
ll
OPEN ACCESS
Protocol
Accurate Silent Synapse Estimation from
Simulator-Corrected Electrophysiological
Data Using the SilentMLE Python Package
Michael Lynn,

Richard Naud,

Jean-Claude Béı̈que

mlynn101@uottawa.ca

HIGHLIGHTS

Guidelines for

acquiring failure-rate

data and parsing

successes/failures

Simple installation

guide for the

SilentMLE package

Initializing

experimentally

constrained

estimators of the

silent synapse

fraction

Expected results and

interpretation of

estimator output
The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity

potential of neural networks. We created a maximum-likelihood estimator of silent synapse

fraction based on simulations of the underlying experimental methodology. Here, we provide a

set of guidelines for running a Python package on compatible experimental synaptic data.

Compared with traditional failure-rate approaches, this synthetic likelihood estimator improves

the validity and accuracy of the estimates of the silent synapse fraction.
Lynn et al., STAR Protocols 1,

100176

December 18, 2020 ª 2020

The Authors.

https://doi.org/10.1016/

j.xpro.2020.100176

mailto:mlynn101@uottawa.ca
https://doi.org/10.1016/j.xpro.2020.100176
https://doi.org/10.1016/j.xpro.2020.100176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2020.100176&domain=pdf


ll
OPEN ACCESS
Protocol
Accurate Silent Synapse Estimation from Simulator-
Corrected Electrophysiological Data Using the
SilentMLE Python Package

Michael Lynn,1,6,7,* Richard Naud,1,3,5 and Jean-Claude Béı̈que1,2,3,4
1Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada

2Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON K1H 8M5, Canada

3Centre for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada

4Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada

5Department of Physics, University of Ottawa, STEM Complex, Room 336, 150 Louis Pasteur Pvt., Ottawa, ON K1N 6N5,
Canada

6Technical Contact

7Lead Contact

*Correspondence: mlynn101@uottawa.ca
https://doi.org/10.1016/j.xpro.2020.100176
SUMMARY

The proportion of silent (AMPAR-lacking) synapses is thought to be related to the
plasticity potential of neural networks. We created a maximum-likelihood esti-
mator of silent synapse fraction based on simulations of the underlying experi-
mental methodology. Here, we provide a set of guidelines for running a Python
package on compatible experimental synaptic data. Compared with traditional
failure-rate approaches, this synthetic likelihood estimator improves the validity
and accuracy of the estimates of the silent synapse fraction.
For complete details on the use and execution of this protocol, please refer to
Lynn et al. (2020).
BEFORE YOU BEGIN

Synthetic likelihoods havebeendeveloped to improve the reliability and accuracy of estimatedquan-

tities in ecology (Wood, 2010), genetics (Beaumont et al., 2002) and more recently in neuroscience

(Greenberg et al., 2019; Lueckmann et al., 2019, Gonçalves et al., 2020). These approaches are

computationally heavy, often requiring a simulator and extensive computer codes. Open-access

packages for such simulation-based approachesmakes thesemethodsmore accessible (Tejero-Can-

tero et al., 2020). Here, we describe the use of a simulator of synaptic electrophysiology experiments

along with a calculation of synthetic likelihoods used for the estimation of silent synapse fraction.

The SilentMLE package provides an estimate of silent synapse fraction from electrophysiological

data collected using a well-known sampling paradigm known as the failure-rate protocol (see Gra-

ziane and Dong (2016) for more details). Stimulation at hyperpolarized potentials leads to synaptic

responses which solely reflect the stochastic activation of active synapses (i.e., both NMDAR- and

AMPAR-containing), while stimulation at depolarized potentials recruits both active synapses and

silent synapses (i.e., NMDAR-only containing synapses). The intuition behind this protocol is that

by comparing the failure rates at depolarized and hyperpolarized holding potentials (which may re-

cruit distinct but overlapping synapse populations), one should be able to quantitatively infer the

makeup of the synapse population. Here, we describe best practices for performing these experi-

ments and how to seamlessly and optimally use the SilentMLE synthetic likelihood estimation frame-

work to quantify silent synapses.
STAR Protocols 1, 100176, December 18, 2020 ª 2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:mlynn101@uottawa.ca
https://doi.org/10.1016/j.xpro.2020.100176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2020.100176&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Protocol
One should also consider optical approaches to estimate silent synapse fraction (e.g., Lee et al.,

2016; Soares et al., 2017), as these approaches are more direct, but require specialized equipment.

A comparison between different approaches is presented in Lynn et al. (2020).

Data Collection

SilentMLE operates on processed synaptic failure-rate data collected from electrophysiological re-

cordings of neurons. In principle, compatible synaptic data can be acquired from any functional syn-

aptic population probed by electrophysiological means, yet for a number of practical reasons this

approach is typically restricted to either acute or organotypic brain slice recordings that largely

maintain in situ synaptic organization. Detailed protocols have previously been described (Schwartz-

kroin, 1975; Schwartzkroin, 1981; Soares et al., 2014). Briefly, brain slices are prepared from an area

of interest and neurons are recorded in the whole-cell configuration while a stimulating electrode is

placed nearby in the slice. The raw electrophysiological data are typically obtained using specialized

hardware (e.g., equipment produced by Molecular Devices, USA), digitized, and stored.

The failure-rate protocol typically consists of 100 consecutive low-frequency synaptic stimulations

(ca., 0.1–0.06 Hz), where the effects of the first 50 electrical stimulations (referred to as ‘‘sweeps’’)

are recorded while voltage clamping at Vm = �70 mV while the subsequent 50 sweeps are recorded

at Vm = +40 mV. See Graziane and Dong (2016) for more details on the failure-rate protocol. The

sweep number should be chosen carefully. Increasing the number of sweeps will improve the accu-

racy of the estimates returned by SilentMLE (Lynn et al., 2020).

CRITICAL: Before data collection, it is important to decide on two parameters:

� An acceptable range of failure rates which all recordings should be uniformly subjected to (i.e., the

percentage of electrical stimuli which lead to no measurable post-synaptic currents). The failure-

rate range has an impact on the number of synapses recorded from, and on the subset bias (Lynn

et al., 2020). Typically, a range of failure rates of 20% to 80% is sought. Before each recording,

electrical stimulation intensity must be adjusted up or down such that the observed failure rates

fall into the acceptable range at Vm =�70mV. A key feature of SilentMLE is that the flexible exper-

imental simulator can take into account different choices of failure-rate ranges, but these choices

must be made before data collection.

� A target sample size for sufficient statistical power, rather than relying on post hoc justification. A

power analysis outlining the expected granularity of silent synapse estimates using this approach

with different sample size is provided in the principal paper (Lynn et al., 2020; see Figure 4).

Parsing of Successes and Failures

The analog electrophysiological data must be processed to parse individual events into successes

and failures. This classification can be achieved using multiple methods, as long as there is a clear

division in the sorted traces between successes and failures. For a principled approach, we recom-

mend constructing a control distribution of mock event amplitudes from the noise. Events can be

classified as successes if their amplitude is greater than some threshold (e.g., 3 standard deviations)

from themean of the control distribution.While SilentMLE does not incorporate such an algorithm, it

can be easily constructed in one’s programming language of choice.

The control distribution should utilize the same amplitude detection protocol employed for detect-

ing real events, and should apply to some equal span of time in the noise. This will produce a distri-

bution of mock events from which the mean and standard deviation can be extracted.

CRITICAL: The traces should be visually inspected after any automated steps. In particular,
the standard deviation threshold may need fine-tuning, and may differ between the hyper-

polarized traces and the depolarized traces. The latter may exhibit more noise and thus

event parsing should be carefully examined before moving onto the next step. Inaccurate
2 STAR Protocols 1, 100176, December 18, 2020



ll
OPEN ACCESSProtocol
parsing of successes and failures in this step can drastically reduce the accuracy of the Si-

lentMLE method.
Calculation of Failure Rates

Estimated failure rates for the hyperpolarized condition ðbFhÞ and depolarized condition ðbFdÞ must

be calculated for each neuron:

bFh =
nfailures

nfailures + nsuccesses
bFd =
nfailures

nfailures + nsuccesses

The SilentMLE package works on the calculated failure rates for each neuron. Alternately, for existing

datasets where an estimated silent fraction is already calculated from the failure rates (see Graziane

and Dong, 2016; for derivation and equation, see Lynn et al., 2020), SilentMLE can work on these

processed estimates instead.

Python Installation

It is necessary to ensure that you have a working, up-to-date installation of Python present on your

computer, as well as an integrated development environment (IDE) or editor where code can be writ-

ten and executed.

There are multiple ways of obtaining a working Python installation. For new users, we recommend an

installation of Anaconda, as it provides a current installation of Python, a commonly used IDE

(Spyder), as well as a full set of command-line tools.

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Python Python Software Foundation Python >=3.6

NumPy NumPy (van der Walt et al., 2011) NumPy >=1.18.1

SciPy SciPy (Jones et al., 2001) SciPy >=1.4.1

SilentMLE Python Package This paper https://github.com/micllynn/silentmle
MATERIALS AND EQUIPMENT

� Data, processed into failure rates for each neuron (see Before You Begin)

� Python environment and required packages

� Python >= 3.6

� Numpy >=1.18.1

� Scipy >=1.4.1

� Matplotlib

� h5py

� Seaborn

� Hardware

� No special requirements
STEP-BY-STEP METHOD DETAILS

Installing SilentMLE

Timing: 10 min
STAR Protocols 1, 100176, December 18, 2020 3

https://github.com/micllynn/silentmle


ll
OPEN ACCESS Protocol
This step downloads the SilentMLE package from GitHub and installs it under your local Python

installation. We provide two Variants for installation. Variant 1 is recommended for most users

and Variant 2 provides guidelines for advanced users.

1. Variant 1: Simple installation of Python and SilentMLE using Anaconda

a. Download and install the Anaconda Python distribution for your operating system using the

instructions at https://docs.anaconda.com/anaconda/install/

b. Open an Anaconda terminal window using the instructions to ‘‘Open Anaconda Prompt’’

found by scrolling down on the page at https://docs.anaconda.com/anaconda/user-guide/

getting-started/.

c. In the terminal window, run the following commands, pressing Enter/Return after each line to

execute:
conda install -y git

pip install git+https://github.com/micllynn/SilentMLE

python

d. Verify the installation proceeded correctly

i. Run the following code from the running Python instance:
4 STA
import silentmle as sil
ii. The import should run correctly. If not, see the CRITICAL section below.

2. Variant 2: Installation of SilentMLE for experienced users

a. Experienced users are encouraged to initialize a separate virtual environment before installa-

tion:
conda create -n silentmle

conda activate silentmle

b. Experienced users can install the package however best fits with their workflow. A setup.py file

is provided for this purpose. The following installation command should be executed from the

command line with the appropriate installation of Python:

python setup.py install

c. Experienced users can also use their preferred text editor or IDE in place of Spyder (eg Emacs,

vim, Atom, etc.), replacing the relevant sections below.

CRITICAL: It is important to install SilentMLE using the correct Python installation, or else
the package will not be importable. See Troubleshooting if the installation verification

does not proceed correctly.
Initializing an Estimator from Constrained Experimental Simulations

Timing: 5–20 min

In this step, we import the package and run the set of constrained experimental simulations

which generate the mapping between the ground-truth fraction silent in some population,

and the biased measurement returned by electrical stimulation experiments. Two variants are

provided: Variant 1 describes how to initialize a simple estimator when synaptic release prob-

abilities are unknown (assumes a null case of a uniform distribution); Variant 2 describes how to

initialize a more complex estimator with a known distribution of release probabilities.

3. Variant 1: Initializing a simple estimator with no strong prior of synaptic release probability dis-

tribution.

a. To launch the Spyder IDE, open Anaconda Navigator, in the ‘‘Home’’ tab navigate to

‘‘Spyder,’’ and click Launch. Instructions for using Spyder can be found at https://docs.

spyder-ide.org/current/quickstart.html.

b. In Spyder, execute the following code to import the package.
import silentmle as sil
R Protocols 1, 100176, December 18, 2020

https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.spyder-ide.org/current/quickstart.html
https://docs.spyder-ide.org/current/quickstart.html


ll
OPEN ACCESSProtocol
c. To prepare the correct parameters, retrieve information from the slice physiology experiments

on:

i. The number of sweeps of electrical stimulation each cell was subjected to in each voltage-
clamp condition (hyperpolarized or depolarized potentials) (num_trials). For

example, in a case of 50 depolarized sweeps and 50 hyperpolarized sweeps, num_

trials=50.
ii. The lower and upper bounds of acceptable failure-rate fractions, decided upon before
running experiments (failrate_low and failrate_high). For example, a range

of 20% failures to 80% failures would be represented as

failrate_low=0.2, failrate_high=0.8.
iii. If using previously calculated silent fraction estimates, whether any negative silent fraction
estimates were set to zero (zeroing=True) or not (zeroing=False).

d. SilentMLE takes an object-oriented approach to the estimation process. An estimator object

must be initialized first (which runs a set of simulations across the range of possible silent frac-

tions), and once initialized it can be used to perform maximum-likelihood estimation on data.

To initialize the estimator, run the following code to initialize an estimator object, replacing

the appropriate parameters with those specified in step 3c. (Note that n_likelihood_

points refers to the number of silent fractions to simulate; lower values will result in more

rapid estimator initialization at the expense of estimate precision.)

estimator = sil.Estimator(n_likelihood_points=250, num_trials=50,

failrate_low=0.2, failrate_high=0.8, zeroing=False)

4. Variant 2: Initializing a more complex estimator with an experimentally supported synaptic

release probability distribution.

a. To launch the Spyder IDE, open Anaconda Navigator, navigate to ‘‘Spyder,’’ and click Launch. In-

structions for usingSpyder canbe foundat https://docs.spyder-ide.org/current/quickstart.html.

b. In Spyder, execute the following code to import the package.
import silentmle as sil
c. To prepare the correct parameters, retrieve information from the slice physiology experiments

on:

i. The number of sweeps of electrical stimulation each cell was subjected to in each voltage-
clamp condition (hyperpolarized or depolarized potentials) (num_trials). For

example, in a case of 50 depolarized sweeps and 50 hyperpolarized sweeps,

num_trials=50.
ii. The lower and upper bounds of acceptable failure-rate fractions, decided upon
before running experiments (failrate_low and failrate_high). For

example, a range of 20% failures to 80% failures would be represented as

failrate_low=0.2, failrate_high=0.8.
iii. If using previously calculated silent fraction estimates, whether any negative silent fraction
estimates were set to zero (zeroing=True) or not (zeroing=False).
iv. A statistical distribution, with parameters, of synaptic release probabilities.

d. Create a class instance representing the synapse release probability distribution retrieved in

step 4civ. Note that any distribution from scipy.stats is acceptable, and specified param-

eters for these distributions are required in the dictionary args.
import scipy.stats as sp_stats

pr_dist = sil.PrDist(dist=sp_stats.gamma,

args={’a’:1, ’scale’:0.3})
e. SilentMLE takes an object-oriented approach to the estimation process. An estimator object

must be initialized first (which runs a set of simulations across the range of possible silent frac-

tions), and once initialized, the estimator object can then be used to performmaximum-likeli-

hood estimation on data. To initialize the estimator, run the following code to initialize an esti-

mator object, replacing the appropriate parameters with those specified in step 4c. (Note that

n_likelihood_points refers to the number of silent fractions to simulate; lower valueswill

result in more rapid estimator initialization at the expense of estimate precision.)
STAR Protocols 1, 100176, December 18, 2020 5

https://docs.spyder-ide.org/current/quickstart.html


ll
OPEN ACCESS

6

Protocol
estimator = sil.Estimator(n_likelihood_points=250,

num_trials=50, failrate_low=0.2,

failrate_high=0.8, zeroing=False,

pr_dist_sil=pr_dist, pr_dist_nonsil=pr_dist)

CRITICAL: It is important to support the assertion of a particular synaptic release proba-
bility distribution with data and/or references from the literature. Otherwise, we recom-

mend assuming the null hypothesis of uniformly distributed synaptic release probabilities

(Soares et al., 2017).
Note: help(sil.Estimator) provides comprehensive documentation of each input and

its expected type for this class. Many parameters controlling the experimental simulations

can be fine-tuned according to the information here.

Note: All specified simulation and experimental parameters are stored in the class instance as

estimator.params for easy access. The observation space and hypothesis space em-

ployed are stored as estimator.obs and estimator.hyp respectively. The numerically

simulated likelihood function is stored as estimator.likelihood.
Performing Maximum-Likelihood Estimation on Collected Data

Timing: 5 min

In this step, we perform maximum-likelihood estimation using the initialized estimator. This can

either be done using raw failure rates for each neuron (Variant 1), or using existing datasets consist-

ing of silent synapse estimates from the failure-rate analysis equation (Variant 2). See Before You

Begin, section on calculating the failure rates, for more information on the two variants of processing

data.

5. Variant 1: Data in raw failure-rate form

a. Create a variable representing the data. Note that we create a list with each cell’s failure rates

expressed in the format. Replace the values here with your own data. Lists can be of arbitrary

length.
data = [[0.2, 0.18], [0.4, 0.36], [0.38, 0.48], [0.58, 0.6], [0.46, 0.31],]

[0.7, 0.43], [0.58, 0.36]]

b. Perform maximum-likelihood estimation using the initialized data variable and the existing

estimator variable. Ensure that the correct datatype (dtype) is set.

likelihood = estimator.estimate(data, dtype=’failrate’)

c. Maximum-likelihood estimation should be relatively rapid; wait for the estimation to com-

plete.

d. Examine the joint likelihood plot that was generated (see Figure 1 for examples). This depicts

the likelihood of each hypothetical silent fraction being the correct value, given the data pro-

vided. One can conveniently read the maximally likely estimate (MLE) for silent fraction indi-

cated in red.

e. The normalized joint likelihood function (shown on the y-axis of the returned plot) is stored in

likelihood for further processing and analysis. The corresponding hypothesis space of silent

synapse fractions (shown on the x-axis of the returned plot) is stored in estimator.hyp.

6. Variant 2: Data in processed silent synapse estimate form

a. Create a variable representing the data (estimates of fraction silent synapses). Note that we

create a list comprised of each cell’s estimated silent synapse fraction. Replace the values

here with your own data. Lists can be of arbitrary length.
S

data = [0.42, 0.32, 0.54, 0.43, 1.0, 1.0, -0.06, -0.18, 1, 0.42, 0.16]
TAR Protocols 1, 100176, December 18, 2020



Figure 1. Maximum-Likelihood Estimation on Two Datasets with Synthetic Data

Two example plots depicting the joint likelihood function returned by SilentMLE.

(A) An example likelihood plot for n = 2 artificial data points. Note the broad likelihood distribution.

(B) An example likelihood plot for n = 20 artificial data points. Note the narrower likelihood distribution despite the same maximum-likelihood estimate.

The code to generate (B) is available on the project’s GitHub site at: https://github.com/micllynn/

SilentMLE#example-of-full-estimation-procedure-and-output.

ll
OPEN ACCESSProtocol
b. Perform maximum-likelihood estimation using the initialized data variable and the existing

estimator variable. Ensure that the correct datatype (dtype) is set.

likelihood = estimator.estimate(data, dtype=’est’)

c. Maximum-likelihood estimation should be relatively rapid; wait for the estimation to complete.

d. Examine the joint likelihood plot that was generated (see Figure 1 for examples). This depicts

the likelihood of each hypothetical silent fraction being the correct value, given the data pro-

vided. One can conveniently read the maximally likely estimate (MLE) for silent fraction indi-

cated in red.

e. The normalized joint likelihood function (shown on the y-axis of the returned plot) is stored in

likelihood for further processing and analysis. The corresponding hypothesis space of silent

synapse fractions (shown on the x-axis of the returned plot) is stored in estimator.hyp.

Note: help(estimator.estimate) provides comprehensive documentation of the ex-

pected type and format of the data, the parameters used for estimation, and the type and

format of the returned likelihood vector.

CRITICAL: If previously obtained silent fraction estimates have been ‘‘zeroed’’ (ie all nega-
tive values have been set to 0), the Estimator must have been initialized in steps 3 and 4

with the parameter zeroing=True.
EXPECTED OUTCOMES

Joint Likelihood Function

Figure 1 depicts the joint likelihood function associated with two simulated experimental datasets. In

Figure 1A, a smaller dataset of n=2 is used as input to themaximum-likelihood estimator, generating

a joint likelihood function with large variance and a maximally likely estimate of 0.14. In Figure 1B, a

larger dataset of n=20 is used as input to the maximum-likelihood estimator. This generates an iden-

tical maximally likely estimate of 0.14, but the joint likelihood function has far smaller variance indi-

cating a greater confidence in the estimate. This illustrates the importance of investigators deciding

on a sufficient sample size for their experiments before using SilentMLE, as demonstrated in the po-

wer analysis in Lynn et al., 2020, to prevent estimates with low confidence. To aid users in verifying
STAR Protocols 1, 100176, December 18, 2020 7

https://github.com/micllynn/SilentMLE#example-of-full-estimation-procedure-and-output
https://github.com/micllynn/SilentMLE#example-of-full-estimation-procedure-and-output


ll
OPEN ACCESS Protocol
correct package installation, and to give an example of a full step-by-step protocol, the full code to

generate Figure 1B is available on the package’s GitHub page (see figure legend).
Output of SilentMLE

Upon successful estimation, SilentMLE returns several important variables which can either be

analyzed in the same session of Python, or exported for analysis in other software. likelihood repre-

sents the normalized joint likelihood function depicted in the y-axis of the plots in Figure 1. The cor-

responding hypothesis space of silent synapse fractions (shown on the x-axis of the returned plot) is

stored in estimator.hyp. Together, these can be used to perform further analysis, including con-

fidence intervals and log-likelihood ratio testing between datasets.

To export the variables in a neutral .csv format for use with other software, we recommend the

Pandas package:

import pandas as pd

mle_output = pd.DataFrame({’likelihood’: likelihood, ‘silent’: estimato-

r.hyp})

mle_output.to_csv(‘mle_output.csv’, index=False)

SilentMLE can additionally recreate complete figures from the original paper (Lynn et al., 2020).

These take some time to run, as they recompute all relevant analysis steps and simulations. To

generate the figures, the following functions can be run:

d sil.figures.plot_fig1()

d sil.figures.plot_fig2()

d sil.figures.plot_fig4()

d sil.figures.plot_figS1()

d sil.figures.plot_figS2()

d sil.figures.plot_figS3()

d sil.figures.plot_figS4()

Full documentation for all plotting functions can be found with help(plotting-function). In addi-

tion to these functions, core functions are available for running the experimental simulator, performing

the failure-rate analysis, and conductingpower analyses. Full information on these functions can be found

on the GitHub page (https://github.com/micllynn/SilentMLE), or by executing help(sil.core).
LIMITATIONS

The accuracy of SilentMLE depends critically on several factors, including the quality of the electro-

physiology data collected as well as its processing (summarized in the Before You Begin section),

and the choice of parameters used to initialize the estimator. These assumptions and limitations

include the following:

� Special attention should be paid to ensure that the parameters used as input to the computational

model match those used during the experimental paradigm. All parameters, and the desired sam-

ple size, should be decided before experiments are started.

� The failure-rate range provided to the model must match those in experiments.

� The number of sweeps provided to the model must match the number in experiments.

� Any specified synaptic release probability distribution must have strong support from either ex-

periments or the literature. Otherwise, we recommend the null case of a uniform release prob-

ability distribution (Soares et al., 2017).

� Any other parameters changed upon estimator initiation should be checked carefully and re-

corded, along with the maximum-likelihood estimate returned, for later reporting.
8 STAR Protocols 1, 100176, December 18, 2020

https://github.com/micllynn/SilentMLE


ll
OPEN ACCESSProtocol
� A sufficient number of likelihood points are required when initializing the estimator (n_likeli-

hood_points) to prevent stochasticity between estimation runs due to theMonte Carlo nature of

simulations of the experimental protocol. Ideally, this value should be set to >200.

� The underlying failure-rate analysis protocol (Graziane and Dong, 2016) relies on several key as-

sumptions which, if violated, may limit the applicability of SilentMLE. These assumptions include:

� Equivalent release probability distributions between silent and nonsilent synapses.

� Random sampling of silent and nonsilent synapses through electrical stimulation. Our SilentMLE

package does take into account the bias in sampling through gradual reduction in electrical

stimulation intensity to reach the target failure rate, but it does rely on an initial, unbiased large

sample from the population. Formally, any violation of this assumption (e.g., clustered silent or

nonsilent synapses, causing large initial sampling biases before adjusting stimulation intensity)

may invalidate the results of SilentMLE.

� NMDA opening is the sole parameter which differs between hyperpolarized and depolarized

voltage-clamp conditions. Synapses can be regulated by depolarization-induced release of

retrograde messengers, which can either increase or decrease release probability (Carta

et al., 2014; Howlett et al., 2004; Chevaleyre et al., 2006). In these circuits, SilentMLE may return

unreliable results due to the effects of retrograde messengers.
TROUBLESHOOTING

Problem 1

The SilentMLE package is not importable (steps 3b and 4b).
Potential Solution

It is important to make sure that the SilentMLE package is installed under the correct installation of

Python. For example, on macOS there is typically a built-in installation of Python which is separate

from the Python installations installed with package managers such as conda. The latter are typically

accessed for commonly used IDEs such as Spyder, and thus it is crucial to install the package under

them, and not under the built-in Python installation.

To determine which Python installation is associated with a given binary (e.g., python3), the

following steps may be necessary. To determine the location of the binary being referenced, one

can use the terminal command ‘‘$ which python-executable’’ on UNIX-based systems, or ‘‘where py-

thon-executable’’ on Windows systems. This should typically return the directory of a binary within

the IDE or package manager folder (e.g., conda), and not within /usr/local/bin. If the wrong folder is

associated with a Python binary you have used to install SilentMLE, you may need to reinstall the

package using the correct binary. For more information on the correct binary, see your IDE or pack-

age manager of choice to determine which installation of Python is utilized.
Problem 2

While initializing the estimator object (steps 3d and 4e), the execution hangs with the following

output line : ‘‘Generating estimate distributions. 0.5%’’ (The precise number is not important,

only that the simulation hangs at this point)
Potential Solution

If the range of failure rates specified while initializing the estimator (steps 3d and 4e) is very narrow (e.g.,

0.4 to 0.6), the experimental simulator may be unable to return the desired number of sets of synapses.

This is because too many simulations will not reach a failure rate in the desired range, and thus will be

discarded. By default, simulations are ‘‘oversampled’’ by 83 from 0.9<silent_frac<1.0. To control the

oversampling factor (default 8x) and threshold (default 0.9), the following kwargs can be passed to the

sil.estimator() function: sim_oversample_factor=8, sim_oversample_thresh=0.9.

These kwargs can be altered, but a higher oversampling factor or lower oversampling threshold will

require more time to complete the simulations.
STAR Protocols 1, 100176, December 18, 2020 9



ll
OPEN ACCESS Protocol
Problem 3

While running the estimation on data, you receive the following message: ‘‘ValueError: operands

could not be broadcast together.’’ (steps 5b and 6b).

Potential Solution

Please ensure that the data initialized in the variable data are formatted correctly, and that they

matches the dtype parameter of estimator.estimate().

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Michael Benjamin Lynn (mlynn101@uottawa.ca).

Materials Availability

No Materials were generated in this protocol.

Data and Code Availability

All code associated with this Protocol is available at https://github.com/micllynn/SilentMLE

ACKNOWLEDGMENTS

M.B.L. is thankful to have received graduate scholarships from the Government of Ontario. This work

was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and

Engineering Research Council of Canada, the Canada Foundation for Innovation, Brain Canada (Ca-

nadian Neurophotonic Platform) and the Krembil Foundation. We thank Emerson Harkin (University

of Ottawa) and Dr. Philippe Vincent-Lamarre (University of Ottawa) for valuable help with package

troubleshooting.

AUTHOR CONTRIBUTIONS

Conceptualization, M.B.L., R.N., and J.-C.B.; Methodology, M.B.L.; Software, M.B.L.; Formal Anal-

ysis, M.B.L.; Investigation, M.B.L.; Writing – Original Draft, M.B.L.; Writing – Review & Editing,

M.B.L, R.N., and J.-C.B.; Supervision, J.-C.B.; Funding Acquisition, J.-C.B.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
Beaumont, M.A., Zhang, W., and Balding, D.J.
(2002). Approximate Bayesian computation in
population genetics. Genetics 162, 2025–2035.

Carta, M., Lanore, F., Rebola, N., Szabo, Z., Da
Silva, S.V., Lourenço, J., Verraes, A., Nadler, A.,
Schultz, C., Blanchet, C., et al. (2014). Membrane
lipids tune synaptic transmission by direct
modulation of presynaptic potassium channels.
Neuron 81, 787–799.

Chevaleyre, V., Takahashi, K.A., and Castillo, P.E.
(2006). Endocannabinoid-mediated synaptic
plasticity in the CNS. Ann. Rev. Neurosci. 29, 37–76.

Graziane, N., and Dong, Y. (2016). Measurement of
silent synapses. Electrophysiological Analysis of
Synaptic Transmission (Springer), pp. 217–224.

Greenberg, D., Nonnenmacher, M., and Macke, J.
(2019). Automatic posterior transformation for
likelihood-free inference. Proceedings of the 36th
International Conference on Machine Learning
10 STAR Protocols 1, 100176, December 18, 202
(International Machine Learning Society), pp. 4288–
4304.

Gonçalves, P.J., Lueckmann, J.M., Deistler, M.,
Nonnenmacher, M., Öcal, K., Bassetto, G.,
Chintaluri, C., Podlaski, W.F., Haddad, S.A., Vogels,
T.P., et al. (2020). Training deep neural density
estimators to identify mechanistic models of neural
dynamics. bioRxiv, 838383.

Howlett, A.C., et al. (2004). Cannabinoid
physiology and pharmacology: 30 years of
progress. Neuropharmacology 47, 345–358.

Jones, E., Oliphant, E., Peterson, P., et al. (2001).
Scipy: Open Source Scientific Tools for Python.
http://www.scipy.org/.

Lee, K.F., Soares, C., Thivierge, J.P., and Béı̈que,
J.C. (2016). Correlated synaptic inputs drive
dendritic calcium amplification and cooperative
plasticity during clustered synapse development.
Neuron 89, 784–799.
0

Lueckmann, J.M., Bassetto, G., Karaletsos, T., and
Macke, J.H. (2019). Likelihood-free inference with
emulator networks. In Symposium on Advances in
Approximate Bayesian Inference, C. Zhang, F. Ruiz,
T. Bui, A. Bousso Dieng, and D. Liang, eds. (PMLR),
pp. 32–53.

Lynn, M.B., Lee, K.F.H., Soares, C., Naud, R., and
Béique, J.-C. (2020). A synthetic likelihood solution
to the silent synapse estimation problem. Cell Rep.
32, 107916.

Schwartzkroin, P.A. (1975). Characteristics of CA1
neurons recorded intracellularly in the
hippocampal in vitro slice preparation. Brain Res.
85, 423–436.

Schwartzkroin, P.A. (1981). To slice or not to slice. In
Electrophysiology of Isolated Mammalian CNS
Preparations, G.A. Kerkut and H.V. Wheal, eds.
(Academic Press), pp. 15–49.

Soares, C., Lee, K.F.H., and Béı̈que, J.-C. (2017).
Metaplasticity at CA1 synapses by homeostatic

mailto:mlynn101@uottawa.ca
https://github.com/micllynn/SilentMLE
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref1
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref1
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref1
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref2
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref3
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref3
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref3
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref4
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref4
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref4
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref5
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref6
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref7
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref7
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref7
http://www.scipy.org/
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref9
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref9
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref9
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref9
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref9
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref10
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref11
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref11
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref11
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref11
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref12
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref12
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref12
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref12
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref13
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref13
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref13
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref13
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref14
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref14


ll
OPEN ACCESSProtocol
control of presynaptic release dynamics. Cell Rep.
21, 1293–1303.

Soares, C., Lee, K.F.H., Cook, D., and Béı̈que, J.-C.
(2014). A cost-effective method for preparing,
maintaining, and transfecting neurons in
organotypic slices. In Patch-Clamp Methods and
Protocols. Methods in Molecular Biology (Methods
and Protocols), vol 1183, M.Martina and S. Taverna,
eds. (Humana Press), pp. 205–219.

Tejero-Cantero, A., Boelts, J., Deistler, M.,
Lueckmann, J.M., Durkan, C., Gonçalves, P.J.,
Greenberg, D.S., and Macke, J.H. (2020). sbi–a
toolkit for simulation-based inference. arXiv,
preprint arXiv:2007.09114.
STA
van der Walt, S., Colbert, S.C., and Varoquaux, G.
(2011). The NumPy array: A structure for efficient
numerical computation. Comput. Sci. Eng. 13,
22–30.

Wood, S.N. (2010). Statistical inference for noisy
nonlinear ecological dynamic systems. Nature 466,
1102–1104.
R Protocols 1, 100176, December 18, 2020 11

http://refhub.elsevier.com/S2666-1667(20)30163-5/sref14
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref14
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref15
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref16
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref16
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref16
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref16
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref16
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref17
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref17
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref17
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref17
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref18
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref18
http://refhub.elsevier.com/S2666-1667(20)30163-5/sref18

	Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package
	Before You Begin
	Data Collection
	Parsing of Successes and Failures
	Calculation of Failure Rates
	Python Installation

	Key Resources Table
	Materials and Equipment
	Step-By-Step Method Details
	Installing SilentMLE
	Initializing an Estimator from Constrained Experimental Simulations
	Performing Maximum-Likelihood Estimation on Collected Data

	Expected Outcomes
	Joint Likelihood Function
	Output of SilentMLE

	Limitations
	Troubleshooting
	Problem 1
	Potential Solution
	Problem 2
	Potential Solution
	Problem 3
	Potential Solution

	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


