notably by increasing the N content [47].

A large number of studies have focused on improving N fertilizer management practices in
order to increase both NUE and yield in many crops, including maize [48-51]. Among these
management practices no-till has been increasingly used. However, its impact remains to be
thoroughly characterized both in terms of plant NUE and plant productivity.

In the present study, maize plants were grown over four years in the presence of cover crops
under tillage and no-till conditions to evaluate the combined effect of tilling and N fertilization
on NUE and NUE-related traits. In the absence of mineral N fertilization, an increase in NUE
and NUE-related traits including nitrogen remobilization (NRem), nitrogen remobilization
efficiency (NRE) and nitrogen harvest index (NHI) under no-till conditions was observed.
Thus, no-till appears to be a promising strategy for maintaining maize productivity without
additional N fertilizers inputs.

2. Materials and Methods
2.1. Site Description and Experimental Design

The field experiment was conducted at the experimental site of La Woestyne, in North France
(50°44'N, 2°22'E, 40 m a.s.1.). The owner of the land "Bonduelle company" gave permission to
conduct the study on this site. The field studies did not involve endangered or protected
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species. Physical and chemical soil characteristics are presented in Table 1. Weather-related
parameters for this area are as follows: average annual rainfall 675 mm, average annual temper-
ature 10.5°C.

The field was managed under a chisel plough and rotary power system until 2010, when the
experiment was initiated. The field experiment was split into four treatments with three repli-
cated plots placed randomly for each of the four treatments including: no-till with (NTN1) or
without (NTNO) N fertilization; conventional tillage with (CTN1) or without (CTNO) N fertili-
zation. The individual plot size was 7mx8m for each treatment. Since the beginning of the
experiment in 2010, the conventional tillage in CT plots was performed using the moldboard
plowing technique followed by the passing of a rotating harrow (Kuhn, France) for shallow till-
age (30 cm tillage depth). In 2013 (3 years after the beginning of the field experiment) and in
2014 (4 years after the beginning of the field experiment), maize samples were collected in each
plot in 2013 and in 2014. The crop rotation preceding maize cultivation in 2013 consisted of
green bean (Phaseolus vulgaris L.) in 2010, followed by wheat (Triticum aestivum) in 2011, pea
(Pisum sativum) in 2012. In the maize culture performed in 2014, the crop rotation consisted
of wheat (Triticum aestivum) in 2010, followed by green bean (Phaseolus vulgaris L.) in 2011,
wheat (Triticum aestivum) in 2012, pea (Pisum sativum) in 2013 (S1 Fig).

Before sowing the main crop, cover crop residues were buried in CT plots and left on the
soil surface in NT plots. This cover crop consisted of a mixture of legume and non-legume spe-
cies which were sown as follow: 12 kg ha™" of Egyptian clover (Trifolium alexandrinum L.), 100
kg ha™ of faba bean (Vicia faba L.), 20 kg ha™' of vetch (Vicia sativa L.), 5 kg ha™ of flax (Linum
usitatissimum L.), 4 kg ha™" of phacelia (Phacelia tanacetifolia Benth.), 10 kg ha™ of oats
(Avena sativa L.). To evaluate N inputs from cover crops residues, in each of the four plots,

Table 1. Characteristics of the soil used for evaluating the impact of no-till and N fertilization on
maize NUE at the beginning of the experiment in 2010.

Parameters (units) Depth range (cm) Value
Clay <2 um (g kg™") 0-30 211.6
Silt 2-20 ym (g kg™") 0-30 232.3
Silt 20-50 um (g kg™") 0-30 436.3
Fine sand 50200 um (g kg') 0-30 95.2
Coarse sand (2002000 pm) (g kg™") 0-30 24.6
pH in H,O 0-15 6.9
CEC? (cmol* kg™") 0-15 12
P° (mgkg™) 0-15 24
Organic Carbon (g kg™) 0-15 11.6
Exchangeable cations (cmol* kg™")
Ca® 0-15 17.5
Mg>* 0-15 0.83
Na* 0-15 <0.43
K* 0-15 0.77
Penetration Resistance (MPa)
With a soil moisture of 33% 0-15 0.7
15-30 1.1
3045 1.7
45-60 2.2

& Cation-exchange capacity (Metson method)
b Available phosphorus (Olsen method)

doi:10.1371/journal.pone.0164234.t001
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3 x 1 m® of cover crops were sampled each year. Samples were dried in an oven at 65°C for
three days and then weighed. The total aboveground biomass of cover crops was ground into
powder prior total N measurements. From the beginning of the experiment in 2010, means of
N input originating from the cover crops residues in each of the four treatments were (123 kg
ha'l, 127 kg ha'l, 125 kg ha! and 128 kg ha™!) under NTNO, NTN1, CTNO and CTN1 condi-
tions respectively.

The amount of N fertilizer applied under N1 conditions was determined according to the N
budget method for maize [52], based on the predictive balance-sheet method (Software Azobil,
INRA, Laon, France) using the following formula:

B+Rf = (Ri— L) +Mn+X

Where B is the N requirement of the crop, Rf is the residual soil mineral nitrogen content at
harvest, Ri is the readily available soil mineral nitrogen in a determined depth of soil before
maize planting, L is the soil mineral nitrogen potential loss during the period from analysis of
soil N to N-fertilizer application, X is N the fertilizer rate and Mn is the net supply of soil min-
eral nitrogen during the growing season. Mn results from the sum of the net mineralization
from SOM, the mineral N supply from previous crop residues and the mineral N supply from
organic manures. All the terms are expressed in kg N ha™’.

The final amounts of N fertilizer applied under N1 conditions were 97 kg N ha™ in 2013
and 80 kg N ha!in 2014. The N fertilizer was composed of 50% urea, 25% ammonium, 25%
nitrate applied in a liquid form on the soil surface through broadcast applications at daybreak
or at nightfall. Under these conditions of application, it was assumed that N volatilization was
negligible.

2.2. Soil Sampling and Chemical Analyses

In March 2013 and 2014, six 30-cm deep soil cores were randomly collected using a 2-cm
diameter auger in each of the three replicated plots for the four treatments (NTN1, NTNO,
CTN1 and CTNO). Six soil cores from each replicate plot were collected and pooled, thus form-
ing a single sample in each of the three replicates. Soils were then sieved using a 2 mm mesh
and divided into two parts, for soil total N and soil residual N analysis. For soil total N mea-
surements, the sieved soil was dried in an oven at 45°C for 48 h and ball milled ground (MM
400, Retsch, Germany). Soil total N (expressed as % of dry soil) was quantified using the com-
bustion method of Dumas [53] using a Flash EA 1112 elemental analyzer, Thermo Electron,
Germany.

Residual N (expressed in kg N ha™) corresponds to the N originating from nitrate and
ammonium present in the soil. Nitrate and ammonium were extracted using 20 g of fresh soil
mixed with 100 mL of 1 M KCI. After shaking for 1 h, the soil extracts were centrifuged for 10
min at 4,000 g and the supernatant was analyzed using a continuous flow analytical system
(San™™ system, Skalar, Holland). The measured amounts of total N and residual N present in
the soil before maize sowing in April 2013 and 2014 are shown in Table 2.

Soil water content (%) at sowing in April (SWC.s) and at crop harvest (SWC.h) in October
were determined by using a moisture meter connected to a Penetrologger (Eijkelkamp, The
Netherlands).

2.3. Crop Sampling and Plant Analysis

Maize (Zea mays, var. SY Cookie, Syngenta, Switzerland) was sown in 75 cm spaced rows using
a Kuhn Maxima drill (Kuhn, France). At anthesis and at crop maturity when both stover and
grains were dried [54], 6 rows of 1m length were sampled in 2013 and 2014 in each of the four

PLOS ONE | DOI:10.1371/journal.pone.0164234 October 6, 2016 4/16



@° PLOS | ONE

No-Till and Maize Nitrogen Use Efficiency

Table 2. Soil total N (%) and Soil residual N (kg ha™') under two tillage systems and N fertilizer rates in the two studied years.

Year
N fertilizer Tillage
NO NT
CT
N1 NT
CT

2013 2014

Soil total N (%) Soil residual N (kg ha™) Soil total N (%) Soil residual N (kg ha™)
0.26 50.07 0.26 44.66

0.25 64.40 0.24 64.29

0.27 79.55 0.26 52.98

0.28 63.80 0.27 48.21

NT = No-till with cover crops, CT = Conventional tillage with cover crops, NO = no fertilization, N1 = N fertilization

doi:10.1371/journal.pone.0164234.t002

treatments (NTN1, NTNO, CTN1 and CTNO). The shoots were clipped at ground level and
threshed to separate the grain for yield per m* measurements. Shoots and grain were dried in
an oven at 60°C for 3 days, weighed and finally ground in a Retsch mill (Retsch zm200, Haan,
Germany) to obtain a fine powder (0.75 mm particles). Grain and stover N contents were
quantified using the same elemental analyzer as that used for soil N content analysis.

Traits related to NUE were calculated according to Moll et al. [9], Huggins and Pan [55]
and Lopez-Bellido et al.[49] using the following equations:-

NUE (kg kg ') = Gy/Nsupply (1)
NUtE (kg kg ') = Gy/Nt (2)
NHI (%) = (Ng/Nt) x 100 (3)

where, Gy corresponds to grain yield (kg ha™), Nt to total plant N at maturity (kg ha™), Ng is
the grain N (kg ha™') and N supply, the soil N available to the crop (expressed in kg kg'). The
available N corresponds to the sum of applied N fertilizer and of total plant N uptake in non-
fertilized plots in the tilled and no-tilled cultivation systems [6]. To measure the amount of N
remobilized from vegetative to reproductive organs after anthesis (NRem), the following equa-
tions were used according to the method described by Cox et al. [56], Beheshti and Behboodi
[57] and Masoni et al. [58]:

NRem (g plant )
= N content of the whole plant at anthesis — N content of leaves, stem and chaff at maturity.(4)

NRE (%) = (NRem/N content of the whole plant at anthesis) x 100. (5)

2.4, Statistical Analyses

All statistical analyses were performed in R Statistical Software version 3.2.3 [59]. Data were
subjected to variance analysis (Two-way ANOVA), using tillage practices (CT, NT) as the
main parameters and the level of N application (N0, N1) as the second parameters. All explan-
atory variables were examined for normality using the Shapiro-Wilk test [60] and for homoge-
neity of variances with the Bartlett test [61]. Means of each of the four treatments (NTN1,
NTNO, CTN1 and CTNO) were compared using Duncan's new multiple range test at a 95%
family-wise confidence level (Agricolae package) [62]. Correlations between agronomical vari-
ables (grain yield, plant N, soil N, soil water content) and NUE-related traits (NUE, NUtE,
NRem, NRE and NHI) were computed using a Pearson product-moment correlation
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coefficient at P<0.05 (Hmisc package) [63]. Principal component analysis (PCA) (ade4 pack-
age) [64] was also carried out to visualize relationships existing between NUE-related traits
(NUE, NUtE, NRem, NRE and NHI) and agronomic traits (Grain yield, soil N total, plant N,
SWC.s and SWC.h).

3. Results
3.1. Effect of Tillage on Agronomic and NUE-Related Traits

Grain yield over the two years of experimentation ranged from 8060.00 to 12757.33 kg ha™*
(Table 3).In 2013 and in 2014, grain yield was not significantly different between tillage and
no-till conditions, whereas N fertilization significantly increased grain production both under
NT and CT conditions (P < 0.001, P < 0.05 in 2013 and 2014 respectively).

Total biomass production was not significantly modified under CT or NT conditions over
the two years of experimentation. In 2013, N application increased the total biomass produc-
tion significantly, irrespective of the tilling conditions (Table 3).

Both in 2013 and 2014, total N uptake was not significantly modified under CT and NT
conditions. However, N uptake was higher when N fertilizers were applied (N1 treatment)
both in the tilling and no-till system (Table 3).

Tillage did not modify grain N content both in 2013 and in 2014. In contrast, when N fertil-
izers were applied, a significant increase (P < 0.001) in the grain N content was observed, only
in 2013 (Table 3).

The ANOVA statistical analysis indicated that SWC.s and SWC.h were not significantly dif-
ferent between NO and N1 (Table 4). In contrast, tillage had a significant effect on SWC both at

Table 3. Impact of tilling and nitrogen fertilization on maize agronomic traits (mean * standard error).

Source of variance

Year N fertilizer
2013 NO
N1
2014 NO
N1
Analyse of variance
2013 Tillage
N fertilizer
TillagexN fertilizer
2014 Tillage
N fertilizer

TillagexN fertilizer

Tillage
NT
CT
NT
CT
NT
CT
NT
CT

Agronomic trait

Total biomass (kg ha™) | Total plant N uptake (kgha™) | Grainyield (kgha) |N grain (kg ha™)

17817 £ 1534 b 166.53+22.94 b 8060.0+1064.7 b 108.02+17.98 b

19833 +748 b 212.49+6.08 b 9458.0+517.4 b 118.44+6.40b

24513+ 1059 a 298.76 £ 29.86 a 12757 £ 895 a 186.06 £ 19.16 a

239191480 a 301.26+11.74 a 11846 £ 315 a 159.59+3.10 a

24578 £ 1891 252.22+37.90 ¢ 9676.4+972.0 b 107.51 £ 14.68

30822 + 1791 305.53 +22.34 bc 10408 £282 b 112.32+£5.43

29400 + 2002 366.39 + 37.74 ab 10074 £592 a 122.03+7.71

32200 + 1225 431.49+17.67 a 10829+ 582 a 130.82+£11.00
P>F (n =6)

ns ns ns ns

<0.001 *** <0.001 **=* <0.001*** <0.001***

ns ns ns ns

ns ns ns ns

ns <0.001 *** <0.05* ns

ns ns ns ns

NT = No-till with cover crops, CT = Conventional tillage with cover crops, NO = no fertilization, N1 = N fertilization. Data for each parameter were subjected to
variance analysis (Two-way ANOVA). Treatment means were compared using Duncan’s new multiple range test at a 95% family-wise confidence level.
Means with the same letter are not significantly different. (*, *** = significant at 0.05 and 0.001 probability level, respectively). ns = not significant.

doi:10.1371/journal.pone.0164234.t003
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Table 4. Impact of tilling and nitrogen fertilization on soil water content (%) at sowing and at crop harvest (mean * standard error).

Source of variance 2013 2014

N fertilizer Tillage SWC.s (%) SWC.h (%) SWC.s (%) SWC.h (%)

NO NT 38.83+0.47 a 40.83+0.94 a 39.33+0.33a 41.50+0.76 a
CT 37.00+0.57 b 37.66+0.49 b 34.50+0.99 ¢ 37.31+0.66 b

N1 NT 38.16+0.47 ab 39.66 + 0.66 ab 38.16 £ 0.47ab 39.33+0.80 b
CT 36.66+0.21b 38.00+0.36 b 36.66+0.21b 38.00+0.36 b

Analyse of variance P>F(n=6)

Tillage <0.01** <0.01** <0.001*** <0.001***

N fertilizer ns ns ns ns

TillagexN fertilizer ns ns <0.01** <0.05*

NT = No-till with cover crops, CT = Conventional tillage with cover crops, NO = no fertilization, N1 = N fertilization, SWC.s = soil water content at sowing,
SWC.h = soil water content at harvest. Data for each parameter were subjected to variance analysis (Two-way ANOVA). Treatment means were compared
using Duncan’s new multiple range test at a 95% family-wise confidence level. Means with the same letter are not significantly different. (¥, **, *** =
significant at 0.05, 0.01, 0.001 probability level, respectively). ns = not significant.

doi:10.1371/journal.pone.0164234.t004

sowing and at harvest both in 2013 and in 2014. A significant increase in SWC.s and SWC.h
was also observed in NT compared to CT, only under N1 conditions.

In 2013 and in 2014, tillage had a significant and negative impact on NRE compared to the
NT conditions (P < 0.001 in both years) (Fig 1A). The application of N fertilizer increased
NRE under NT conditions. However, N application did not increase NRE under CT

conditions.
A 2013 2014 B 2013 2014 C 2013 2014
a
80- 3
a
b 60-
1.0- 2 i
60- a a : a b
a
b R i b
Tz bc
° g 40- C c
# = = ¢ mcT
a 29 : EINT
z b £ b =
b S c & 0.5-
& 0.
20-
20-
0- 0.0- 0
NO N1 NO N1 NO N1 NO N1 NO N1 NO N1

Nitrogen application rate Nitrogen application rate Nitrogen application rate

Fig 1. Impact of tillage practice and N application on (A) NRE; (B) NRem and (C) NHI, according to the soil tillage treatment in 2013 and 2014. (NT)
No-till with cover crops, (CT) Conventional tillage with cover crops. NO = no fertilization, N1 = N fertilization. Data for each parameter were subjected to
variance analysis (two-way ANOVA). Treatment means were compared using Duncan’s new multiple range test at a 95% family-wise confidence level.
Means with the same letter are not significantly different.

doi:10.1371/journal.pone.0164234.9001
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A

70-

30-

2013 2014 B 2013 2014
a a
b
50- b .
b R b
bc a 940' e
' 2 5 , =CT
= BNT
T L ]
. b =
ﬁ | b %
‘ 30-
T .
C
' 20- E
NO N1 NO N1 NO N1 NO N1
Nitrogen application rate Nitrogen application rate

Fig 2. Impact of tillage practice and N application on (A) NUE of maize grain (kg kg™') and (B) NUtE of maize grain (kg kg™') according to the soil
tillage treatment in 2013 and 2014. (NT) No-till with cover crops, (CT) Conventional tillage with cover crops. NO = no fertilization, N1 = N fertilization.

Box plots are represented with the median and the 25th-75th percentile with the minimum and the maximum. Data for each parameter were subjected to
analysis of variance (two-way ANOVA). Treatment means were compared using Duncan’s new multiple range test at a 95% family-wise confidence level.
Means with the same letter are not significantly different.

doi:10.1371/journal.pone.0164234.g002

The tillage system had a significant effect on NRem. This positive effect was significantly
higher (P < 0.001) under NT compared to CT (Fig 1B) in both years, whereas Nrem was not
modified whatever the N the fertilization conditions.

In 2013, the N fertilization did not significantly modify NHI, either under NT or CT condi-
tions. However, both in NO or N1, tillage had a negative effect on NHI compared to the NT cul-
tivation system over the two years of experimentation (P < 0.001, P < 0.05 in 2013 and 2014
respectively) (Fig 1C). The N fertilization significantly modified NHI under CT conditions in
2013 and under NT conditions in 2014.

Both in 2013 and 2014, CT and N application had a significant negative impact on NUE
and its component NUtE (P < 0.001). Under NO and N1, both NUE and NUtE were signifi-
cantly higher in NT compared to CT conditions (Fig 2). A significant decrease in NUE and
NULE was also observed when N fertilizers were applied both under NT and CT conditions.

3.2. Correlation Analyses

Pearson correlations between NUE, NUE, yield, soil N, total plant N, NRem, NRE, SWCs,
SWC.h and NHI over the two years of experimentation are presented in Fig 3. NUE and NUtE
were significantly and positively correlated with NRem, NRE, NHI, soil N, SWC.s and SWC.h.
Similarly, NRE, NRem and NHI were significantly correlated with the soil N content, SWC.s
and SWC.h. Conversely, NUE, NUtE, NRE and NHI were significantly and negatively corre-
lated with the plant N content. A PCA analysis was then performed to obtain a visual
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Fig 3. Pearson correlation coefficient rbetween NUE and NUE-related traits. (*, **, *** = significant at 0.05,
0.01, 0.001 probability level, respectively.).

doi:10.1371/journal.pone.0164234.9003
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representation of the correlations between agronomic and NUE-related traits, according to the
tillage system and the level of N fertilization (Fig 4). The first two axes of a PCA using NUE
traits explained 61.59% of the variation in the data set. The variables were separated into four
groups corresponding to tillage system and fertilizer application rate. Axis.1 (46.94% of vari-
ance explained) was positively correlated with plant N and yield, and negatively correlated with
soil N, SWC.s, SWC.h, NRem, NRE, NHI, NUE and NUtE, which matches the Pearson correla-
tion test. NRem, NRE, s0il N, SWC.s and SWC.h were strongly correlated and positively
grouped along Axis.2 (14.65% of variance explained). Similarly, NUE, NUtE and NHI were
strongly correlated and negatively grouped along Axis.2. The first axis clearly separated the CT
treatment from the NT treatment. The NO and N1 fertilization conditions were separated
along the second axis. NUE and NULE related traits were markedly higher under NT condi-
tions compared to the CT treatment.
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Fig 4. PCA analysis showing the correlations between tilling conditions, N fertilization and NUE-related traits. Diagrams were defined by the first
two axes of the PCA of the variables (n = 12). Axis.1 (46.94% of variance explained) and Axis.2 (14.65% of variance explained). NTNO = No-till without N
fertilization, CTNO = Conventional tillage without N fertilization, NTN1 = No-till with N fertilization, CTN1 = Conventional tillage with N fertilization.

doi:10.1371/journal.pone.0164234.9004

4. Discussion

The field experiment performed over two consecutive years showed that conversion to no-till
under a continuous cover cropping system significantly increased maize NUE and NUtE, in
comparison to a cultivation system based on continuous till. Moreover, such an increase
occurred both under low and high N fertilization conditions (Fig 2). These results are in agree-
ment with those obtained with wheat by Soon et al. [65], who showed that NUE was increased
under no-till conditions. In contrast, Brennan et al. [6] and Lopez-Bellido and Léopez-Bellido
[7] found that in wheat, NUE was lower under reduced or no-till conditions respectively, likely
because under their experimental conditions, crop N uptake was reduced. Another survey con-
ducted by Dalal et al. [34] over 40 years of experimentation, led to the conclusion that wheat
NUE remained constant, irrespective of the tilling practices employed. These contrasting
results can be explained by the fact that in conservation systems, there is often an inefficient
mobilization of N generated by plant residues left at the soil surface, thus leading to a decrease
in NUE [66,67]. The originality of our study was to show that in maize, a crop rarely tested for
its ability to valorize N under continuous till conditions, NUE is higher when the soil is not plo-
wed, irrespective of the N fertilization regime.

In agreement with Burgess et al. [66] and Torbert et al. [68], grain yield, remained similar
either under low or high N fertilization, regardless of the tilling conditions. In other studies, it has
been reported that maize yields decrease slightly when no-till is used instead of conventional till-
ing, likely because the soil N availability is lower leading to a reduction in crop productivity
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[69,70]. In spring cereals such as barley, oats and wheat, it was generally observed that under no-
till conditions, grain yield was substantially reduced [71-73]. Under the experimental conditions
employed in these studies, the combined effect of tillage and of the level of N fertilization did not
markedly modify N uptake, as slightly more N was taken up by the maize plants under CT condi-
tions. Moreover, in agreement with Al-Kaisi and Kwaw-Mensah [74], we observed that such a
small increase in N uptake did not lead to an increase in the grain N content (Table 3).

NUE is a complex agronomic traits depending on soil N availability, resulting from the effi-
ciency of N uptake by the roots and N utilization and N remobilization by the plant [75]. Among
the various traits representative of NUE, NHI was higher under NT conditions compared to CT,
irrespective of the level of N fertilization. Similarly, other NUE-related traits such as NRem and
NRE were significantly higher under NT compared to CT, whether or not N fertilizers were
applied (Fig 1A and 1B). In addition, NHI and NRE were positively and significantly correlated
with NUE and NUtE (Fig 3). Although the leaf N content at maturity was higher in CT than in
NT, the grain N content was similar irrespective of the tillage practice (Table 3).

In this study, tillage had a negative impact on the amount of water stored in the soil. In par-
ticular, without additional N fertilization (N0), SWC.s and SWC.h were significantly lower fol-
lowing CT under NO conditions in comparison to NT over the two years of experimentation
(Table 4). The absence of tillage is known to preserve soil moisture [65,76] by maintaining
total soil pore space while keeping the exchanges between the macro- and micro-pores in the
soil [77]. It has been shown that soil water retention under NT conditions is beneficial to the
crop, notably during the grain filling period after anthesis [78]. During this period, N remobili-
zation largely depends on soil water availability [79-81]. In line with these observations, it has
been reported that in wheat both N uptake and N remobilization and thus NUE were reduced
when there was a shortage of water [82,83]. It is likely that in the NT system, soil water reten-
tion was one of the components that favored post-anthesis N uptake and thus NUE.

PCA analysis allowed a refinement of the correlations observed between NUE, and the various
NUE-related traits such as NUtE, NRE and NHI and their relationship with the tillage system
according to the level of N fertilization (Fig 4). The first axis clearly separated CT plots from NT
plots. The second axis mainly separated NO from N1 plots. Remarkably, NUE and NUtE were the
two traits that contributed the most to the increase in NUE under NT conditions. Such an analysis
thus confirmed that the no-till system had a positive impact both on NUE and NUE-related traits.

5. Conclusion

In the present study, a field experiment was conducted over a 4-year period to ensure that the
impact of the conversion to a no-till system on NUE and NUE-related traits was rapidly and
accurately monitored. Both NUE and NUE-related traits, which could not have been accurately
measured using longer-term experiments, were used as markers in order to investigate the ben-
efit of the no-till cultivation system. As in a number of previous studies [74,84-86], measure-
ments of these traits were performed using short-term experiments in order to detect the effect
of no-till at any time during the entire field experiment. Over two years of experimentation, the
results showed that the use of a continuous no-till system with a cover crop is a promising way
to increase the NUE of maize, and consequently to reduce both the use and the loss of N fertil-
izers without any yield penalty.

Supporting Information

S1 Fig. Chronological representation of crop rotation over the 4-year experiment. (NT) no-
till, (CT) conventional tillage, (NO) no fertilization, (N1) N fertilization, (@) no cover crops.
(TIF)
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