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Surfactants, especially non-ionic surfactants, play an important role in the preparation of
nanocarriers and can also promote the enzymatic hydrolysis of lignocellulose. A broad
overview of the current status of surfactants on the immobilization of cellulase is provided in
this review. In addition, the restricting factors in cellulase immobilization in the complex
multiphase hydrolysis system are discussed, including the carrier structure characteristics,
solid-solid contact obstacles, external diffusion resistance, limited recycling frequency, and
nonproductive combination of enzyme active centers. Furthermore, promising prospects
of cellulase-oriented immobilization are proposed, including the hydrophilic-hydrophobic
interaction of surfactants and cellulase in the oil-water reaction system, the reversed
micelle system of surfactants, and the possible oriented immobilization mechanism.
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INTRODUCTION

Bioethanol, as a renewable, economically affordable, and environmentally safe energy material,
will gradually become a substitute for fossil fuels. It has far-reaching research significance and
application value for the development of a sustainable energy strategy (Karimi et al., 2021; Zeng
et al., 2021; Ziaei-Rad et al., 2021; Suhartini et al., 2022). Due to competition with food supply in
the first generation of bioethanol production, lignocellulose, a non-starch material, has become
an important raw material for bioethanol production (Alonso et al., 2019; Maia et al., 2020;
Winarni et al., 2020). Adsorption of cellulases onto lignin has been considered as the major
factor in retarding enzymatic cellulose degradation of lignocellulosic biomass (Djajadi et al.,
2018). Hydrophobic interaction, electrostatic interaction and hydrogen bonding have been
regarded as the cause of the nonproductive binding of cellulases to lignin (Djajadi et al., 2018; Li
et al., 2020; Song et al., 2020). A natural “biodegradable barrier” of lignin cell walls which are
connected in a strong, yet resilient network under the action of covalent and non-covalent bonds
render the cellulose inaccessible (Mnich et al., 2020; Chu et al., 2021). Therefore, to reduce the
recalcitrance of lignocellulosic biomass to biochemical degradation, pretreatment methods have
been developed to break down the lignin-hemicellulose-cellulose matrix and increase the
enzyme accessibility of the cellulose scaffold (Jiang et al., 2017a; Jia et al., 2018; Rocha-
Martin et al., 2018).
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In general, lignin-derived inhibition is the major physical
obstacle restricting the enzymatic hydrolysis of cell wall
polysaccharides (Leonidas et al., 2019; Zheng et al., 2021).
More importantly, the non-specific binding of free cellulase on
lignocellulosic substrates may account for the low rate of
hydrolysis at the action mechanism level during enzymatic
hydrolysis. Some enzymes remain free after the enzymatic
hydrolysis of lignocellulosic substrates, while non-specific
binding to the residual substrates also prevents the efficient
recycling of cellulase (Rahikainen et al., 2011; Kellock et al.,
2017; Bhawna et al., 2020). Moreover, the utility of cellulases
has been limited due to their low operational stability, high costs,
and poor reutilization when used in the native form (Yang et al.,
2017).

To overcome these barriers, immobilization is usually used to
improve enzyme stability and even activity or selectivity when
properly designed, which can also facilitate the reuse of enzymes
and effective cost of catalytic processes (Mita and Eldin, 2014; Li
et al., 2016; Mehta et al., 2016; Xu et al., 2016; Zhang et al., 2016).
The characteristics of various immobilization methods of
enzymes is summarized in Table 1. Cellulases represent a
large group of enzymes from various organism and with
different substrate specificity, biophysical properties, etc. The
immobilization behavior is different depending on the enzyme
or enzyme mixture investigated. During the immobilization
process of cellulase, the structure and properties of carrier
materials have significant effects on the performance of the
immobilized enzyme (Kalantari et al., 2013; Li et al., 2018).
The size of the carriers plays an important role in determining
the activity of the immobilized enzyme owing to the inverse
relationship between the carrier size and enzyme loading. Thus,
large carrier size decreases enzyme activity in general (Valencia
et al., 2010), and a reduction in the size of the carriers results in a
higher surface area for enzyme binding (Malar et al., 2018; Malar

et al., 2020). For the immobilization of cellulase, the smaller size
of the surface pore should be kept lower than that of the cellulase
macromolecule (6–20 nm), which can further reduce the internal
and external diffusion resistance in the heterogeneous system
(DiCosimo et al., 2013; Santos et al., 2015). Therefore,
nanocarriers are widely used in the immobilization of enzymes
because of their unique properties, such as large specific surface
area to volume ratio (Cao et al., 2016; Roth et al., 2016; Malar
et al., 2020).

Moreover, the immobilization of cellulase has been achieved
based on physical adsorption, covalent binding, or affinity
interactions (Zang et al., 2014; Hosseini et al., 2018; Zhang
and Hay, 2019), including carrier-binding, microemulsion-
based organo-gels (MBGs), ultrasonic encapsulation,
crosslinking, entrapment, glutathione-labeling, and chelation
(Mroczkiewicz et al., 2012; Nicoletti et al., 2015). However,
enzymes often display drastically lower activity in organic
solvents than in water, and the water layer on the molecular
surface of enzymes determines their activity in organic media
(Zhang et al., 2012). Therefore, among several approaches to
resolve the challenges, one of the most effective methods is
immobilization of the enzymes within an aqueous
microenvironment in the organic solvents. Microemulsions
formed by amphiphilic surfactants have been widely reviewed
as effective media for the immobilization of enzymes in
hydrophobic solvents (Itabaiana et al., 2014; Rajnish et al.,
2021; Savic et al., 2021). The MBGs method based on
microemulsions has been used to form matrices for enzyme
immobilization to achieve enzymatic catalysis in
nonconventional medium as they appear to be rigid and stable
for a long time, even within the reaction solution (Zhang et al.,
2012). Therefore, the MBGs method has unique advantages of
improving the chemical stability of immobilized enzymes and
maintaining high catalytic activity (Pavlidis et al., 2010; Itabaiana

TABLE 1 | The characteristics of various immobilization method of enzymes.

Methods Mechanisms Characteristics References

Adsorption Physical Adsorbed on the carriers Active center of the enzyme is not easy to be destroyed, and not
obvious structure change occurs

Gao et al. (2009)

Ionic Combined with water-insoluble carrier containing ion-
exchange group by electrostatic force

Structure and amino acids of the active center rarely change, and
the higher activity immobilized enzyme can be obtained

Sui et al. (2015)

Encapsulation Mixed with polymer monomer and further embedded in the
polymer

It is not necessary to combine with amino acid residues of enzyme
protein, and rarely change the spatial conformation of enzyme

Singh et al.
(2020)

Covalent binding Covalently bonded to the water-insoluble carrier Enzyme molecules are firmly connected with the carrier, the
structure of the enzyme protein is often changed, resulting in the
damage of the active center of the enzyme

Ghasemi et al.
(2021)

Cross-linking Bifunctional reagent or multifunctional reagent is used to
form covalent bond between enzyme molecules

Combined with adsorption or encapsulation method, the activity
of immobilized enzyme can be increased and the reinforcement
effect can be achieved

Ouyang et al.
(2020)

Cross-linked enzyme
aggregates (CLEAs)

Covalently bound by cross-linking agent to keep the
supramolecular structure and activity

Carrier free immobilization, good stability, low cost, large activity
per unit volume, and high space efficiency

Xu et al. (2020)

Co-immobilization Different enzymes are immobilized in the same carrier at
the same time

Several kinds of enzymes and cells with different functions work
together in the same system

Qiu et al. (2021)

Oriented
immobilization

Specific site of enzyme connects with carrier and the active
site faces outsid

It is beneficial for the substrates to enter into the active site of the
enzyme and can significantly improve the activity of the
immobilized enzyme

Zhou et al.
(2021)
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et al., 2014). It is clearly that the surfactants play an important role
in the preparation of nanomaterials (Lou et al., 2017; Bao et al.,
2019; Ortiz-Martínez et al., 2019; Alexander et al., 2020).

The surfactants have been widely used for the preparation of
nanocarriers as shown in Table 2, forming the nano-template by
micelles and emulsions of surfactants is a common method that
can greatly reduce the surface tension of the solvent and change
the interface composition and structure (Carter and Puig-Sellart,
2016; Bao et al., 2019). Desirable nanostructured materials can be
produced because of the special nanoreactors formed by
surfactant micelles and the oriented alignment characteristics
of surfactants in solution, such as the Langmuir-Blodgett (LB)
membranes and liposomes (Lok Kumar et al., 2014; Gutierrez
et al., 2016). Furthermore, the non-ionic surfactants can
significantly enhance cellulose hydrolysis, thus reducing
enzyme loading (Lou et al., 2017; Bao et al., 2019). However,
inhibitory effects have been observed with the addition of
amphoteric, anionic, and cationic surfactants (Lou et al., 2017;
Bao et al., 2019). Moreover, the loss of enzyme activity during
immobilization is a notable problem; the structural distortion
caused by the strong enzyme-support interactions may produce
steric hindrances and catalytic cleft blockage (Carlsson et al.,
2014; Suárez et al., 2018). Although a large dose of original
cellulase is added for a higher load of immobilized enzyme to
improve the activities of the immobilized enzyme, no significant
improvement in enzymatic activity has been observed due to the

random and inhomogeneous combination of the nanocarriers
and cellulase molecules (Nakayama et al., 2009). Oriented
immobilization, as a specific binding method, can effectively
prevent the nonproductive combination of enzymes and
nanocarriers, which further improves the immobilization and
hydrolysis efficiency. The reversed micelles formed by surfactants
have been successfully used in the preparation of oriented-
immobilized lipase when their concentration exceeds the
critical micelle concentration (CMC) (Fan et al., 2016). To
date, few studies have reported the oriented immobilization of
cellulase. Therefore, this review mainly focuses on the important
roles of surfactants in the immobilization of cellulase, mainly
including the preparation of nanocarriers and cellulase
hydrolysis. Moreover, a novel insight into the oriented
immobilization of cellulase in a surfactant reversed micelle
(SRM) system was discussed and found to have promising
prospects.

EFFECTS OF SURFACTANTS ON
NANOCARRIERS
Preparation of Nanocarriers Based on
Surfactants
The basic physical and chemical properties of surfactants, such as
micelle formation, dispersing, emulsifying, and solubilizing, have

TABLE 2 | Applications of surfactants in preparing nanomaterials.

Applications Types Characteristics References

Nanomaterials Metallic nanoparticles It is usually prepared in the reversed micelles and microemulsions system Kawasaki, (2013)
Semiconductor
nanoparticles

It is prepared in the reversed microemulsions system, including the oxides,
sulfides, and selenides etc.

Anjum et al. (2019)

Organic nanoparticles It includes organic drug nanoparticles and polymer nanoparticles, which can be
prepared in microemulsions system

(Li, Kawakami, and Hiramatsu,
2003)

Nanowires It can be prepared by the templates from micelles, liquid crystals, vesicles formed
by the surfactants

Xu et al. (2010)

Porous nano-materials Surfactants can be the structure directing agent of mesoporous materials Carrillo et al. (2011)
Nano-films It mainly includes Langrnuir-Blodgett (LB) film and Molecular-Deposition (MD) film Shil et al. (2017); Lai et al. (2020)
Nanocomposites Organic polymer was encapsulated on inorganic nanoparticles in inverse

microemulsion system
Al-Shemmari et al. (2014)

Methods Template-directed synthesis The electrostatic attraction, hydrogen bond and Van der Waals force between
surfactant molecules and nano materials are used for the formation of special
micelle structures, which can further used as the synthesis templates of nano
materials

Xu et al. (2010); Kayhomayun et al.
(2020)

Microemlusion method When the amount of surfactant and polar organic matter is large, the
microemulsion can be obtained, which can be used as a microreactor for
synthesizing nanomaterials

Anjum et al. (2019); Cui et al. (2019)

Hydrothermal synthesis Surfactants are mainly used as auxiliary materials Cui et al. (2019)
Sol-gel method The transparent sol is formed by hydrolysis and condensation reaction, and

gradually gelatinization. After drying and heat treatment, nanomaterials can be
obtained

Hassanzadeh-Tabrizi et al. (2016)

Surface
modification

Physical and chemical
properties

Surface adsorption and chemical reactivity of surfactants can modify the surface
of nanoparticles

Chaudhary et al. (2014)

Interfacial modification of
nanofilms

Hydrophilicity or lipophilicity of surfactants can be used to modify the interface of
nanofilms

Kovalchuk, (2015)

Effects Dispersion of nanoparticles in
media

Prevent particle agglomeration Fiorati et al. (2021)

Functional effects on
nanoparticles

Improve the compatibility and affinity between polymer materials and inorganic
materials

You et al. (2019)
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made them widely useful in the field of nanotechnology (Yang
et al., 2017). Several ordered aggregations formed by the
surfactants are used as nano-templates for the preparation of
nanocarriers, such as micelles and reversed micelles. The process
can greatly reduce the surface tension of the solvent and change
the interface composition and structure (Bao et al., 2019). For the
preparation of nanocarriers, surfactant micelles are the
microreactors of nanocarriers during the preparation process,
and the morphology of microreactors is controllable because of
the amphiphilic characteristics of surfactants, which have been
used for the preparation of desirable nanostructured carriers
(Yiamsawas et al., 2017). For instance, hydrophilic surfactants
are often used for the preparation of spherical nanocarriers
because of their dispersibility in water (Luan and Ramos,
2010). Similarly, the reversed micelles of surfactants can
effectively define the particle size and reaction
microenvironment in the water, providing a nanoscale
reaction space. It has been widely used because the aggregates
self-assembled by surfactant molecules can be used to synthesize
ordered mesoporous materials with a simpler operation andmore
uniform channel distribution (Bao et al., 2017; Bao et al., 2019).

Surface Modification of Nanocarriers in the
Surfactant System
Surfactants can also change the surface properties of
nanocarriers, such as their morphology, magnetic properties,
dispersion, and catalytic performances (Asghar et al., 2016;
Wei et al., 2018; Lopes et al., 2019; Alexander et al., 2020).
This modification may result in a new structure with new
surface activity due to the combination of hydrophilic groups
of surfactants and surface groups of nanocarriers. For example,
the use of surfactants of decylamine and
cetyltrimethylammonium bromide can provide an easy and
effective way to change the functionality of cellulose
nanocrystals with a hydrophobic polylactic acid matrix and to
evaluate the effects of surface chemistry on the reinforcement
mechanisms (Orellana et al., 2018). Meanwhile, the presence of
surfactants can make nanocarriers more difficult to re-
agglomerate by reducing the surface energy and form a steric
hindrance effect (Wang M. et al., 2013; Tan et al., 2019), the
surfactants are coated on the surface of the nanocarriers to form a
space barrier layer, the hydrophilic group faces outward and the
hydrophobic group faces inward, so that the agglomeration of the
particles is avoided.

EFFECTS OF NANOCARRIERS ON
IMMOBILIZATION OF CELLULASE

The structure and properties of carrier materials have great
influence on the properties of immobilized cellulase, such as
internal geometry (e.g., flat surfaces or thin fibers), specific
surface area, superficial activation degree, mechanical
resistance, and pore diameter (Santos et al., 2015; Begum
et al., 2019; Malar et al., 2020). Meanwhile, partitioning and
mass transport limitations may yield spatial variations in local

reaction rates in porous materials (Neira and Herr, 2017).
Therefore, to improve the stability and catalytic activity of
immobilized cellulase, various materials, such as chitin,
chitosan, nylon, and polyvinyl alcohol, have been widely used
as carriers (Cherian et al., 2015; Priydarshani et al., 2018).

The physical effects of nanocarriers on immobilized cellulase
are as follows: 1) The pore size and effective surface area of the
nanocarriers. Not all porous carriers can be used for
immobilization of cellulase due to the limitation of pore size,
which should be larger than or equal to that of the cellulase to
reduce steric hindrance. The effective surface area occupied by the
enzyme determines the maximum load of the immobilized
cellulase (Santos et al., 2015). When a stable surface area is
maintained, the amount of immobilized or absorbed cellulases
is related to the pore size because the pore diameter determines
the size of the protein that can be immobilized on that carrier
(Teresa et al., 2009; Webster et al., 2015); 2) the number of
carrier-bound active groups (CAGs) is another key factor
controlling the enzyme-carrier multi-interaction (Cristina
et al., 2011; Santos et al., 2015); 3) the size of carriers plays a
very important role in the preparation of immobilized cellulase,
in that a smaller carrier size with larger specific surface area will
be better for the cellulase immobilization load, and the higher
surface porosity of the carriers providing numerous binding sites
for cellulase is one of the most important factors influencing the
activity of immobilized cellulase (Chen et al., 2010; Santos et al.,
2015; Malar et al., 2020); 4) the mechanical properties of the
carriers need to be controlled considering the final configuration
of the reactor. If the reactor is a fixed-bed reactor, such as
inorganic supports like porous glass, silicates, it should possess
very high rigidity to withstand high pressures without pressure
problems, but the situation is different if a stirred-tank reactor is
used (Cristina et al., 2011; Santos et al., 2015); 5) after the cellulase
penetrates the carriers, the internal morphology of carriers will
determine the possibility of obtaining a very intense or very
limited enzyme-carrier interaction (Santos et al., 2015). When the
diameter of the carriers is smaller than that of the enzyme, it is
difficult to obtain an intense enzyme-carrier interaction (Cristina
et al., 2011), but if the carriers have sufficiently large internal
surfaces, it is possible to get an intense interaction with a similar
flat surface (e.g., agarose beads, porous glass, or silicates) (Malar
et al., 2018).

In particular, the special superparamagnetism of magnetic
nanocarriers has attracted increasing interest as they allow easy
recycling and separation of catalysts and biomolecules from high-
viscosity liqueurs and high-solid-content broths. This unique
characteristic has been well-applied to immobilization of
cellulase, and a better hydrolysis efficiency and recycling
feasibility have been observed (Alftrén et al., 2014; Cao et al.,
2016; Cipolatti et al., 2014; Xing et al., 2015). During
immobilization of cellulase, magnetic chitosan microspheres
(C-MNPs) are frequently used as carriers because of their
significant biological (i.e., biodegradable, biocompatible,
bioactive) and chemical properties (polycationic, hydrogel,
contains reactive groups, such as -OH and -NH2). Moreover,
the hydrophilic properties of the C-MNPs play an important role
in the preparation of oriented-immobilized cellulase based on the
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SRM system. The conventional immobilization of cellulase
molecules on a single magnetic nanocarrier is simple, the
chitosan was usually first coated on the magnetic nanocarriers
for further combination with cellulase (Figure 1). Subsequently,
the combinedmaterial based on Fe3O4 nanocarriers have received
extensive attention in cellulase immobilization to improve
enzyme activity, loading, and stability because of their low
toxicity, biocompatibility, and easy synthesis (Jordan et al.,
2011). Magnetite nanocarriers coated with silica and modified
by organic-silanes, biocompatible, and with hydrophilic
properties, are promising for cellulase immobilization.

The binding sites of enzymes on the surfaces of carriers
depend on the chemical properties of the carriers. For non-
covalent immobilization, the chemical structure of the skeleton
and surface determines the applicability of carriers. The
functional groups play a key role in the activity, stability, and
selectivity of the enzyme, and the size, charge, polarity, and
hydrophilicity/hydrophobicity of groups can affect their
binding functions (Watanabe et al., 2010). Different properties
of the ionic groups on the surfaces of carriers may result in
different enzyme activities and further determine the structure of
immobilized cellulase (Santos et al., 2015; Berlin et al., 2016;

Frančič et al., 2016; Hui et al., 2016; Zhou et al., 2018). The
chemistry properties of enzyme and carrier cause the oriented
distribution of catalytic domain of enzyme from dispersion layer
to diffusion layer during the immobilization process is shown in
Figure 2. In this process, the CAGs directly participate in binding
with enzyme molecules, but the carrier-bound inert groups
(CIGs) are not directly involved. This interaction inevitably
disturbs the maintenance of the natural conformation of the
enzyme, leading to structural and functional changes in the
enzyme molecules. No obvious stability change has been
observed when the newly formed conformation is similar to
that of the natural enzyme.

The covalent binding between carriers and catalytic cleft of the
enzyme not only causes pore plugging of the surface, but also
leads to the drag increment of in-diffusion. Although an initial
high dosage of cellulase is added, the inhomogeneous distribution
of the carrier surface structure results in the uncontrollable
immobilization sites, and ineffective immobilization may lead
to a significant loss of enzymatic activity and reduce the
accessibility of the substrate to the functional sites. Moreover,
the partition and mass transport limitations of nanocarriers may
cause spatial variation in local reaction rates and further affect

FIGURE 1 | Schematic diagram of immobilized cellulase on a magnetic nanocarrier.

FIGURE 2 | Binding schematic diagram of enzyme and carrier caused by the chemistry properties during the immobilization process. CIGs means the carrier-
bound inert groups and CAGs means the carrier-bound active groups; The larger end of enzyme molecule stands for the catalytic domain and the other end stands for
the adsorption domain.
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enzymatic hydrolysis (Du et al., 2017; Zeng et al., 2019). The
chitosan molecules are mostly used because of the large number
of -OH and amino groups (-NH3), which are easier to co-
precipitate with cellulase (Bindhu and Abraham, 2010; Urrutia
et al., 2018; Saha et al., 2019; Mo et al., 2020). Moreover, surface
modification is an important strategy for tuning the properties of
nanocarriers. Surface modification can either alter the existing
property or introduce new properties onto nanoparticles using
various agents, such as organ siloxane, N-(3-
dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
(EDC), and carbodiimide, as well as amino silanes, such as 3-
aminopropyltriethoxysilane, aminoethyl aminopropyl
polydimethylsiloxane, and silica (Chang et al., 2011; Gokhale
et al., 2013; Riedel et al., 2017; Malar et al., 2018; Malar et al.,
2020).

ROLES OF SURFACTANTS ON CELLULASE
HYDROLYSIS

In most reports about hydrophobic ionic liquids, the enzymes
are not dissolved but merely in a dispersed state and therefore
regarded as a heterogeneous catalyst. Some hydrophilic ionic
liquids can accelerate the dissolution of enzyme molecules, but
cause the destruction of the protein secondary structure, leading
to the inactivation of the enzyme (Fujita and Ohno, 2010;
Moniruzzaman et al., 2010). In pure hydrophilic ionic liquids
the enzymes can be dispersed at the monomolecular level. The
hydrophilic proteins in almost anhydrous nonpolar solvents
form suspensions, whereas proteins with extended hydrophobic
surface segments form microemulsions in the same media,
greatly reducing the catalytic efficiency of the enzyme (Zuev
et al., 2003; Predvoditelev et al., 2010). Nonpolar hydrophobic
solvents, such as heptane, octane, and benzene, do not cause the
dehydration of biocatalysts. Therefore, the enzyme canmaintain
its catalytic activity (Muginova et al., 2010). Similarly, the
catalytic activity of enzymes can be retained in the surfactant
micelle system due to the water-oil amphiphilicity of surfactants
(Muginova et al., 2010). Non-ionic surfactants can significantly
accelerate the enzymatic hydrolysis of lignocellulose (Qing et al.,
2010; Seo et al., 2011b; Eckard et al., 2012; Yiamsawas et al.,
2017). For instance, Tween-20 can enhance the specific
adsorption of cellulase, and the conversion efficiency of
cellulose increased from 9 to 21% within 72 h when a high
lignocellulosic substrate was added (Seo et al., 2011a). The
prevention of non-productive enzyme adsorption onto lignin
is the most widely investigated mechanism for this
enhancement (Sipos et al., 2010; Lou et al., 2017). Recently,
Djajadi et al. (2018) has proved that the adsorption of cellulases
onto lignin substrates is reversible by nature, the reversible
adsorption-desorption is existing in the process. But the non-
productive adsorption caused by the ineffective combination
will occupy large number of catalytic clefts of enzyme molecule
which greatly hinder the enzymatic hydrolysis. Non-ionic
surfactants can render lignin surfaces more hydrophilic by
increasing their polar surface energy component, which can
reduce the non-productive adsorption of cellulases onto

lignocellulosic substrates caused by the ineffective
combination between catalytic clefts of enzymes and lignin
substrates (Jiang et al., 2017b), thereby promoting the
enzymatic hydrolysis of lignocellulose. However, for the
anionic surfactant-cellulase system, the adsorbed surfactants
on the surface of cellulase cause a lower negative charge area,
which further leads to negative catalytic activity due to the
presence of sulfonic acid groups with a higher ionization degree
(Yu and Zhang, 2016).

Furthermore, the effect of surfactants on cellulase
hydrolysis is related to the concentration of surfactants
(Zhou et al., 2015). In the enzymatic hydrolysis process,
cellulose molecules are specifically adsorbed by the
cellulose-binding domain (carbohydrate-binding module,
CBM) and exert a driving force on the enzyme during the
hydrolysis of cellulose (Liu et al., 2011; Tomme et al., 2015;
Arslan et al., 2016). The adsorption of CBM can increase the
cellulase concentration of the substrate surface by promoting
the association of enzymes and substrates, but the non-
covalent interactions (e.g., hydrogen bonds, electrostatic,
and hydrophobic interactions) may lead to a nonproductive
combination, because the random combination will occupy
the active center of enzyme, resulting in the loss of catalytic
activity. Ineffective adsorption can be reduced in the presence
of surfactants due to the hydrophobic structure of surfactants,
which can interact with the hydrophobic lignocellulosic
substrates and form a coating (Kumar and Wyman, 2010;
Li et al., 2012). However, contrasting results were obtained
when different concentrations of surfactants were added to
the enzymatic hydrolysis system. Some studies have suggested
that a high concentration of surfactants can inhibit cellulase
activity because strong hydrophobic interaction between the
surfactant and cellulase can further reduce the effective
adsorption of enzymes on cellulose (Wang Z. et al., 2013;
Bao et al., 2019). However, the promotion effect of surfactant
in enzymatic saccharification was observed in low
concentration of lignosulfonate with low molecular weight
and good sulfonation, which can be explained that the
lignosulfonate can prevent the nonproductive binding of
cellulase to lignin substrate, and the formed lignosulfonate-
cellulase aggregate can also stabilize and enhance the binding
of cellulase to lignin substrate (Lou et al., 2014).

THE ORIENTED IMMOBILIZATION OF
CELLULASE IN THE SRM SYSTEM

The oriented immobilization of proteins on a solid support can
effectively avoid its denaturation and keep its catalytic clefts fully
exposed to solution, thus maximally preserving the bioaffinity or
bioactivity. Liu and Yu (2016) has summarized the recent
advances in oriented immobilization of proteins with a
particular focus on antibodies and enzymes. However, the
orientated immobilization of enzymes at the solvent interface
is never involved. Thereby, the follow-up content will propose a
novel method to achieve the oriented immobilization of cellulase
in the SRM system.
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Construction of the SRM System
The SRM system has been widely used in the preparation of
immobilized enzymes (Dong et al., 2010; Marhuendaegea et al.,
2015). The special structure of surfactant molecules caused a
water-oil amphipathy with a hydrophobic nonpolar hydrocarbon
chain (alkyl) and a hydrophilic polar group (such as -OH,
-COOH, -NH2, and -SO3H) distributed at different ends. In
the water-oil (W/O) system, the surfactants are dissolved in
the nonpolar organic solvent when a trace of water is
provided, and the reversed micelles are formed when the
concentration exceeds the CMC (Takagi et al., 2019; Chi et al.,
2018). In reversed micelles, the nonpolar groups of the surfactants
are exposed to the nonpolar organic solvents, while the polar
groups are arranged inside. Therefore, a polar core with the ability

to dissolve polar substances in the microreactors is formed. The
SRMs are nanoscale aggregates that are formed spontaneously,
and the W/O microemulsion with low water content provides a
stable thermodynamic system (Tao et al., 2013). According to the
hydrophilic-hydrophobic interaction of surfactants and cellulase
in the oil-water reaction system, the large number of oil-water
interfaces in the system provides a good environment for the
catalytic reaction of enzyme molecules (Brady and Jordaan,
2009).

Mechanism of Oriented-Immobilized
Cellulase in the SRM System
Multipoint covalent attachment is likely the most effective
strategy for immobilization, but it is difficult to allow the
immobilization of enzymes at a well-defined position since the
proteins are usually attached to the solid surface by uncontrolled
chemical bonds (Barbosa et al., 2015; Hernandez and Fernandez-
Lafuente, 2011; Li et al., 2016). The uncontrolled conformational
changes were caused by random immobilization, which may lead
to a significant loss of enzyme activity, and the disordered enzyme
orientation may also reduce the accessibility of the substrate to
functional sites (Orellana et al., 2018; Steen Redeker et al., 2013;
Yu et al., 2012). However, the hydrophilic cellulase will be
dissolved in the SRM system due to the existence of
surfactants, which can maintain the activity of the enzyme and
prevent the toxic effects of organic solvents (Tao et al., 2013). The
active centers of cellulase molecules are usually clefts, which
provide a different microenvironment (Zhang et al., 2015)
because the structures of cellulase active centers are mainly
composed of eight kinds of amino acids (tryptophan, tyrosine,
histidine, phenylalanine, aspartic acid, glutamic acid, and
arginine). Aromatic amino acids and some polar amino acids
appeared more frequently, such as tryptophan, tyrosine, histidine,
aspartate, asparagine and arginine, most of which are
hydrophobic tryptophan and phenylalanine residues, especially

FIGURE 3 | The oriented immobilization diagrammatic sketch of single-layer cellulase in the surfactant reversedmicelles system, the “green” represents the internal
“pool” of SRM system, “black” represents the magnetic chitosan microspheres (C-MNPs), “brown” represents the cross-linked microsphere.

FIGURE 4 | The oriented immobilization process of cellulase on
magnetic nanoparticles.
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the tryptophan which has the highest content and plays an
important role in the recognition and binding of enzyme
molecules and substrate (Zhang et al., 2015). Hydrophobic
active centers are conducive to the combination of catalyzed
groups of cellulase and substrates. When the specific substrate is
close to the active centers, a change in the conformation of the
cellulase molecule can be induced so that the reaction groups of
the enzyme active centers and substrate are aligned correctly.
Meanwhile, the molecular orbitals between the reaction groups of
the active centers are strictly located in the right direction for
easier enzymatic reactions. Therefore, cellulase is distributed in
the W/O interface, and the catalytic active center is toward the
organic solvent and the other side toward the “pool”. Moreover,
the addition of surfactants can enhance the aggregation effect of
cellulase on theW/O interface, and the existence of a crosslinking
agent promotes the covalent crosslinking of enzyme molecules.
The catalytic activity centers of the cross-linked microspheres are
distributed uniformly and toward the outside, which solves the
challenge of the uncontrollable attachment sites of the cellulase
molecules in the immobilization process (Li et al., 2016; Steen
Redeker et al., 2013; Yu et al., 2012). In the SRM system, the
hydrophobic active molecules are exposed to the outside, which is
beneficial for the further combination of immobilized cellulase
and lignocellulosic substrates. However, the immobilized sites of
cellulase molecules remain stochastic and heterogeneous, which
may lead to covalent binding between the carriers and the active
center of the enzyme and further cause ineffective immobilization
and enzymatic reactions (Li et al., 2016). Therefore, to achieve
oriented immobilization and improve the recycling times of
cellulase, C-MNPs can be used as carriers as shown in
Figure 3. This method can effectively prevent the
ineffectiveness of cellulase immobilization. In this process,
glutaraldehyde is used as the crosslinking agent, and EDC
and N-hydroxysuccinimide are the coupling agents
(Figure 4). In the W/O system, the free carboxyl group
(-COOH) in the adsorption zone of the cellulase molecules
can realize covalent binding with a large number of amino
terminal catalytic residues of chitosan molecules (Fan et al.,
2016). The process cannot destroy the catalytic center of
cellulase, and the exposed catalytic clefts increase the
effective attachment of immobilized cellulase to solid
substrates, which further promotes enzymatic hydrolysis.
Therefore, the oriented immobilization of enzymes is
obtained in the SRM system, which can prevent

nonproductive combinations effectively and further promote
enzymatic hydrolysis.

CONCLUSION

Cellulase plays an important role in the production of fuel ethanol
by the enzymatic hydrolysis of lignocellulose, and the
immobilization of cellulase on the nanocarriers is an effective
way to improve hydrolysis efficiency. However, the nanocarrier
structure characteristics, solid-solid contact obstacles, external
diffusion resistance, limited recycling frequency of nanocarriers,
and nonproductive combination of enzyme active centers
restricted the further improvement of hydrolysis efficiency in
the complex multiphase system. Surfactants can promote the
enzymatic hydrolysis of lignocellulose and play an important role
in the preparation of nanocarriers. The special SRM system
caused by the amphiphilicity in the oil-water reaction system
can provide effective protection to obtain the immobilization of
single-layer cellulase, which can effectively prevent the
immobilization of cellulase and increase the effective
attachment of immobilized cellulase and solid substrates.
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