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Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and is associ-
ated with several pathophysiological features, including cellular dysfunction, failure of neurotrans-
mission, cognitive impairment, cell death, and other clinical consequences. Advanced research on
the pathogenesis of AD has elucidated a mechanistic framework and revealed many therapeutic
possibilities. Among the mechanisms, sphingolipids are mentioned as distinctive mediators to be
associated with the pathology of AD. Reportedly, alteration in the metabolism of sphingolipids and
their metabolites result in the dysfunction of mitochondria, autophagy, amyloid beta regulation, and
neuronal homeostasis, which exacerbates AD progression. Considering the importance of sphin-
golipids, in this review, we discuss the role of ceramide, a bioactive sphingolipid metabolite, in the
progression and pathogenesis of AD. Herein, we describe the ceramide synthesis pathway and its
involvement in the dysregulation of homeostasis, which eventually leads to AD. Furthermore, this
review references different therapeutics proposed to modulate the ceramide pathway to maintain
ceramide levels and prevent the disease progression.

Keywords: Alzheimer’s disease; ceramide; amyloid beta; autophagy; mitochondrial dysfunction;
senescence

1. Introduction

Alzheimer’s disease (AD) is defined as progressive cognitive impairment associated
with the formation of senile plaques in the cerebral cortex and subcortical gray matter,
which includes amyloid beta (Aβ) and neurofibrillary tangles [1]. The World Health
Organization has declared AD a “global public health priority” because of the lack of well-
established treatments. To date, researchers have proposed various theories and hypotheses
regarding the causes and targets of AD. Primarily, dementia is stated as the cause of AD
in people over 60 years of age, while approximately 50–75% of patients with dementia
develop AD [2]. Furthermore, diabetes, hypertension, and cardiovascular disease have
also been identified as risk factors in the progression of AD [3]. Currently, therapeutic
interventions are being attempted based on mechanisms that have been proposed in AD
pathogenesis. Some of these include antioxidant therapy, NSAIDs, cholinergic replacement
therapy, hormone replacement therapy, memantine, and Aβ vaccines [4].

Sphingolipids are abundantly distributed in nerve cell membranes and myelin sheaths
of nerve fibers [5]. The bioactive metabolites of sphingolipids, including ceramide, sphin-
gomyelin, sphingosine, and sphingosine-1-phosphate (S1P) are synthesized by a variety
of enzymatic biosynthesis pathways [6]. Generally, sphingolipids play a significant role
in biological membranes, and their metabolites are involved in the regulation of various
cell functions. Several reports have suggested that the metabolism of sphingolipids plays a
major role in the pathogenesis of AD, and hence might be considered a potential treatment
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target [5,7,8]. Additionally, small changes in sphingolipid metabolism may cause remark-
able effects in age-related neurodegenerative diseases. In this regard, some studies have
demonstrated that the level of ceramides is significantly increased in the brain tissue of pa-
tients with AD compared to controls, whereas sphingomyelin and sphingosine-1-phosphate
are decreased [5–7]. In addition, abnormal expression of enzymes in the sphingolipid syn-
thesis pathway have also been described previously [9]. Moreover, plasma sphingolipids
are considered as potential biomarkers of neurodegenerative diseases [10]. In particular,
one study revealed that the levels of sphingomyelin and ceramide were altered in the
plasma of patients with AD as compared to the control group [11]. The study was further
supported by another report, in which an increase in sphingomyelin levels was detected in
the cerebrospinal fluid of patients with AD [12].

Different bioactive molecules of sphingolipids exhibit several regulatory functions
in cellular and tissue homeostasis, particularly senescence, cell cycle, migration, prolifer-
ation, autophagy, inflammation, and immune responses [6]. While these mediators are
abundant in the central nervous system, any dysfunction of sphingolipids may contribute
to neurodegenerative disorders. Especially, ceramide is one of the simplest sphingolipids
which is widely distributed in animal tissues, while other sphingolipids are derivatives
of ceramide [13]. Therefore, in this review, we aimed to discuss the impact of ceramide, a
bioactive metabolite of sphingolipids, on the progression and pathogenesis of AD. More-
over, this review mentioned a list of therapeutics that are suggested to mediate ceramide
synthesis pathway and prevent the disease progression.

2. Pathogenesis of Alzheimer’s Disease

Although the pathogenesis of AD is not clear, it is known that the disease involves
several factors, including neurotransmitters, immunity, hereditary and environmental
factors [14]. Currently, researchers have proposed different theories regarding AD, namely,
the amyloid beta theory, tau theory, oxidative stress, mitochondrial dysfunction, inflamma-
tion, autophagy dysfunction, and nerve and blood vessel theory [2,14]. Among these, the
concept of Aβ-containing senile plaque formation has previously been described by many
researchers. Aβ is not deposited in the brain under normal conditions, as it is generally
cleared by the homeostatic clearance mechanism. However, an imbalance in the rate of
Aβ production and clearance results in the formation of amyloid plaques. A previous
study revealed that Aβ deposition in the brain is associated with cognitive impairment in
the elderly [15]. Therefore, preventing Aβ sedimentation could be a potential method to
ameliorate AD. In contrast, the development of neurofibrillary tangles by hyperphospho-
rylated tau protein is a fundamental neuropathological marker of AD [16]. Abundantly
distributed in neurons, the tau protein plays a role in maintaining the stability of cytoskele-
tal microtubules and axonal transport [17]. Nevertheless, due to chemical dysfunction in
AD, tau tends to separate from microtubules and attach to other tau molecules to form
tangles, blocking the transport of neurons [18]. Consequently, obstruction of synaptic
communication between neurons promotes the progression and pathogenesis of AD. With
regards to the synapses, previous report confirmed that during AD the synaptic plasticity
changes and causes reduced synapses in the brain [14]. Collectively, the deposition of Aβ,
aggregation of tau protein, and synaptic loss cause neuronal injury followed by neuronal
death and contribute to cognitive impairment.

Chemokines are a group of secreted proteins mostly known as a regulator of cell
migration, especially leukocytes. The chemokines are associated with AD and considered
as a key factor in the pathology of AD because of their involvement in the regulation of
inflammatory or glial cells. A previous report suggested that the level of chemokines in the
brain, cerebrospinal fluid, and serum constantly fluctuate in patients with AD [14]. Due to
their role in regulating proinflammatory and anti-inflammatory properties, chemokines
cause neuroinflammation in the AD brain, subsequently leading to neuronal death. Mi-
croglia, a type of glial cell regulated by chemokines function as an immune defense in
the central nervous system. However, previous study has reported that microglia are
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unable to clear waste and toxins from the brain, and their accumulation can cause chronic
neuroinflammation [18]. In addition, brain cells are dependent on mitochondrial oxidative
phosphorylation for their energy. However, gene set enrichment analysis has shown sig-
nificant downregulation of mitochondrial oxidative phosphorylation and interruption of
the mitochondrial import pathways in AD [19]. As such, mitochondrial dysfunction may
also be correlated with the pathogenesis of AD. Besides, autophagy is an important cell
survival mechanism that facilitates bioenergetic homeostasis. Researchers have further dis-
cussed the involvement of autophagy dysfunction in the pathogenesis of AD, as increased
autophagy causes the accumulation of Aβ in the brain [20].

Another key regulator of brain function is lipid that has been increasingly involved
in AD. It was previously observed that in AD patients, heterogeneous changes in lipid
metabolism occurs in different regions of the brain [21]. Especially, lipid composition in
the neuron is able to regulate the activity of membrane-bound proteins including BACE1,
APP and presenilin thereby adjust the amyloid beta levels [21]. Accordingly, Grimm et al.
reported that the level of cholesterol and sphingomyelin in the membrane can regulate the
γ-secretase activity [22]. Cholesterol also accumulated in nerve terminals and Aβ plaques in
human AD brain and APP transgenic mice [23]. Furthermore, production and accumulation
of Aβ is stimulated due the elevation in cellular cholesterol level [24]. On the other hand,
Aβ is reported to be modulating the phospholipase activity and exert its cytotoxic effects
by disturbing the cell membranes [21]. Another lipid named ganglioside GM1 can regulate
the pathogenic potential of Aβ by controlling susceptibility to aggregate [25]. Therefore,
altered lipid metabolism could be an important contributor in the pathogenesis of AD.

In short, the association of amyloid beta toxicity, tau protein aggregation, synaptic
damage, mitochondrial dysfunction, oxidative damage, neuroinflammation, and autophagy
dysfunction complicates the AD pathogenesis.

3. Ceramide Synthesis Pathways
3.1. De Novo Synthesis

De novo synthesis of ceramide occurs at the cytosolic leaflet of the endoplasmic reticu-
lum. The reaction is primarily initiated by the condensation of cytosolic serine and palmi-
toyl CoA by serine palmitoyltransferase to produce 3-ketodihydrosphingosine [26]. In turn,
3-ketodihydrosphingosine is reduced to dihydrosphingosine by 3-ketodihydrosphingosine
reductase, followed by the production of dihydroceramide by dihydroceramide syn-
thase [27]. Subsequently, dihydroceramide is catalyzed by dihydroceramide desaturase to
form ceramide, which is transported to the Golgi apparatus (Figure 1) [28].

3.2. Salvage Pathway

Sphingomyelin and glucosylceramide are produced by the degradation of sphin-
golipids and glycosphingolipids in acidic subcellular compartments, lysosomes, and/or
late endosomes [29]. Subsequently, sphingomyelin is cleaved to produce ceramide through
the action of acid sphingomyelinase (ASM) [30]. In contrast, glucosylceramide is converted
into ceramide by the acid β-glucosidase 1 enzyme [29]. Furthermore, lysosomal ceramides
produced by these processes are deacetylated by acid ceramidase to produce sphingosine,
which can eventually form sphingosine-1-phosphate or ceramide [31]. Ceramide also acts
as a substrate to produce sphingosine, a product of sphingolipid catabolism [32]. Thus, this
pathway of sphingosine recycling is termed the “salvage pathway,” and is responsible for
regulating the formation of ceramide.

3.3. Sphingomyelin Hydrolysis

Sphingomyelin (SM) is an abundant sphingolipid in the plasma membrane and can be
degraded into ceramide and phosphocholine. There are three types of SMase that catalyzes
sphingomyelin namely, acid sphingomyelinase, neutral sphingomyelinase and alkaline
while SM hydrolysis involves catalysis by neutral sphingomyelinase [27]. Additionally, a
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previous report suggested that in some cells, ionizing radiation activates sphingomyelinase
in the cell membrane to produce ceramide [33].
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4. The Role of Ceramide in AD Cell Lines
4.1. Amyloid Beta Plaques

Amyloid beta peptide (Aβ) is known to originate from the transmembrane protein
amyloid beta precursor protein (APP). APP is cleaved by a beta-secretase enzyme called
beta-site APP cleaving enzyme 1 (BACE1), releasing the C99 fragment of APP, which
eventually results in the production of the Aβ peptide. Subsequently, these peptides are
secreted into the extracellular region of the brain and transported by the cerebrospinal fluid.
Aβ exhibits several beneficial roles in human physiology, including tumor suppression,
regulation of synaptic function, and recovery from BBB (blood brain barrier) leakage and
brain injury [34]. However, abnormal accumulation of Aβ peptide in the brain has been
reported to be the main pathogenic cause of disruption of the neuronal cell function which
triggers Alzheimer’s disease [34]. Moreover, it has been hypothesized that during AD,
the level of secreted Aβ peptide is gradually elevated in the extracellular space and forms
insoluble amyloid fibrils that are resistant to degradation [35]. Interestingly, a previous
report suggested that the level of ceramides in the brains of patients with AD is increased
three-fold compared to age-matched controls [36]. In addition, many studies have revealed
the progressive elevation of ceramide levels throughout aging in both cultured cells and the
whole brain samples [37]. Thus, ceramide might be capable of regulating the production
of Aβ and increasing the risk of AD. In particular, a study of C6-ceramide reported that
this cell-permeable analog upregulated the generation of Aβ in Chinese hamster ovary
cells [38]. Furthermore, the authors demonstrated that C6-ceramide promotes the β-
cleavage of APP and regulates the molecular stability of BACE1, thereby increasing the
rate of Aβ biosynthesis [38] (Figure 2). Accordingly, the action of ceramide on BACE1
might be a strong pathway through which Aβ generation increases and forms Aβ plaques
during AD.
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4.2. Mitochondrial Dysfunction

In neurons, the normal functional roles of mitochondria include regulating calcium
homeostasis, neurotransmission, membrane excitability management, and plasticity. In
addition, myriad neuronal cell functions, including calcium buffering and ATP produc-
tion, are also dependent on mitochondria [39]. Thus, defective mitochondrial function is
anticipated to cause cellular dysfunction and contribute to disease progression. Similarly,
prolonged mitochondrial damage induces dysregulation of energy metabolism, which
can cause reduced energy (ATP) production, calcium buffering, and increased reactive
oxygen species (ROS) [40]. Previously, ceramide is reported to modulate mitochondrial
function and oxidative phosphorylation wherein, certain ceramides are involved with
reduced mitochondrial respiratory chain (MRC) activity, elevated ROS production, ox-
idative stress and decreased mitochondrial membrane potential [41]. Many studies have
suggested that ceramides act locally on the mitochondria rather than in any other cell
organelle [41–43]. Consequently, ceramide may directly contribute to the generation of free
radicals in the mitochondria, leading to mitochondrial dysfunction and apoptosis [42]. This
was further confirmed by another study which reported that mitochondrial dysregulation
by ceramide may induce oxidative stress and activate the apoptotic indicator poly (ADP-
ribose) polymerase-1 (PARP-1) [41]. Moreover, ceramide-induced oxidative stress elevates
the oxidase activity of NADPH and produces H2O2 which causes neuronal damage [44]
(Figure 2). In contrast, the central nervous system is reported to be affected most frequently
by mitochondrial damage, which eventually leads to cognitive decline and dementia [43].
A recent investigation showed that disrupted mitochondrial function impairs neuronal
stem cell self-renewal and causes defects in neurogenesis, differentiation, and neuronal
survival [45]. Therefore, the irregular action of ceramide on mitochondria might be a
possible mechanism of mitochondrial dysregulation, which eventually contributes to the
progression and pathogenesis of AD.

4.3. Senescence

Senescence is an irreversible cellular process in which cells lose the ability to proliferate.
Many factors are involved in the initiation of cellular senescence, including organelle stress,
DNA damage, oncogene activation, and telomere dysfunction [46]. In addition, many
studies have suggested that senescence is regulated by different sphingolipids [37,47,48].
Particularly, one study reported an increase in the level of ceramides in old senescent
WI-38 human fibroblasts as compared to young fibroblasts [49]. Their investigation showed
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that ceramide significantly inhibited the growth of WI-38 human diploid fibroblasts. Sim-
ilar cell growth arrest and differentiation were observed in senescent cells by another
study [48]. Ceramide has also been reported to activate PP2A (protein phosphatase 2A-
like protein phosphatase), a family of enzymes that regulate cellular processes and signal
transduction pathways [50]. Study have suggested that C6-ceramide directly activates
PP2A, which causes subsequent inhibition of cyclin-dependent kinase-2 and leads to cell
cycle arrest [51] (Figure 2). Notably, ceramide might also affect tau hyperphosphorylation
through the modulation of PP2A activity and contribute to the progression of AD [42]. In
addition, a hydrolase enzyme, senescence-associated beta-galactosidase (SA-β-gal), allows
the identification of cell senescence in mammalian tissue. One report demonstrated that
C6-ceramide-induced increased expression of SA-β-gal in WI-38 cells in a time-and dose-
dependent manner [37]. Collectively, these results support the significant contribution of
ceramide to cellular senescence through different mechanisms.

Senescence has been associated with several pathologies, including cancer, type-2
diabetes, fibrosis, atherosclerosis, and Alzheimer’s disease [47]. Besides, different studies
have described the role of senescence in the pathology of AD. Features of specific cells
during AD exhibit features indicative of cells that undergoes senescence. For example,
telomeric alterations and hyperproliferation-mediated DNA damage in cellular senescence
have been observed in AD as well [52]. Particularly, one study demonstrated the correlation
between AD and DNA double strand breaks where the authors have observed an increased
γ-H2A.X (Ser139) positive neurons and GFAP positive astrocytes in the hippocampus of
human AD postmortem brains compared to non-AD brains [53]. These results indicate
the accumulation of DNA double strand breaks during AD condition which activates
DDR (DNA damage response) and lead to senescence [53]. A previous study suggested
that the removal of senescent cells in aged mice elevates their lifespan and decreases
the likelihood of age-related diseases, including AD [54]. Similarly, another study com-
pared the transcriptome in young and old mice hippocampi and reported that senescence
markers were accumulated in microglia [55]. Moreover, the elimination of senescent mi-
croglia significantly decreased neuroinflammation and restrains cognitive decline [55].
This evidence supports the possibility that cellular senescence by ceramide increases the
progression of AD.

4.4. Autophagy Dysfunction

Autophagy is an intracellular bulk degradation process that targets the cytosolic con-
tent and organelles in mammalian cells. Based on differences in functions and mechanisms,
three types of autophagy have been described: microautophagy, macroautophagy, and
chaperone-mediated autophagy [56]. The biogenesis of autophagy involves several steps,
including phagophore membrane isolation, autophagosome maturation, prolongation of
phagophore, and cytoplasmic content engulfment [57]. Although autophagy induction is
largely triggered by cellular starvation, ceramide has also been reported to be involved in
autophagy activation [58]. Several studies have confirmed that ceramide induces lethal
autophagy. Scarlatti et al. demonstrated that C2 ceramide increased the expression of
Beclin-1 and induced lethal autophagy [59]. Similarly, Qian et al. showed that upregulation
of Beclin-1 contributed to lethal autophagy, which could be prevented by the administration
of the autophagy inhibitor 3-MA [60]. In another study, the mechanism of lethal autophagy
was investigated, and it was found that the c-Jun protein was activated through JNK signal-
ing by ceramide and upregulated the expression of Beclin-1 (Figure 2) [61]. Furthermore,
ceramide-induced autophagic cell death was intercepted through the inhibition of JNK
activity by the administration of SP600125 [61].

Autophagic dysfunction has been reported to contribute to neurodegenerative disor-
ders by triggering neuronal cell death [62]. A previous report suggested that autophagy
dysfunction significantly contributes to the pathophysiology of AD [63]. One study by
Nixon et al. found a significant accumulation of autophagosomes in the frontal cortex
of AD patients in comparison to controls [64]. In addition, Yu et al. demonstrated that
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APP residing in autophagic vacuoles can produce Aβ, which may act as a source of Aβ

production in AD [65]. Interestingly, the production and release of Aβ, as well as the forma-
tion of plaques, are dependent on the induction of autophagy [66]. To further understand
the role of autophagy in Aβ secretion, Nilsson et al. generated autophagy-deficient APP
transgenic mice, and observed that the secretion of Aβ decreased by 90% [67]. Moreover,
autophagy-lysosome dysfunction is reported to stimulate tau formation and tau species
accumulation which further contributes to the pathology of AD [68]. These reports confirm
a strong role of ceramide in autophagy dysfunction to exacerbate the pathogenesis of AD.

5. Role of Ceramide in Plasma on AD

Ceramides in the blood circulation are transported by lipoproteins. Dysregulation in
the plasma concentration of ceramide is reported in many disorders. Likewise, ceramide
dysregulation has previously been reported to be detected in the circulation of patients
with AD in several studies. Accordingly, it has been hypothesized that plasma ceramide
may be correlated with AD, and thus it might act as a potential target to prevent the disease
progression. Particularly, one report suggested that elevated plasma ceramide levels are
associated with the increased risk of cognitive impairment and AD among cognitively
normal individual [69]. Besides, ceramides are also associated with platelet activation and
endothelial dysfunction through the detachment of NO signaling pathway [70]. It was
previously reported that platelets are the major source of both APP and Aβ in human
blood [71]. Therefore, it is possible that the activation of platelet by plasma ceramide
might contribute to the pathogenesis of AD by elevating the level of Aβ. Various reports
have proposed that the pathogenesis of systemic inflammation and insulin resistance is
associated with plasma ceramide [69,72,73]. In addition, plasma ceramides are linked with
proinflammatory cytokines in patients with type-2 diabetes, obesity, and cardiovascular
disease [73]. For example, the production and release of proinflammatory cytokines are
stimulated by LDL-ceramide following accumulation of ceramide linked to JNK and NF-κβ
signaling [74]. Consequently, elevated levels of LDL-ceramide exert proinflammatory
effects on macrophages and promotes inflammation in obesity [74]. These cytokines cross
the blood-brain barrier and activate inflammatory pathways in the hypothalamus to cause
dysregulation in brain homeostasis [75]. Several reports have suggested that patients with
type-2 diabetes develop cognitive impairment, wherein insulin resistance is initiated in the
brains of patients with AD [73,76,77].

Moreover, a report have demonstrated the relationship between ceramide and de-
pression, where the ceramide pathway is considered as a target for antidepressants [78].
Xing et al. showed that plasma ceramide levels were related to depression in moderate-
to-severe AD [79]. Another similar study reported that patients with anxiety and major
depressive disorder progress hippocampal atrophy which is supported by a report where
an increase in the level of proinflammatory cytokines tumor necrosis factor-α, interlukin-6
and interlukin-1 is seen in MDD patients [80]. Collectively, ceramide is responsible for
initiating depression while major depressive disorder increases the risk of developing AD
and other forms of dementia.

Overall, ceramide has been correlated with neurodegenerative diseases, and alterations
in plasma ceramide levels have been identified in the cerebrospinal fluid of patients with
AD [73]. In a recent report, Mielke et al. showed that an increased level of serum Cer16:0
and Cer24:0 is associated with a higher risk of developing AD [10]. In addition, clinical
studies and laboratory and animal investigations have shown that an imbalance in plasma
sphingomyelin and ceramide levels causes the progression of AD through amyloid beta
formation and subsequent neurodegeneration [10].

6. Therapeutics Targeting Ceramide Biosynthesis

Currently, the level of ceramide can be modulated using various therapeutic drugs.
When designing these agents, researchers have targeted different enzymes that contribute
to the ceramide synthesis pathway. In terms of de novo synthesis of ceramide, myriocin
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and fumifungin, which are structurally similar to sphingofungins, have been reported to
inhibit the enzyme serine palmitoyltransferase [81] (Table 1). Mandala et al. investigated
the mechanism of action of the antifungal agent lipoxamycin and revealed that lipoxamycin
and hydroxylipoxamycin could potentially inhibit serine palmitoyltransferase [82]. Another
compound, fumonisin B1, which is also structurally similar to that of sphingosine, has
been reported to inhibit ceramide synthase in the de novo synthesis pathway [5]. In
addition, dihydroceramide desaturase 1 (DES1) plays a major role in the final step of de
novo ceramide biosynthesis. Triola et al. reported for the first time an effective synthesized
DES1 inhibitor, GT11 (C8-cyclopropenylceramide), which is a ceramide derivative [83]. A
different sphingolipid analog, XM462 (5-thiadihydroceramide), was also reported as a DES1
inhibitor to prevent ceramide biosynthesis [84]. In addition, some non-sphingolipid analogs,
including fenretinide, SKI II, celecoxib, resveratrol, curcumin, and ∆9- tetrahydrocannabinol
(THC), have been reported to exhibit inhibitory activity against DES1 [85].

Table 1. List of drugs targeting different ceramide biosynthesis pathways.

Pathway Targets Drugs Reference

De novo synthesis

Serine
palmitoyltransferase

Myriocin
Fumifungin

Lipoxamycin
Hydroxylipoxamycin

[81]
[86]

[82]

Ceramide synthase Fumonisin B1 [5,87]

Dihydroceramide
desaturase 1

GT11 (C8-cyclopropenylceramide)
XM462 (5-thiadihydroceramide)

Fenretinide
SKI II

Celecoxib
Resveratrol
Curcumin

∆9-tetrahydrocannabinol (THC)

[83]
[84]

[85]

Sphingomyelin
hydrolysis

Neutral
sphingomyelinase

Scyphostatin
Spiroexpoxide
Manumycin A

Alutenusin
Ubiquinol

[88]
[89]
[90]
[91]
[92]

Salvage pathway Acid
sphingomyelinase

KARI 201
ARC39
AD2765
SMA-7

α-mangostin
Cowanol and Cowanin

L-αphosphatidyl-D-myoinositol-3,5-biphosphate
Phosphatidyl-myo-inositol-3,4,5-triphosphate

Fluoxetine
Dextromethorphan

Maprotilin
Orphenadrine
Nortriptyline

Triflupromazine
Sertraline

[93]
[94]
[95]
[96]
[97]
[85]
[98]

[99]

[100]

Neutral sphingomyelinase (N-sphingomyelinase) is another enzyme, which is re-
quired for the hydrolysis of sphingomyelin to synthesize ceramide. Accordingly, N-
sphingomyelinase inhibition is an effective approach to regulate ceramide levels. A
previous report suggested that an isolated compound, scyphostatin, has a structural re-
semblance to ceramide and may inhibit N-sphingomyelinase [88]. Moreover, some other
N-sphingomyelinase inhibitor analogs have been developed, namely spiroexpoxide, [89]
manumycin A, [90] alutenusin, [91] and ubiquinol [92].
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In addition, the hydrolysis of sphingomyelin is catalyzed by ASM (acid sphingomyeli-
nase), indicating another target for the regulation of ceramide biosynthesis. To date,
different types of ASM inhibitors have been reported, including natural, non-natural,
physiological, and functional inhibitors. Besides, several research groups have reported
some direct inhibitors of ASM including KARI 201 [93], ARC39 [94], AD2765 [95], and
SMA-7 [96]. In addition, α-mangostin [97], cowanol, and cowanin [85] are natural ASM in-
hibitors, while various physiological inhibitors, including L-αphosphatidyl-D-myoinositol-
3,5-biphosphate [98] and phosphatidyl-myo-inositol-3,4,5-triphosphate [99] also inhibits
ASM. Indirect inhibitors of ASM, which act as functional inhibitors of acid sphingomyeli-
nase (FIASMAs) are also available. FIASMAs consist of compounds such as fluoxetine,
dextromethorphan, maprotilin, orphenadrine, nortriptyline, flupromazine, and sertra-
line [100]. These agents have been reported to inhibit ASM in the salvage pathway of
ceramide synthesis, thereby reducing the production of ceramide as a therapeutic agent for
neurological disorders.

Among these drugs many have undergone different phases of clinical trials including
Fenretinide, Resveratrol, Ubiquinol, Fluoxetine, Nortriptyline and Sertraline for their
investigation against recurrent neuroblastoma, cognitive change, sepsis, major depressive
disorder, depression, Parkinson disease and anxiety respectively.

7. Conclusions and Future Perspective

As the population continues to age, the prevalence of AD is also increasing. To date,
researchers have proposed several theories to explain the pathogenesis of AD. Based on
these mechanisms various therapeutics are developed and currently available to prevent
the disease progression. Among the mechanisms of AD pathology, most of the previous
reports have demonstrated an association of sphingolipid and its bioactive metabolites
in the progression and pathogenesis of AD. In this review, we emphasize the role of ce-
ramide, an important bioactive lipid in the sphingolipid family, in AD pathology. Ceramide
is associated with different pathological states, including neurodegeneration, diabetes,
obesity, and inflammation. As described above, ceramide levels in the cell and plasma
significantly control several characteristics of pathological changes in AD, including Aβ

plaques, mitochondrial dysfunction, senescence, autophagy dysfunction, platelet activation
and endothelial dysfunction. Moreover, unlike other sphingolipids, ceramide directly
participates in initiating the abovementioned pathological changes to cause AD. Hence,
ceramide biosynthesis pathways and the participating enzymes could be potential targets to
regulate ceramide levels and prevent disease progression. Several studies have suggested
the use of different types of drugs to inhibit specific enzymes in the ceramide synthesis
pathway. Consequently, the modulation of ceramide synthesis pathway significantly con-
trolled the level of ceramide and decreased AD progression. Nevertheless, owing to the
lack of knowledge regarding their safety and efficacy, the search for potential targets and
remedies remains a major point of attention.
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