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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) has a notoriously bad prognosis due
to its high mortality and lack of good therapies. Chemotherapy is the current standard of treatment
for PDAC, yet survival for most PDAC remain at around one year. Better therapeutic options are in
dire need. Unlike other cancer types where targeted therapies and immunotherapies have changed
the treatment landscape, their uses in pancreatic cancer are limited. However, there is increasing
evidence in preclinical and early clinical studies that suggest these agents hold the key to the next
frontier in PDAC treatment. We herein review some selected evidence.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis.
It is currently the third most common cause of cancer-related mortality, despite being the 11th
most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet
survival, particularly in the advanced stages, often remains under one year. We are turning to
immunotherapies and targeted therapies in PDAC in order to directly attack the core features that
make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC
have generally been disappointing, we find optimism in recent preclinical and early clinical research.
We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new
strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine
receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA
homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors,
that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of
driver mutations and metabolic pathways and highlight some technological achievements such as
novel KRAS inhibitors.

Keywords: pancreatic cancer; immunotherapy; targeted therapy; tumor microenvironment

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the
pancreas and is associated with abysmal prognosis. Around 62,210 new cases of pancreatic
cancer (PDAC accounts for >90% of pancreatic cancers) were estimated in the United States
in 2022, accounting for 49,830 deaths in the same year [1]. Even though it is the 11th most
common cancer in the surveillance, epidemiology, and end results (SEER) database, it
is currently the third most common cause of cancer-related mortality and is projected to
become the second most common cancer-related mortality by 2030 [1–3]. Only 20% of PDAC
is diagnosed at an early stage, where it potentially resectable and curable; 30% are diagnosed
at a locally advanced stage and not amenable to surgery, and 50% are metastatic [4]. Even
in resected cancers, systemic recurrence rates are as high as 80–90% [5]. For patients who
have unresectable disease, chemotherapy is the cornerstone of management. However,
despite improvements in combination chemotherapy, such as front-line modified dosing of
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fluorouracil, oxaliplatin, and irinotecan (mFOLFIRINOX) or gemcitabine and nab-paclitaxel
(GemNab), median overall survival (mOS) for metastatic PDAC is less than one year and
only slightly higher for locally advanced unresectable PDAC [6,7].

Better systemic therapy options are needed beyond traditional chemotherapy. While
immunotherapies and targeted therapies are becoming mainstay treatment options in
various other solid tumors, there are currently no front-line non-chemotherapy options
in PDAC. The U.S. Food and Drug Administration (USFDA) has only approved pem-
brolizumab, larotrectinib, entrectinib, and olaparib as immunotherapy and targeted therapy
options in subsequent-line settings for PDAC [8]. In this review, we discuss the evolving
landscape of therapeutic targets in PDAC, including selected clinical data from correspond-
ing trials.

2. Immunotherapy
2.1. Immune Checkpoint Inhibitors (ICIs) and the Tumor Microenvironment (TME)

Unlike immunogenic tumors, such as renal cell carcinoma and melanoma, where ICIs
have made a notable positive impact on survival, PDAC has remained largely refractory
to many immunotherapies [9,10]. The KEYNOTE-158 basket trial was widely regarded as
a landmark trial that led to USFDA approval of pembrolizumab (anti-PD-1) across high
microsatellite instability (MSI-H) advanced solid tumors [11]. There were 22 patients in
the trial with PDAC, with an overall response rate (ORR) of 18.2%, which was much lower
than other cohorts in the study such as in gastric or cholangiocarcinoma (ORR of 45.8% and
40.9%, respectively). Even so, only a very small proportion of real-world PDAC, ≈1–2%,
are MSI-H [12]

Similarly, a combination of anti-CTLA-4 and anti-PD-1/PD-L1 approaches in phase
I/II trials have failed to demonstrate the same degree of efficacy in PDAC as compared
to other tumor types [13]. Trials have also showed the limited benefit in adding ICIs,
such as pembrolizumab or durvalumab (anti-PD-L1), to chemotherapy backbones [14].
For example, in a two-armed phase II trial of GemNab with or without durvalumab
plus tremelimumab (anti-CTLA-4) in metastatic PDAC, there was no added benefit from
immunotherapy in mOS (9.8 months in immunotherapy arm vs. 8.8 months in control
arm; HR 0.94, p = 0.72) or mPFS (5.5 vs. 5.4 months, respectively, HR 0.98, p = 0.91) [15].
Another phase III study from China showed that the addition of sintilimab (anti-PD-1) may
improve ORR (50% vs. 23.9%, p = 0.10), but did not improve mOS (10.9 vs. 10.8 months,
HR 1.083, 95% CI 0.68–1.69) [16]. We have made a comprehensive list of reported and
ongoing ICI trials in PDAC in Tables 1 and 2, respectively. On the basis of these results, it
was heavily suggested that PDAC has immune features that are different from other types
of solid tumors.

Table 1. Characteristics and results of published and completed trials with immune checkpoint
inhibitors in PDAC.

Treatment Population
Trial Phase,

Year, Author,
Ref.

Number
of

Patients

mPFS
(Months) mOS (Months) Results

(1) Durvalumab
1500 mg +

galunisertib 50 mg
1×/day mPDAC

Phase Ib, 2021,
Melisi, [17]

(1) 3 (1) NR (1) NR
15/32 patient had PD,
and DCR was 25.0%.

(2) Durvalumab
1500 mg +

galunisertib 50 mg
2×/day

(2) 4 (2) NR (2) NR
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Table 1. Cont.

Treatment Population
Trial Phase,

Year, Author,
Ref.

Number
of

Patients

mPFS
(Months) mOS (Months) Results

(3) Durvalumab
1500 mg +

galunisertib 80 mg
2×/day

(3) 3 (3) NR (3) NR

(4) Durvalumab
1500 mg +

galunisertib 150 mg
2×/day

(4) 32 (4) 1.8 (4) 1.8

Nivolumab +
ipilimumab +

radiation
mPDAC Phase II, 2021,

Parikh, [18] 25 2.5 4.2 DCR was 20% (5/25)
of PDAC patients.

Anti-PD-L1 Pre-treated
LAPC/mPDAC

Phase I, 2012,
Brahmer, [19] 14 NR NR

No objective
responses seen in

patients with PDAC.

Pembrolizumab +
multiple chemo

arms

Pre-treated
mPDAC

Phase 1b, 2017,
Weiss, [20] 11 NR 8 No additional data

reported for PDAC.

Pembrolizumab +
GemNab

Pre-treated and
untreated
mPDAC

Phase Ib-II,
2018, Weiss,

[21]
17 9.1 15

DCR was 100% in 11
chemo naïve PDAC

patients.

Nivolumab +
mogamulizumab

Pre-treated
mPDAC

Phase I, 2019,
Doi, [22] 15 1.8 6.5

DCR was 40% (6/15)
and ORR seen in
1/15 patient with

PDAC.

Durvalumab +
ibrutinib

Pre-treated
LAPC/mPDAC

Phase Ib-II,
2019, Hong,

[23]
49 1.7 4.2 ORR seen in 2% of

patients with PDAC.

Durvalumab (D) +
tremelimumab (T)
or durvalumab (D)

monotherapy

Pre-treated
mPDAC

Phase II, 2019,
O’Reilly, [24] 65 9.4 (D+T)

3.6 (D)
8.8 (D+T)

6.3 (D)

Combination
treatment resulted in

an ORR of 3.1%,
while monotherapy

resulted in an ORR of
0%.

(1) Anti-CXCR4
+ pembrolizumab

(2) Anti-CXCR4
+ pembrolizumab +

chemo

Pre-treated
mPDAC

Phase IIa, 2020,
Bockorny, [25] 59 NR (1) 3.3

(2) 7.2

DCR was 34.5% in
patient treated with

anti-CXCR4 +
Pembrolizumab and
32% in patient with

combination of
anti-CXCR4 and

pembrolizumab with
chemotherapy.

Pembrolizumab
Pre-treated

MSI-H
LAPC/mPDAC

Phase II, 2020,
Marabelle, [11] 22 2.1 4.0

mDOR was 13.4
months in patients

with PDAC.

Pembrolizumab +
oncolytic virus
(Pelareorep) +

chemo

Pre-treated
LAPC/mPDAC

Phase Ib, 2020,
Mahalingam,

[26]
11 2 3.1

The ORR and DCR
were, respectively, 9%

and 27%.
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Table 1. Cont.

Treatment Population
Trial Phase,

Year, Author,
Ref.

Number
of

Patients

mPFS
(Months) mOS (Months) Results

Ipilimumab Pre-treated
LAPC/mPDAC

Phase Ib, 2010,
Royal, [27] 27 NR NR

No responders to
single agent
Ipilimumab
observed.

Ipilimumab
(1) Monotherapy

(2) + GVAX

Pre-treated
LAPC/mPDAC

Phase Ib, 2013,
Le, [28] 30 NR (1) 3.6

(2) 5.7

3 patients in
combination arm had

prolonged SD.
2 patients in

monotherapy arm
had SD

Tremelimumab +
gemcitabine

chemo naïve
mPDAC

Phase Ib, 2014,
Aglietta, [29] 34 NR 7.4 2 patients had PR.

Ipilimumab +
gemcitabine

Previously
treated

LAPC/mPDAC

Phase Ib, 2015,
Mohindra, [30] 13 NR NR

PR was seen in 2 pts
(15%) and stable
disease in 5 pts

(38%).

Ipilimumab +
gemcitabine

Pre-treated
mPDAC

Phase Ib, 2016,
Kaylan, [31] 16 2.5 8.3

The ORR was 14%
(3/21), and seven
patients had SD.

Ipilimumab +
gemcitabine

Pre-treated
mPDAC

Phase Ib, 2020,
Kamath, [32] 21 2.78 6.90

PR seen in 2/16
patients and SD seen

5/16 patients.

(1) Nivolumab +
GemNab +
APX005M

(0.1 mg/m2) mPDAC
Phase Ib, 2021,
O’Hara, [33]

(1) 6 (1) 10.8 (1) 15.9
ORR 58%

(14 patients).
(2) Nivolumab +

GemNab +
APX005M

(0.3 mg/m2)

(2) 6 (2) 12.4 (2) NR

(3) GemNab +
APX005M

(0.1 mg/m2)
(3) 6 (3) 12.5 (3) 12.7

(4) GemNab +
APX005M

(0.3 mg/m2)
(4) 6 (4) 10.4 (4) 20.1

Pegvorhyaluronidase
alfa (PEGPH20) +
pembrolizumab

Pre-treated
mPDAC

Phase II, 2022,
Zhen, [34] 38 1.5 7.2

SD in 2 patients
(25%), lasting 2.2 and

9 months.

NR = not reported; GemNab=gemcitabine and nab-paclitaxel; LAPC = locally advanced pancreatic can-
cer; mPDAC = metastatic pancreatic ductal adenocarcinoma; mPFS = median progression-free survival;
mOS = median overall survival; PD = progressive disease; DCR = disease control rate; SD, stable disease; mDOR
= median duration of response, ORR = objective response rate; PR = partial response.
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Table 2. Characteristics of ongoing trials with immune checkpoint inhibitors in PDAC.

Trial Reference Phase Treatment Population Number of
Patients

NCT04191421 [35] Ib-II Spartalizumab + siltuximab mPDAC 42

NCT03104439 [36] II Nivolumab + ipilimumab +
radiation PDAC 80

NCT04361162 [37] II Ipilimumab + nivolumab +
radiation therapy mPDAC 30

NCT04477343 [38] I SX-682 + nivolumab mPDAC 20

NCT04117087 [39] I KRAS peptide vaccine +
nivolumab + ipilimumab

Resected MMR-p
Colorectal cancer and

PDAC
30

NCT04953962 [40] II CBP501 + cisplatin + nivolumab mPDAC 92

NCT02451982 [41] II

Arm A: CY/GVAX
Arm B: CY/GVAX + nivolumab

Arm C: CY/GVAX + nivolumab +
urelumab

Arm D: BMS-986253 + nivolumab

Surgically resectable
PDAC 76

NCT03970252 [42] I Nivolumab, mFOLFIRINOX Borderline resectable
PDAC 36

NCT03563248 [43] II

(1) FOLFIRINOX → SBRT →
surgery

(2) FOLFIRINOX + losartan →
SBRT + losartan→ surgery

(3) FOLFIRINOX + losartan →
SBRT + nivolumab + losartan
-> surgery

(4) FOLFIRINOX → SBRT +
nivolumab→ surgery

LAPC 160

NCT04543071 [44] II Motixafortide, cemiplimab,
gemcitabine, nab-paclitaxel PDAC 10

NCT03816358 [45] I-II

(1) Anetumab ravtansine +
nivolumab

(2) Anetumab ravtansine +
nivolumab + ipilimumab

(3) Anetumab ravtansine +
nivolumab + gemcitabine

Mesothelin-positive
PDAC 74

NCT03767582 [46] I-II

Phase I:
GVAX + nivolumab +

CCR2/CCR5
Phase II:

(1) nivolumab + CCR2/CCR5
(2) Nivolumab + GVAX +

CCR2/CCR5

LAPC 30

MMR-p = mismatch repair proficient; LAPC= locally advanced pancreatic cancer; mPDAC = metastatic pancreatic
ductal adenocarcinoma.

An understanding of the TME of PDAC helps to explain some of its refractoriness
to immunotherapy (Figure 1). As demonstrated in both human and mouse models, a
hallmark of the PDAC TME is an abundance of stroma, which encompasses the non-cancer
cell components of the TME. The dense desmoplasia of the stroma includes cellular and
molecular components that inhibit both spontaneously and therapeutically induced anti-
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tumor immunity [47]. Pancreatic stellate cells (PSCs) are a unique component of a normal
pancreas and play a vital role in tumoral propagation. PSCs and activated fibroblasts
derived from PCSs secrete abundant proteins that help form the extracellular matrix during
tumorigenesis [48,49]. Both in vitro and in vivo, PSCs interact with a variety of immune
cells, including T cells and macrophages. For example, PSCs secrete the chemokine CXCL12,
which has a chemotactic effect on CD8+ T cells and may explain the frequent sequestration
of CD8+ T cells observed in the stroma rather than their accumulation next to tumor
cells [50,51]. Cancer stem cells (CSCs), although not unique to PDAC, are another class of
cells with immune-evasive potential. Recent data have suggested the interplay of CSCs
with the TME, whereby CSCs help create an immunosuppressive milieu that in turn helps
to potentiate its own expansion [52]. Some of the immunosuppressive properties of CSCs
include impaired antigen presentation, downregulation of tumor-associated antigens, and
inhibition of cytotoxic granules [53]. Pertaining to PDAC, Kim and colleagues identified
a group of PDAC cells with CSC features, namely, increased aldehyde dehydrogenase
(ALDH), a marker of stem/progenitor cells. The authors found that although these cells
predicted resistance to anti-tumor therapies, they may be suppressed by disulfiram [54].
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Indeed, PDAC is characterized as a “cold tumor” due to its paucity of intra-tumoral
CD8+ T cells in both human tumor samples and mouse models [55,56]. PDAC cells also
suppress is own MHC I expression to prevent recognition by CD8+ T cells, facilitating their
immune evasion [57]. These characteristics explain the decreased response to ICIs, given
the therapeutic effects of ICIs are mediated by CD8+ T cells. Furthermore, regulatory T cells
(Tregs) are recruited into the TME and play an immunosuppressive role by overexpression
of transcription factor fork-head-box protein 3 (FOXP3). A decrease in CD8+ T cells and
increase in Tregs have also been associated with poorer prognosis in PDAC [56]. In fact,
Kieler et al. summarized the mechanism of immune escape in PDAC as attributed to low
mutational load, impaired function of dendritic cells, CTLA-4 and PD-1/PD-L1 signaling
and upregulation, trafficking of Tregs into the TME, reduced migratory ability of CD8+
T-cells due to dense stroma, and downregulation of MHC-I molecules [58]. Furthermore,
the state of T cell exhaustion is relevant to PDAC, whereby T cells in chronic inflammatory
states, such as in the case of cancer, become dysfunctional due to chronic antigen exposure.
As such, the effector T cell function is hindered by imbalance of inhibitory and stimulatory
signals, namely, an increase in multiple inhibitory receptors such as PD-1, CTLA-4, TIM-3,
and LAG-3 [59]. The complex interplay of immunosuppressive cells, including Tregs,
tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and
regulatory B cells (Bregs) also contribute to T cell exhaustion, which in turn contributes
to PDAC resistance to many immunotherapies that rely on healthy T cells [59]. At the
same time, the improved understanding of the tumor biology in PDAC has prompted the
investigation of combination strategies by incorporating novel classes of immunotherapies
(i.e., vaccines or cellular therapies) with ICIs that may further activate and prime T cells in
the TME.

2.2. Vaccine Therapies

A number of vaccine therapies have been conducted on PDAC, but so far with very
limited success [10]. Therapeutic vaccines include whole-cell, dendritic cell (DC), and
DNA/peptide vaccines. GVAX is an example of an irradiated allogenic whole tumor cell
vaccine that is engineered to express granulocyte macrophage colony-stimulating factor
(GM-CSF) in order to stimulate antigen uptake by antigen-presenting cells (APC) to pro-
mote T cell priming. This was studied in phase II trials (NCT0084383 and NCT0141700) in
combination with CRS-207 (a live attenuated Listeria monocytogenes vaccine designed to
stimulate immune response) and seemed to demonstrate improved OS in single-arm stud-
ies [60,61]. However, ultimately, the combination of GVAX and CRS-207 plus chemotherapy
was not shown to improve survival over chemotherapy alone [62].

KRAS vaccines and the GV1001 vaccine (including fragments of hTERT protein found
in large portions of PDAC cells) are examples of peptide vaccines, but have also yielded
disappointing results so far in larger clinical trials [13]. A phase III study of GV1001 plus
gemcitabine and capecitabine in PDAC did not improve OS compared to chemotherapy
alone [63]. Despite some of the disappointments of these vaccines with respect to OS, there
are still promising data from these trials suggesting that the vaccines could generate robust
T-cell responses to tumor neoantigens and lead to T-cell infiltration into PDAC tumors [64].
There are ongoing studies looking at ways to improve vaccine efficacy. For example, it was
noted that vaccine therapy induces upregulation of the PD-L1 pathway, and hence trials
combining vaccines and PD-L1 checkpoint blockade are underway [64,65]. We have listed
reported and ongoing vaccine trials in Tables 3 and 4, respectively.
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Table 3. Characteristics and results of published and completed vaccine trials in PDAC.

Trial Phase,
Author, Year,

Ref.

Patient
Population Treatment Vaccine Type;

Vaccine Route
Number of

Patients
mPFS

(Months)
mOS

(Months)

Phase II, Lutz,
2011, [61] Resected PDAC GVAX (+ GM-CSF) +

resection + CRT Whole-tumor-cell; ID 60 17.3 24.8

Phase II, Le,
2015, [66]

Pre-treated
mPDAC

(1) GVAX (+ GM-CSF) +
Cy + CRS-207

(2) GVAX (+ GM-CSF) +
Cy

Whole-tumor-cell; ID 90 NR (1) 6.1
(2) 3.9

Phase IIb, Le,
2019, [62]

Pre-treated
mPDAC

(1) GVAX (+ GM-CSF) +
Cy + CRS-207

(2) GVAX (+ GM-CSF) +
Cy

(3) Chemo only

Whole-tumor-cell; ID 169
(1) 2.3
(2) 2.1
(3) 2.1

(1) 3.7
(2) 5.4
(3) 4.6

Phase II,
Tsujikawa,
2020, [67]

Pre-treated
mPDAC

(1) GVAX (+ GM-CSF) +
Cy + CRS-207 + anti-
PD-1

(2) GVAX (+ GM-CSF) +
Cy + CRS-207

Whole-tumor-cell; ID 93 (1) 2.2
(2) 2.2

(1) 5.9 (t)
(2) 6.1 (t)

Phase II, Wu,
2020, [68]

Pre-treated
mPDAC

(1) GVAX (+ GM-CSF) +
ipilimumab

(2) FOLFIRINOX alone
Whole-tumor-cell; ID 82 (1) 2.4

(2) 5.6
(1) 9.4

(2) 14.7

Phase I, Kaida,
2011, [69]

Gemcitabine-
naïve

LAPC/mPDAC

WT-1 vaccine +
gemcitabine Peptide; ID 9 NR 8.2

Phase I,
Nishida, 2014,

[70]

Untreated
LAPC/mPDAC

and treated
recurrent disease

WT-1 vaccine +
gemcitabine Peptide; ID 32 4.2 8.1

Phase I, Koido,
2014, [71]

mPDAC:
untreated

newly diagnosed
or recurrence

after
resection

WT-1 vaccine +
gemcitabine Peptide; ID 10 NR NR

NR, Tsukinaga,
2015, [72]

Untreated
mPDAC

WT-1 vaccine +
gemcitabine DC; ID 7 6.8 10.7

Phase I,
Mayanagi,
2015, [73]

Treatment-naïve
LAPC/mPDAC

WT-1 vaccine +
gemcitabine DC; ID 10 NR 8

Phase I,
Yanagisawa,

2018, [74]

Resected,
chemo-naïve

PDAC
WT-1 vaccine + chemo DC; ID 8 NR NR

Phase II,
Nishida, 2018,

[75]

Untreated
LAPC, mPDAC,

or
recurrence after

resection

(1) WT-1 vaccine + gem-
citabine

(2) Gemcitabine alone
Peptide; ID 85 (1) 5.2

(2) 3.3
(1) 9.6
(2) 8.9
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Table 3. Cont.

Trial Phase,
Author, Year,

Ref.

Patient
Population Treatment Vaccine Type;

Vaccine Route
Number of

Patients
mPFS

(Months)
mOS

(Months)

NR, Hanada,
2020, [76]

Pre-resected
recurrent PDAC WT-1 vaccine DC; ID 6 19.9 59

Phase I-IIa,
Nagai, 2020,

[77]

Pre-resected
PDAC

WT-1/MUC-1
vaccine + gemcitabine DC; ID 10 17.7 46.4

Phase I-II,
Asahara, 2013,

[78]

Chemo-
refractory,

LAPC/mPDAC,
or

recurrence after
resection

(1) KIF20A vaccine
(2) No treatment Peptide; SC 110 (1) 1.8

(2) NR
(1) 4.7
(2) 2.1

Phase I,
Suzuki, 2014,

[79]

Pre-treated
LAPC/mPDAC

KIF20A vaccine +
gemcitabine Peptide; SC 9 NR 57

Phase I,
Miyazawa,
2010, [80]

LAPC/mPDAC VEGFR2 vaccine +
gemcitabine Peptide; SC 18 3.9 7.7

Phase II-III,
Yamaue, 2015,

[81]

Untreated
LAPC/mPDAC

(1) VEGFR2 vaccine +
gemcitabine

(2) Gemcitabine
Peptide; SC 153 (1) 3.7

(2) 3.8
(1) 8.4
(2) 8.5

Phase II,
Suzuki, 2017,

[82]

Untreated
LAPC/mPDAC

KIF20A + VEGFR1/2
vaccine + gemcitabine Peptide; SC 68 4.7–5.2 9–10

Phase II,
Miyazawa,
2017, [83]

Pre-resected
PDAC

KIF20A + VEGFR1/2
vaccine + gem Peptide; SC 30 15.8 NR

NR,
Kameshima,

2013, [84]
LAPC/mPDAC Survivin vaccine + IFA,

IFNα
Peptide; SC 6 NR NR

Phase II,
Shima, 2019,

[85]

Pre-treated
LAPC/mPDAC

(1) Survivin vaccine +
IFA, IFNα

(2) Survivin vaccine +
IFA

(3) Placebo only

Peptide; SC 83
(1) 2.2

(3) 2.3

(1) 3.4 (t)
(2) 3.2 (t)
(3) 3.6 (t)

Phase I, Rong,
2012, [86]

Pre-treated
LAPC/mPDAC MUC-1 vaccine DC; ID 6 NR NR

Phase I, Le,
2012, [87]

Pre-treated
PDAC

Mesothelin expressing
Lm

Vaccine
Lm; IV 9 NR 7

Phase I,
Middleton,
2014, [63]

Untreated
LAPC/mPDAC

(1) Telomerase vaccine
(GV1001) sequen-
tially to chemo

(2) GV1001 concurrently
with chemo

(3) Chemo alone

Peptide; ID 1062
(1) 6.4
(2) 4.5
(3) 6.6

(1) 7.9
(2) 6.9
(3) 8.4
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Table 3. Cont.

Trial Phase,
Author, Year,

Ref.

Patient
Population Treatment Vaccine Type;

Vaccine Route
Number of

Patients
mPFS

(Months)
mOS

(Months)

Phase I-II,
Wedén, 2011,

[88]

Pre-resected
PDAC KRAS vaccine + GM-CSF Peptide; ID 23 NR 27.5

NR,
Abou-Alfa,
2011, [89]

Pre-resected
PDAC KRAS vaccine + GM-CSF Peptide; ID 24 8.6 20.3

Phase I,
Kubuschok,

2012, [90]
mPDAC KRAS vaccine LCL; SC 7 3.1 4.5

Phase I-II,
Palmer, 2020,

[91]

Pre-resected
PDAC

KRAS vaccine + GM-CSF +
gemcitabine Peptide; ID 32 13.9–

19.5
33.1–
34.2

Phase Ib,
Bassani-

Sternberg,
2019, [92]

Pre-resected
PDAC

Neoantigens + chemo +
anti-PD-1 + aspirin DC; SC 3 NR NR

Phase II,
Yanagimoto,

2010, [93]

Untreated
LAPC/mPDAC

Personalized
Vaccine + gemcitabine Peptide; SC 21 7 9

Phase I, Bauer,
2011, [94]

Pre-resected
recurrent PDAC

Tumor lysate
Vaccine + gemcitabine DC; ID 12 NR 10.5

NR, Kimura,
2012, [95]

Chemo-
refractory

LAPC/mPDAC

Personalized
and/or tumor lysate

vaccine + chemo + LAK
cell therapy

DC; IT 49 NR 11.8

Phase II,
Yutani, 2013,

[96]

Chemo-
refractory
mPDAC,

Personalized vaccine +
chemo Peptide; SC 41 NR 7.9

Phase I, Qiu,
2013, [97]

Pre-treated
LAPC/mPDAC

Tumor lysate expressing
-Gal + CIK cell therapy DC; ID 14 NR 24.7

NR, Lin, 2015,
[98]

Pre-treated stage
II PDAC, LAPC,

mPDAC

Pancreatic cancer stem cell
lysate Whole-tumor-cell; SC 90 NR NR

Phase I,
Mehrotra, 2017,

[99]

Pre-treated
LAPC/mPDAC

hTERT, CEA, Survivin
vaccine + TLR-3 agonist DC-ID 12 3 7.7

Phase 1–11,
Ota, 2021, [100]

Advanced or
recurrent PDAC

WT1 and/or MUC1 +
GEM plus nab-PTX or
FOLFIRINOX regimen

Peptide-ID 48 8.1 15.1

Phase II,
Zheng, 2021,

[101]

Pre-resectable
PDAC GVAX + Cy Whole tumor cell-ID

(1) 29
(2) 28
(3) 30

(1) NR
(2) NR
(3) NR

(1) 34.2
(2) 15.4
(3) 16.5

NR = not reported; R=retrospective; ID = intradermal; IV = intravenous; IM = intramuscular; IT = intratumoral;
SC = subcutaneous; Gal = alpha-galectin; TLR = Toll-like receptor; Cy = cyclophosphamide; CRS-207 = mesothelin-
expressing Lm vaccine; Lm = Listeria monocytogenes; DC = dendritic cell, LAK = lymphokine-activated killer;
CIK = cytokine-induced killer; chemo = chemotherapy; BSC = best supportive care; IFA = incomplete Freund’s
adjuvant = IFNα, interferon-alpha; LAPC = locally advanced pancreatic cancer; mPDAC = metastatic pancreatic
ductal adenocarcinoma; mPFS = median progression-free survival; mOS = median overall survival.
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Table 4. Characteristics of ongoing vaccine trials in PDAC.

Trial Reference Phase Treatment Population Number of Patients

NCT03956056 [102] I Neoantigen peptide vaccine Pre-resected PDAC 15

NCT04117087 [39] I KRAS peptide vaccine, nivolumab,
and ipilimumab Pre-resected PDAC 30

NCT01088789 [103] II

Multiple cohorts and arms involving
allogenic pancreatic tumor cell vaccine

transfected with GM-CSF, in
combination with cyclophosphamide

Pre-resected PDAC 72

NCT03592888 [104] I mDC3/8-KRAS vaccine Pre-resected PDAC 12

NCT02600949 [105] I
Multiple cohorts testing personalized

vaccine + imiquimod with
pembrolizumab and APX005M

Advanced PDAC or
colorectal cancer 150

NCT03006302 [106] II Epacadostat + pembrolizumab + CY +
GVAX + CRS-207 mPDAC 44

NCT04157127 [107] I Autologous DC vaccine PDAC 43

NCT02451982 [41] I

Arm A: CY/GVAX alone
Arm B: CY/GVAX + nivolumab

Arm C: CY/GVAX + nivolumab +
urelumab

Arm D: BMS-986253 + nivolumab

Resectable
adenocarcinoma of the

pancreas
76

NCT03767582 [46] I-II

Phase I:
GVAX/Nivolumab/CCR2/CCR5

dual antagonist
Phase II:

Arm A: nivolumab/CCR2/CCR5 dual
antagonist

Arm B:
nivolumab/GVAX/CCR2/CCR5 dual

antagonist

Locally PDAC 30

IL = interleukin; cy = cyclophosphamide.

2.3. Cellular Therapies

Cellular therapy in solid tumors can be represented by chimeric antigen receptor T cell
(CAR-T) and adoptive transfer of tumor-infiltrating lymphocytes (TILs). Initial CAR-T
development used CD19 and CD20 as targets in hematologic malignancies with excellent
results, but new targets are necessary for solid tumors. Some engineered CAR-T targets
that showed efficacy in mouse models include CEA, mesothelin, EGFR, and HER2 [14].
Unfortunately, this efficacy has not been replicated in clinical trials [108]. Several challenges
were presented. The aforementioned T-cell exhaustion could affect the quality of innate
T cells that are harvested from the host, such that the ability for an ideal CAR-T to infiltrate
the tumor and propagate in the TME may be hindered by exhausted adoptive T cells [59].
Furthermore, improved specificity of the chosen CAR-T target is necessary to prevent
unwanted side effects. For example, targeting the ubiquitous HER2 results in autoimmunity
in healthy cells, such as epithelial and skin cells [64].

Cellular therapies continue to evolve. For example, ongoing studies show some
promise in adding tumor-targeting cytokine receptors to CAR-T to help with intratumoral
trafficking and tumoral response [64]. Another phase I trial of adoptively transferred,
autologous, nonengineered, multiantigen specific T cells demonstrated good safety and
tolerability in patients with PDAC and induced longer than expected duration of cancer
control [109]. These T cells simultaneously targeted tumor-associated antigens PRAME,
SSX2, MAGEA4, NY-ESO-1, and Survivin. Additionally, the development of “off-the-shelf”
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allogenic CAR-T cells could ameliorate the problem of T-cell exhaustion, as it would no
longer rely on the host’s potentially dysfunctional T cells.

2.4. Other Immunotherapy Approaches

As previously mentioned, a major challenge in immunotherapy for PDAC is the
limited mobility and intratumoral infiltration of CD8+ T cells. In CXCL12-CXCR4 signaling,
the chemokine receptor CXCR4, which is stimulated by CXCL12, inhibits the migration
of immune cells in preclinical models [110]. In PDAC, a CXCR4 antagonist, AMD3100
(plerixafor), has entered a clinical trial as an adjunct to anti-PD-1/PD-L1 therapy in hopes of
augmenting the effects of checkpoint blockade (NCT04177810). Similarly, another CXCR4
antagonist (BL-8040) was evaluated with pembrolizumab and chemotherapy as subsequent-
line therapy in metastatic PDAC. In this phase II study, patients who received BL-8040 plus
chemoimmunotherapy had an ORR of 32% and median duration of response (mDOR) of
7.8 months, which compared favorably with historical data for second-line therapy [25].
Larger trials are needed to validate these results.

CD40 is a cell surface member of the tumor necrosis factor (TNF) receptor family
and, when activated, promotes dendritic cell priming of T cells and macrophages. In
a phase Ib study, a CD40 agonist, APX005M (sotigalimab), was used in combination
with chemotherapy (GemNab) and nivolumab for metastatic PDAC. Among 24 patients,
the ORR was 58%, and median progression-free survival (mPFS) was 11.7 months (95%
CI 7.1–17.8 months), which compared favorably with historical mPFS of 5.5 months with
chemotherapy only [7,33]. The results are currently being evaluated in a phase II study
by the same group [111]. A separate phase I study of APX005M given neoadjuvantly in
resectable PDAC showed a significant increase in T-cell-enriched tumors upon resection
(82% of tumors were T-cell-enriched) compared to tumors treated with chemoradiation
alone (23%, p = 0.012) and to untreated tumors (37%, p = 0.004) [112]. Results from larger
trials are necessary to confirm these promising results.

3. Targeted Therapies

To demonstrate the progress of small molecule targeted therapies, we here describe
some targets that are of particular excitement to us.

3.1. The DNA Damage Repair (DDR) Pathway

Targeting the DDR pathway has become a therapeutic interest for many solid tu-
mors, including PDAC. DNA damage is a common event in normal cells but must be
immediately repaired in order to prevent mutation and tumorigenesis. Among other path-
ways, we highlight two that are of particular interest in double stranded DNA (dsDNA)
repair—homologous recombination repair (HRR), which is considered error-proof, and
non-homologous end joining (NHEJ), which is more error-prone [113]. Although many
genes are involved in HRR, the most well studied ones in PDAC are BRCA1/2 and PALB2,
which help form the initial complex at the site of DNA break and activate RAD51 to begin
HRR [113]. Any compromise to HRR, such as from BRCA mutations, leads to a state
of homologous recombination deficiency (HRD). Retrospective and systematic analyses
have found that 15–25% of PDAC have mutations in genes associated with HRD and that
there were no significant differences between somatic and germline mutations [114–116].
Historically, sensitivity of cancers with HRD to platinum chemotherapy have been well
characterized, specifically owing to the inability for HRR-deficient cells to resolve DNA
damage induced by platinum therapy [117].

In cancers with HRD, poly(adenosine diphosphate-ribose) polymerase inhibitors
(PARPi) have become the breakthrough targeted therapy, particularly in ovarian cancer in
which it was first studied clinically [118]. The rationale behind PARPi use in HRD is ex-
plained by the concept of synthetic lethality wherein efficient DDR is severely compromised
when multiple repair pathways are inhibited (Figure 2) [119]. To simplify this concept, if
a mutation in the HRR gene inhibits this pathway, synthetic lethality is established when
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PARPi directly blocks the base excisions repair (BER) pathway. This scenario creates a
reliance on error-prone non-HRR pathways, such as NHEJ (which is also directly promoted
by PARPi), and leads to cell death [119–121].
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Figure 2. Graphical representation of HRD (homologous repair deficiency), which lends to synthetic
lethality with PARPi use. PARPi directly inhibits BER in ssDNA repair, which leads to double-
stranded DNA during replication. In the setting of HRD, DNA repair is relegated to error-prone
pathways (e.g., NHEJ), which leads to cell death.

PARPi have shown activity in PDAC. The phase III POLO trial demonstrated the
sensitivity of PDAC with germline BRCA1/2 mutations to olaparib. Maintenance of
olaparib after platinum-based induction therapy showed superior mPFS compared to
placebo (7.4 vs. 3.8 months, hazard ratio (HR) 0.53, 95% CI 0.35–0.82, p = 0.004), although
mOS was similar (18.9 vs. 18.1 months, p = 0.68) [122]. Olaparib is FDA-approved in the
maintenance setting for patients with metastatic PDAC with germline or somatic BRCA1/2
or PALB2 mutations and is currently being studied in combination therapies. Other PARPi
have also entered clinical trials in PDAC, including veliparib, rucaparib, talazoparib, and
niraparib [123]

A phase I/II study of the PARPi veliparib plus chemotherapy (fluorouracil and oxali-
platin) was conducted in patients with metastatic PDAC. The ORR was 26% for all patients;
however, in patients who were platinum-naïve and had HRD, the response rate was im-
pressively 57% [124]. This further highlighted the importance of patient selection in this



Cancers 2022, 14, 2619 14 of 25

personalized approach. A separate phase II trial of veliparib with or without gemcitabine
and cisplatin (GEMCIS) in patients with advanced PDAC and germline BRCA/PALB2
mutations unfortunately did not show improved ORR with the PARPi and chemotherapy
combination (74.1% vs. 65.2%, p = 0.55), nor improved mOS (15.5 months vs. 16.4 months,
p = 0.6) [125]. However, it suggested increased sensitivity to platinum-based chemother-
apy in HRR-deficient PDAC as supported by the higher-than-historical ORR (≈32%) to
chemotherapy [6]. In a phase II second-line trial, veliparib did not show benefit when
added to fluorouracil and irinotecan (FOLFIRI) [126].

There are several therapeutic challenges in PARPi use. For example, PARPi have no-
table hematologic toxicity when combined with chemotherapy. A phase I trial of olaparib in
combination with irinotecan, cisplatin, and mitomycin was stopped early due to substantial
toxicity (grade ≥ 3 neutropenia of 89%), and the addition of veliparib to GEMCIS also
caused increased neutropenia (48% vs. 30% in chemotherapy alone) [125,127]. However, no
increased toxicity was seen when olaparib was used alone in the POLO trial [122]. Another
challenge is to better understand the biomarkers that could predict PARPi sensitivity, as
well as refractoriness. The importance of BRCA1/2 and PALB2 in HRR and the benefit of
PARPi in BRCA1/2 mutations are well characterized in multiple cancers, including PDAC.
However, the role of a number of other genes involved in the HRR (i.e., RAD51, ATM,
ATR, CHEK1, ARID1A, etc.) requires better understanding. For example, ATM-deficient
tumors appear to be more responsive to radiotherapy, platinum-based chemotherapy, and
PARPi [128]. The importance of these genes to HRR likely vary, where ATM deficiencies
appear less important than BRCA1/2 in prostate cancer, given the lower response rate to
PARPi for ATM-deficient tumors [129].

Studies are currently exploring synergistic therapies to be given with PARPi, such
as in combination with ICI. The rationale for this approach is supported by evidence
that BRCA1/2-deficient cancers express higher levels of neoantigens, thereby increasing
immunogenicity. The DNA damage created by PARPi further generates an interferon
response that leads to increased T-cell recruitment and tumor-infiltrating lymphocytes [130].
For example, preclinical studies demonstrate synergy between PARP inhibition and anti-
CTLA-4 therapy in BRCA1/2 mutant ovarian cancer [131]. An interaction between PARP
inhibitor and tumor-associated immunosuppression likely provides evidence to support
the combination of PARP inhibitors and anti-PD-1/PD-L1 combinations. PARPi-related
upregulation of PD-L1 expression in breast cancer cell lines and animal models appears to
occur by knocking out GSK3β activity, which significantly increases PD-L1 expression and
resistance to PARP inhibition. Hence, the blockade of PD-L1 re-sensitized tumor cells to
PARP inhibition [132]. A phase II study of olaparib plus pembrolizumab is underway in
patients with PDAC and who have HRR gene mutation(s) (NCT04666740).

Aside from PARPi, there are a number of other drugs being developed to target
specific elements of HRR, including small-molecule ATR/ATM inhibitors (i.e., M-6620 and
BAY-1895344), which have entered early phase clinical studies, and CHK1 inhibitors (i.e.,
prexasertib) [133]. Data on their efficacies are evolving, and the potential to artificially
induce HRD in any cancer with these drugs may further open more doors for PARPi to
induce synthetic lethality.

3.2. Targeting NTRK

NTRK inhibitors are currently the only other class of targeted agents aside from PARPi
that are USFDA-approved for PDAC. NTRK encodes the family of TRK receptors, which
bind neurotrophin family ligands and normally promote maintenance and development
of the nervous system. TRK receptors activate downstream signaling pathways including
MAPK, PI3K, and PCK in order to facilitate neuron growth. The most common aberrant
NTRK expression is a gene fusion that causes constitutive activation of TRK proteins and
leads to tumor proliferation and survival [134].

Two NTRK inhibitors are USFDA-approved for NTRK-gene-fusion-positive PDAC,
loratrectinib and entrectinib, according to phase I/II basket trials. In a pooled analysis
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of three phase I/II studies of loratrectinib in solid tumors with NTRK gene fusions, the
ORR was 79% (121 of 153 patients), and one of two PDAC achieved an objective response.
Median DOR was 35.2 months across the entire population [135]. Similarly, in an integrated
analysis of three phase I/II trials involving entrectinib in patients with advanced NTRK
fusion-positive solid tumors, ORR was 57% (31 of 54 patients), and two of three PDAC
achieved an objective response [136]. Although the USFDA approved these inhibitors for
use across all NTRK-fusion-positive solid tumors, their actual clinical use is limited by the
rarity of these fusions (<1%) in the common cancer types, and only 0.8% in PDAC [137].
Nonetheless, the efficacy of these drugs is impressive for the minority of patients who
harbor this genetic aberration.

3.3. Targeting KRAS

Activating rat sarcoma vial oncogene (RAS) mutations, including KRAS, are the most
commonly mutated oncogenes in all cancers, although they are unevenly distributed
among different types of cancers [138]. Specifically, in PDAC, KRAS mutations occur
in more than 90% of tumors. There is strong evidence that KRAS is implemented in
tumorigenesis and progression [139]. KRAS represents the upstream signaling in the
RAS/RAF/MEK/ERK signaling pathway and is normally in a quiescent state but becomes
activated by receptors such as EGFR. Activating KRAS mutations result in enhancement
of downstream pathways that lead to cell proliferation. These pathways include the RAF-
MEK-ERK MAPK pathway, the PI3K-AKT-mTOR pathway, and the Ral guanine nucleotide
exchange factor pathway [139]. The most frequent KRAS mutation in PDAC is a point
mutation in codon 12, including G12D, G12V, G12R, G12A, and G12C variants [140].

Targeting KRAS has been structurally challenging due to physical characteristics of
the KRAS protein, namely, its lack of deep hydrophobic pockets. Initial attempts were
made to indirectly target KRAS (i.e., via farnesyl transferase inhibitors, RAF inhibitors, or
mTOR inhibitors), but were clinically unsuccessful [139]. In recent years, technological
advancements in X-ray crystallography and mass spectrometry enabled identification
of a pocket in KRAS G12C where covalent small molecules can bind [141]. This led to
the development of KRAS G12C inhibitors including sotorasib, adagrasib, JNJ-74699157,
and LY3499446. In non-small cell lung cancer (NSCLC), sotorasib gained accelerated
USFDA approval on the basis of a phase II trial demonstrating an impressive ORR of 37.1%
and disease control rate (DCR) of 80.6% in pretreated patients with KRAS G12C mutant
NSCLC [142]. Adagrasib showed similar efficacy in phase I and II trials for KRAS G12C
mutant NSCLC (OR 45%, DCR 96%) [140]. It is currently being examined in phase I and II
trials in KRAS G12C solid tumors, including PDAC (NCT03785249); interim results showed
that in 10 PDAC patients, there was 50% partial response (PR) and 100% DCR [143].

The potentials for these inhibitors are promising. However, resistance to first-generation
KRAS G12C inhibitors have already been identified, which often involves an acquired
KRAS Y96D mutation that interferes with drug binding. A novel class of drugs called
“tricomplex” inhibitors are engineered to combat this resistance by forming a complex with
the mutant KRAS G12C/Y96D and a chaperone protein (cyclophilin A) that is ubiquitous
inside cells. RMC-6291 is the first of this drug class, and its efficacy is supported by preclini-
cal data [144]. Nonetheless, there is still a need to develop inhibitors of other spontaneously
occurring KRAS mutations such as G12D mutations.

3.4. Targeting Downstream Effectors of KRAS

MEK is a downstream effector of KRAS in the RAS/RAF/MEK/ERK pathway. Given
the challenges of targeting KRAS directly, there have been several attempts at targeting its
downstream effectors, including MEK, where there are readily available potent inhibitors.
However, early trials with MEK1/2 inhibitors in metastatic PDAC failed to show convincing
benefit. For example, a phase II study of trametinib (MEK1/2 inhibitor) plus gemcitabine
did not show significant OS benefit (HR 0.98, p = 0.453) [145]. Similarly, another MEK
inhibitor, selumetinib, was compared against capecitabine and also showed no benefit
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in mOS (HR 1.03, p = 0.92) [146]. Studies suggest that targeting the RAS pathway gives
rise to parallel escape mechanisms from the tumor cells, particularly through autophagy,
which helps to explain this resistance. Hence, there are now several trials that combine
inhibitors of the RAS pathway (including MEK inhibitors) with an autophagy inhibitor
such as hydroxychloroquine. Xavier and colleagues described two cases of trametinib
plus hydroxychloroquine in KRAS-mutated chemo-resistant PDAC patients, wherein the
patients achieved disease stabilities that were clinically meaningful [147]. A phase II trial is
formally investigating this combination [NCT04566133].

3.5. Targeting TGFβ Signaling

TGFβ is a signaling molecule that has dual action in cancer, both as a tumor suppressor
and a tumor promotor. In its tumor suppressor role, it is a potent regulator of cell cycle
arrest in healthy cells and early stage cancer cells. However, its tumor promotor role is of
greater interest in research. In mouse models, TGFβ induces epithelial-to-mesenchymal
transition, wherein epithelial cells lose their cell-to-cell adhesion properties and become
more motile [148]. This transition is key for tumor cell migration and evasion of the immune
system. TGFβ also has potent immunosuppressive effects. For example, it promotes
immunosuppressive Tregs that repress the function of other effector T cells, such as NK
cells [148]. This effect is clinically supported by urothelial cancer samples showing that
high levels of TGFβ were associated with decreased response to PD-L1 blockade [149]. In
mouse models, it was suggested that blockade of TGFβ augments the effect of anti-PD-L1
therapy [150].

Galunisertib is a small-molecule TGFβ inhibitor that is studied clinically. Unfortu-
nately, a phase Ib study of galunisertib with durvalumab in recurrent/refractory metastatic
PDAC demonstrated limited clinical activity (mOS 5.72 months, mPFS 1.87 months, DCR
25%) [17]. Nonetheless, there is still interest in exploiting the TGFβ pathway, such as with
newer generation inhibitors (i.e., TGFβ receptor inhibitors, TGFβ checkpoint traps), or in
combination with other targeted agents such as anti-VEGF drugs [10].

4. Metabolic Pathways

There is renewed interest in targeting cancer cell metabolism based on the general
principle that cancer cells rewire many metabolic pathways to promote their own survival
and propagation. For example, cancer cells maintain high glycolytic activity, described by
the Warburg effect [10]. These metabolic alterations also have a significant impact on the
TME, as it competes with other cells, such as T cells, for limited metabolic resources, such
as glutamine [10,151]. Furthermore, aberrant KRAS signaling has also been associated with
dysregulation of metabolic pathways and leads to increased reliance on metabolites such as
glutamine and asparagine [152,153]. Below, we discuss two metabolic pathways in PDAC
that have shown some encouraging results.

4.1. Targeting Asparagine

Asparagine is a non-essential amino acid that many cancer cells, including in PDAC,
are unable to produce in large enough quantities to support their aberrant metabolism [151].
It is made intracellularly from aspartate and glutamine and catalyzed by asparagine syn-
thase, which is heavily expressed in PDAC as an adaptive response to its hypo-vascular
TME [153,154]. Eryaspase is an L-asparaginase that is encapsulated in red blood cells
and is currently under investigation in PDAC. In a phase II trial of chemotherapy (gem-
citabine or fluorouracil plus oxaliplatin) with or without eryaspase for advanced PDAC
in the second-line setting, eryaspase plus chemotherapy was well tolerated and showed a
survival advantage of 6.0 months vs. 4.4 months (HR 0.60, p = 0.0078) [153]. A phase III
confirmatory study unfortunately did not meet its primary OS endpoint when chemother-
apy was given with or without eryaspase (mOS 7.5 vs. 6.7 months, p = 0.375) in the
subsequent-line setting, although there was a trend towards improved OS in the group
receiving eryaspase with irinotecan-based therapy (i.e., fluorouracil plus irinotecan) [155].
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There is currently an ongoing phase I trial of eryaspase plus mFOLFIRINOX (fluorouracil,
oxaliplatin, irinotecan) in the front-line setting for PDAC. Interim analysis was encouraging,
with 50% PR (5 of 10 patients) and 100% DCR [156]. There were no dose-limiting toxicities.

4.2. Targeting Glutamine

Like asparagine, glutamine is another example of an essential amino acid that is in in-
creased demand by tumor cells. As the most abundant amino acid in the blood, it has been
well characterized in multiple biological processes that are important for cancer growth and
proliferation, such as its role in maintaining redox homeostasis via the glutamine-dependent
pathway of cytosolic NADPH production [157,158]. In a proof of principle, Chakrabarti
and colleagues demonstrated that by inhibiting glutamine metabolism (via BPTES or
CB-839), and thereby reducing NADPH pools, there is increased supra-physiological reac-
tive oxygen species formation, translating to antitumoral activity in vivo and in vitro [158].
Another group demonstrated that ablation of glutamate ammonia ligase, which is required
for de novo glutamine synthesis, suppresses the development of KRAS-driven murine
PDAC [159]. To date, these results have not yet been replicated in clinical studies.

4.3. Targeting Adenosine Generating Enzyme

Adenosine plays an immunosuppressive role in tumorigenesis. CD73 cooperates
with CD39 to promote metabolism of proinflammatory ATP to adenosine. Preclinical
models have shown increased expression of CD73 in tumor cells, as well as a proficiency
in converting ATP to adenosine. Adenosine interacts with G-protein-coupled receptors
to promote suppressive immune cells such as MDSCs and Tregs [160,161]. Chen et al.
described that a higher CD73 expression was negatively correlated with infiltrating levels
of CD8+ T cells in PDAC cell lines [160]. Anti-CD73 and anti-CD39 agents have shown
antitumoral activity in preclinical studies, although there is currently a lack of clinical
data to support this [162]. There are some phase I trials underway for anti-CD73 agents in
combination with existing therapies such as immunotherapies [NCT04148937].

5. Conclusions

The aggressive biology of PDAC, its high mortality rate, and the lack of good treatment
options has made this cancer a prime focus for the development of newer therapies. In this
review, we offered a glimpse into the evolving therapeutic areas in immunotherapy and
targeted agents in PDAC.

The success stories of immunotherapies shared by other types of solid tumors are
hindered in PDAC due to its unique TME, which is essential to the survival and persistence
of the cancer. It exemplifies the properties of a “cold tumor” that has masterfully silenced
the immune response within the immune milieu and allow it to evade the effects of
immunotherapies. Nonetheless, combinations of ICIs with vaccine therapies, CXCR4
antagonists, or cellular therapies are paving the way to a new generation of immunotherapy
approaches that show promise preclinically.

At the same time, evolution of targeted therapies has expanded the repertoire of
available molecular targets. For example, PARPi are the just the first class of targeted
therapies that have demonstrated clinical activity when specifically studied in PDAC. Yet,
there are several new drugs under various stages of development that can inhibit specific
genes in the HRR pathway, thereby inducing a state of artificial HRD that could further
sensitize cancer cells to PARP inhibition. Additionally, the recent clinical success of KRAS
G12C inhibition in NSCLC represents a triumph towards a driver mutation that is frequent
yet has been historically difficult to target, showing us the parallel evolution of technology
in drug development alongside clinical therapy.

The establishment of mFOLFIRINOX and GemNab as the standard of care for ad-
vanced PDAC likely represented the pinnacle of chemotherapy regimens for this disease.
The future of PDAC treatment hinges on (1) better understanding of the TME and the
tumor immune milieu to allow more effective immunotherapy approaches to overcome the
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“cold tumor” properties, (2) further characterization of the various signaling and metabolic
pathways in PDAC to help uncover new targets and synergies, and (3) leaning on new tech-
nologies in drug development (such as X-ray crystallography) and drug delivery (i.e., with
novel nanocarriers) [163]. It is essential that we improve the prognosis of this notoriously
challenging and deadly cancer.
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