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There is a link between antibiotic resistance in humans, livestock and the environment.
This study was carried out to characterize antibiotic resistant bovine and environmental
Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates
of Enterobacteriaceae were isolated from March–May 2015 from 150 fecal samples
of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly,
43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental
samples from different sources. Isolates were recovered and identified from samples
using standard microbiological techniques. Recovered isolates were pre-identified by
the Microbact Gram-Negative identification system and confirmed with Matrix-assisted
laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal
multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by
Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried
out for isolate characterization and identification of resistance determinants. Out of 109
animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates
based on selection criteria showed antibiotic resistance and were further investigated
by whole genome sequencing (WGS). Resistance genes were detected in all (100%)
of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance
determinants included β-lactamase genes, aminoglycoside modifying enzymes, qnr
genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out
of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were
multidrug resistant (MDR) and had resistance determinants which included efflux genes,
regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our
study shows the dissemination of antibiotic resistance especially MDR strains among
Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these
resistant strains in animals and the environment constitute a serious health concern
indicated by the difficult treatment options of the infections caused by these organisms.
To the best of our knowledge we report the first detailed genomic characterization of
antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.
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INTRODUCTION

Members of the family Enterobacteriaceae are important
pathogens of humans and animals causing various infections
for example in humans which include septicemia, pneumonia,
peritonitis etc. (Makharita et al., 2020). They have been
reported to be the main causes of nosocomial infections
(Centers for Disease Control and Prevention [CDC], 2013).
In animals, members of the family Enterobacteriaceae can be
divided into three groups depending on their pathogenicity.
They include major animal pathogens like Escherichia coli,
opportunistic pathogens that occasionally cause infections in
animals like Proteus spp., Enterobacter spp., Citrobacter spp.
and organisms of uncertain importance for animals, e.g., Erwina
spp., Leclercia adecarboxylata (Veterian Key, 2016). Several
virulence factors involved in disease occurrence in members of
the Enterobacteriaceae family have been previously studied which
include invasion, hemolysins, siderophores and toxins which are
controlled by specific virulence genes (Pearce et al., 2006).

Antibiotic resistance is a serious health concern not only
among human pathogens but also in isolates found in other
habitats. Many resistant pathogenic bacteria and commensals
are found in different hosts, or in the environment (Taylor
et al., 2001). The connections between humans, animals, and
their environment allow the transfer of bacteria and mobile
genetic elements between different compartments (Woolhouse
and Ward, 2013). Antibiotic resistance genes are emerging
environmental contaminants, as they can be transferred to
other bacteria present in their environment (Krishnasamy,
2018). Multidrug resistance has increased all over the world
which is considered a public health threat. Several recent
investigations have reported the emergence of multidrug resistant
bacterial pathogen from different origins including humans,
birds, cattle, and fish (Algammal et al., 2020, 2021a,b). This
increases the need for routine application of antimicrobial
susceptibility testing to detect the antibiotic of choice as
well as screening of the emerging MDR strains. There are
different mechanisms of resistance in members of the family
Enterobacteriaceae. They include modification of the target,
efflux phenomenon, impermeability, and enzymatic inactivation
(Kotsyuba et al., 2014). Understanding resistance mechanisms
in Enterobacteriaceae including how they develop and are
transmitted is important for developing ways to monitor
resistance spread effectively and also have effective treatment
options. The various resistance determinants can be exploited to
produce possible safe and potent novel antimicrobial drugs with
new mechanisms of action.

Livestock animals are linked to humans through the food
chain and the environment they share (Marshall and Levy,
2011). Over the years, antimicrobials have been applied for
treatment of diseases in food producing animals, but also
for growth promotion and prophylactic purposes. Multiple
countries including developed and developing nations like
Nigeria have introduced bans on the non-therapeutic use
of antimicrobials. However, the coordinated surveillance and
monitoring of antimicrobial use and resistance especially in
developing countries like Nigeria is still limited, resulting in

an increase of resistant pathogens. Most of the main classes
of antibiotics used in human medicine are represented in a
list of antibiotics tagged as “critically important” for livestock
animals by the World Organization for Animal Health (OIE,
2007). Antibiotic residues are released into the environment
as a result of inadequate absorption and metabolic activities
carried out by food animals. Antimicrobials added to food for
livestock animals can be disseminated as a result of leaching and
release by urine and feces (Krishnasamy, 2018). The presence
of antibiotic resistance in Enterobacteriaceae as well as other
bacteria has been well documented in human, animal and
environmental isolates in developed countries (Yates et al.,
2004; Hoyle et al., 2005; Aarestrup et al., 2009; Fischer et al.,
2012; Spoor et al., 2012). In low/middle income countries like
Nigeria, research focus is majorly on antimicrobial resistance in
human pathogens with only a few detailed reports on animal
and environmental isolates (Adelowo and Fagade, 2009; Olowe
et al., 2015; Ayeni et al., 2016; Ngbede et al., 2017; Adelowo
et al., 2018; Shivakumaraswamy et al., 2019). The aim of this
study was to investigate antibiotic resistance and characterize the
resistance mechanism in Enterobacteriaceae isolated from bovine
animals and the environment in Edo state Nigeria using whole
genome sequencing.

MATERIALS AND METHODS

Bacterial Isolation and Identification
A total of 109 consecutive isolates of Enterobacteriaceae were
isolated from March–May 2015 from 150 fecal samples of healthy
bovine animals at slaughter from three farms in Edo state Nigeria.
The animals at slaughter were mostly Nigerian native cow breeds
of both male and female sex. Further, 43 Enterobacteriaceae
isolates were obtained from 100 environmental samples collected
at six different sites in Edo state, Nigeria during the same
period: 50 samples from refuse dump sites, 20 samples from
flowing rivers, 20 samples from the soil and 10 samples from
waste water. The environmental sampling sites were in close
proximity with the animal farms. Isolates were identified using
standard microbiological techniques (Cheesebrough, 2006). For
the isolation and identification of the different members of
Enterobacteriaceae, samples were inoculated on MacConkey agar
plates (Oxoid, Hampshire, United Kingdom) and incubated
for 24 h at 37◦C. Distinct colonies were obtained from
the agar plates and subcultured to obtain pure colonies.
The Microbact Gram-Negative identification system (Oxoid,
Basingstoke Hampshire, United Kingdom) was used in the
preliminary identification of aerobic and facultative anaerobic
Gram-negative bacteria (Enterobacteriaceae) (Mugg and Hill,
1981; Thomas, 1983). Organisms were identified based on pH
change and substrate utilizations as established by previous
reference methodologies (Cowan and Steel, 1977; Farmer 3rd

et al., 1985; Balows et al., 1991). Preidentified isolates were further
subcultured on Drigalski Lactose agar (Oxoid, Hampshire,
United Kingdom) and subsequently confirmed by MALDI-
TOF mass spectrometry (Bruker Daltonik GmbH, Bremen,
Germany) analysis.
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Antimicrobial Susceptibility Testing
The Kirby-Bauer susceptibility testing technique (Bauer et al.,
1966) was performed and results were interpreted using
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) criteria (European Committee on Antimicrobial
Susceptibility Testing [EUCAST], 2015). The isolates were tested
based on selection criteria with 14 antibiotics belonging to
11 classes of antimicrobial agents: carbapenems; meropenem
(10 µg), ertapenem (10 µg), extended spectrum cephalosporins;
ceftazidime (10 µg), cefotaxime (5 µg), cefepime (30 µg),
penicillin + β-lactamase inhibitor; amoxicillin/clavulanic
acid (30 µg), cephamycin; cefoxitin (30 µg), monobactam;
aztreonam (30 µg), folate pathway inhibitors; trimethoprim
(5 µg), fluoroquinolones; ciprofloxacin (5 µg), levofloxacin
(5 µg), aminoglycosides; amikacin (30 µg), antipseudomonal
penicillins + β-lactamase inhibitor; piperacillin/tazobactam
(36 µg), phenicols; chloramphenicol (30 µg) (Oxoid, Basingstoke
Hampshire, United Kingdom) on Mueller Hinton agar (Oxoid,
Hampshire, United Kingdom) plates. These antibiotics are
clinically important drugs both in the human and veterinary
health sectors in Nigeria. Multidrug resistant isolates were
identified among the tested isolates. Multidrug resistance was
defined as non-susceptibility of an Enterobacteriaceae isolate to
≥1 agent of ≥3 antimicrobial classes (Magiorakos et al., 2012).

Whole Genome Sequencing
Whole genome sequencing (WGS) was carried out for 18
resistant/multidrug-resistant bovine animal isolates and 8
resistant/multidrug-resistant environmental isolates based on
selection criteria. The MagAttract HMW DNA extraction kit
(Qiagen, Hilden, Germany) was used for the extraction of
genomic DNA (gDNA). Quantification of genomic DNA was
carried out on a QubitTM 2.0 Fluorometer using the dsDNA
BR Assay kit (Invitrogen by Thermo Fisher Scientific, Waltham,
MA, United States). Preparation of fragment libraries of the
bacterial genomes was carried out using the Illumina Nextera
XT DNA library preparation kit (Illumina Inc., San Diego, CA,
United States). A paired end sequencing using a read length of
2 × 300 bp on an Illumina Miseq (Miseq v3.0, Illumina Inc., San
Diego, CA, United States) was performed using Miseq reagent kit
v3 containing the reagent cartridge and flow cell.

Raw reads (FASTQ files) were trimmed at their 5′ and
3′ ends until an average base quality of 30 was reached in
a window of 20 bases, and Velvet version 1.1.04 (Zerbino,
2010) was used in carrying out the assembly using optimized
k-mer size and coverage cutoff values based on the average
contigs length with >1,000 bp. Species identification via MALDI-
TOF MS was confirmed using ribosomal multilocus sequence
typing (rMLST)1. Assembled genomes were uploaded to the
ResFinder 2.1 web server2 (Zankari et al., 2012) and to the
Comprehensive Antibiotic Resistance Database-Resistance Gene
Identifier (CARD-RGI) (Jia et al., 2017) to identify antimicrobial
resistance genes. ARGs were identified based on a minimum
cutoff of 98% nucleotide identity for perfect or strict hits

1https://pubmlst.org/species-id
2http://www.genomicepidemiology.org

predicted by RGI. The Enterobase core genome multilocus
sequence typing (cgMLST) scheme comprising 2,513 core genes3

was used for strain comparison using SeqSphere + version 7.7.5
(Ridom, Münster, Germany) as described recently (Bernreiter-
Hofer et al., 2021; Cabal et al., 2021; Mišić et al., 2021). Multilocus
sequence typing [MLST; MLST 1.8, Centre for Genomic
Epidemiology (CGE), Lyngby DK] was used to type resistant
isolates. Klebsiella variicola isolates were typed also by multilocus
sequence typing [MLST Klebsiella variicola, Instituto Nacional de
Salud Pública (INSP)4] (Barrios-Camacho et al., 2019). Plasmids
on the draft genomes of the resistant Enterobacteriaceae isolates
were analyzed and classified using PlasmidFinder 1.3 webtool5

based on a threshold of 95% ID (Carattoli et al., 2014). Plasmid
replicons and Inc plasmid groups were identified.

Genomes From Sequence Read Archive
Three genomes of isolates in this study were downloaded
from the Sequence Read Archive (SRA) Bioproject PRJEB20802
(Ayandiran et al., 2018).

Phylogenetic Analysis
Whole genome based cgMLST phylogenetic analysis including
three genomes from Nigerian Escherichia coli poultry isolates
retrieved from SRA with accession ERR1986373–ERR1986375
and all bovine Escherichia coli isolates (n = 12) in this study was
carried out and a minimum spanning tree was calculated. The 15
isolates had eight sequence types (ST). In this study, Multilocus
sequence typing (MLST) revealed seven STs (ST46, ST111, ST23,
ST155, ST10, ST58, ST423) for Escherichia coli (n = 12) animal
isolates (Supplementary Table 1).

Nucleotide Sequence Accession
Numbers
This Whole Genome Shotgun project has been deposited
at DDBJ/ENA/GenBank under the accession numbers
JAIKTX000000000-JAIKUW000000000. The version described
in this paper is version JAIKTX010000000-JAIKUW010000000.

Statistical Analyses
The correlation analyses between the tested antimicrobial
agents as well as the phenotypic resistance pattern and the
detected resistance genes were performed using SPSS statistical
software package version 20.0 (IBM SPSS Inc., New York,
NY, United States).

RESULTS

Phenotypic Characteristics of
Enterobacteriaceae in the Samples
The recovered Enterobacteriaceae isolates were pink
(lactose fermenters) and colorless (non- lactose fermenters)

3https://enterobase.readthedocs.io/en/latest/pipelines/escherichia-statistics.html
4https://mlstkv.insp.mx/
5http://cge.cbs.dtu.dk/services/PlasmidFinder
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colonies on MacConkey agar. Preliminary biochemical
tests on the recovered isolates using the Microbact Gram-
Negative identification system gave varying reactions to
the different tests carried out. Biochemical tests included
lysine decarboxylase, ornithine decarboxylase, H2S, Glucose,
Mannitol, Xylose, ONPG, Indole, Urease, VP, Citrate and
TDA. On Drigalski agar, Enterobacteriaceae isolates were
yellow colonies (E. coli, Klebsiella, Enterobacter spp.)
and blue-gray to blue-green colonies (Proteus, Serratia,
Providencia spp.). Species identification using MALDI-
TOF-MS assigned the 109 animal isolates to 9 species and
the 43 environmental isolates to 10 species (Supplementary
Tables 2, 3).

Antibiogram and Phenotypic Resistance
Pattern of the Isolates
Out of the 109 animal and 43 environmental Enterobacteriaceae
isolates, 18(17%) and 8(19%) isolates revealed antibiotic
resistance in the Kirby-Bauer susceptibility testing technique
(Supplementary Tables 4a,b). Species identification using
MALDI-TOF-MS and ribosomal MLST assigned the 18 resistant
animal isolates to 5 species and the 8 resistant environmental
isolates to 7 species (Supplementary Table 5). Resistant animal
isolates included Escherichia coli, Serratia marcescens, Klebsiella
quasipneumoniae, Klebsiella variicola, Proteus terrae while
the resistant environmental isolates included Enterobacter
quasiroggenkampii, Enterobacter hormachei, Citrobacter koseri,
Klebsiella quasipneumoniae, Klebsiella variicola, Proteus terrae,
and Proteus faecis (Supplementary Table 5). The selected animal
strains were resistant to trimethoprim (61%), cefoxitin (50%),
amoxicillin-clavulanic acid (50%), while environmental strains
were resistant to trimethoprim (75%) and cefoxitin (50%)
(Supplementary Table 6).

Antimicrobial Resistance Genes of the
Recovered Resistance Isolates
Whole genome sequencing revealed that all of the 18 resistant
animal isolates harbored more than one resistance gene.
Similarly, all the resistant environmental strains had multiple
resistance genes detected by WGS.

The resistance determinants in the animal isolates included
β-lactamase genes, blaOKP−B−1, blaOKP−B−7, blaTEM−1b,
blaTEM−1c, blaLEN−16, blaLEN−17, blaAMPC1, blaAMPH;
streptomycin resistance genes, strA and strB; aminoglycoside
modifying enzymes, aadA1; fosfomycin resistance determinant,
fosA, glpT; qnr genes, qnrD, qnrS1 and plasmid encoded
efflux pump, oqxA; sulfonamide resistance genes, sul1,
sul2, and sul3; tetracycline resistance gene, tet(A) and
trimethoprim resistance genes, dfrA1, dfrA5, dfrA14. The
resistance determinants in the environmental isolates included
β-lactamase genes: blaOKP−B−2, blaACT−7, blaACT−25 blaCMG,
blaCKO−1, blaTEM−1b, blaMAL−1, blaLEN−10, Sulfonamide
resistance gene, sul2, phenicol resistance gene, catII, tetracycline
resistance genes, tet(A), tet(D) and trimethoprim resistance
gene, dfrA14. Other resistance determinants which included
efflux genes emrA, emrB, emrK, emrY, msbA, regulatory systems

modulating antibiotic efflux H-NS, marR, emrR, marA, CRP,
antibiotic target alteration gene bacA, PmrF, eptA, EF-Tu
mutants, ugd, were also detected in the antibiotic resistant
animal and environmental isolates. Supplementary Table 7
shows the characteristics of the antibiotic resistant animal and
environmental isolates. Figure 1 illustrates the distribution
of the antimicrobial resistance genes among the recovered
isolates. Ten plasmid incompatibility groups were identified
among the animal Enterobacteriaceae isolates with IncF family
types being predominant. Four plasmid incompatibility groups
were identified among the antibiotic resistant environmental
Enterobacteriaceae isolates with IncF family types also being
predominant (Supplementary Table 1).

Correlation Between the Phenotypic and
Genotypic Multidrug-Resistance
Patterns
The antibiogram of the resistant recovered animal isolates
showed that one isolate (6%) is multidrug-resistant (MDR)
(MDR: non-susceptibility of the isolate to ≥1 agent of
≥3 antimicrobial classes) to cephalosporins: ceftazidime,
cefotaxime, cephamycins: cefoxitin, monobactams: aztreonam,
aminoglycosides: amikacin, antipseudomonal penicillins + β-
lactamase inhibitor: piperacillin/tazobactam, folate pathway
inhibitors: trimethoprim and had the regulatory system
modulating antibiotic efflux CRP as resistance determinant.
Out of the resistant animal isolates, two isolates (11%) were
multidrug-resistant (MDR) to cephamycins: cefoxitin, folate
pathway inhibitors: trimethoprim, penicillin + β-lactamase
inhibitor: amoxicillin/clavulanic acid and had varying resistance
determinants including regulatory systems modulating antibiotic
efflux: CRP, H-NS, marR, emrR, marA, efflux genes: emrA,
emrB, emrK, emrY, antibiotic target alteration genes: bacA, pmrF,
eptA, EF-Tu mutants, beta-lactamase resistance genes: blaAMPC,
blaAMPH, blaTEM1, sulfonamide resistant gene sul2, quinolone
resistance gene qnrS1, trimethoprim resistant dihydrofolate
reductase dfrA14 etc.

One of the resistant environmental isolates (13%) was
multidrug-resistant to cephalosporins: ceftazidime, cefotaxime,
cefepime, cephamycins: cefoxitin, monobactams: aztreonam,
aminoglycosides: amikacin, antipseudomonal penicillins + β-
lactamase inhibitor: piperacillin/tazobactam, folate pathway
inhibitors: trimethoprim and had the regulatory system
modulating antibiotic efflux CRP, beta-lactamase resistance
genes: blaMAL1, blaCKO−1, elfamycin resistance: EF-Tu mutation
as its resistance determinants while another isolate (13%) was
multidrug resistant to cephalosporins: ceftazidime, cefotaxime,
monobactams: aztreonam, aminoglycosides: amikacin, folate
pathway inhibitors: trimethoprim and had the regulatory system
modulating antibiotic efflux CRP as resistance determinant
(Supplementary Table 8).

The correlation coefficient estimated between different tested
antimicrobial agents as well as the phenotypic resistance pattern
and the detected resistance genes showed a positive correlation,
i.e., the correlation is statistically significant as calculated p-value
is less than 0.05.
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FIGURE 1 | Heat map showing the distribution of antimicrobial resistance genes among the recovered isolates.

Genetic Comparison of Bovine
Escherichia coli Isolates
CgMLST of the 15 isolates showed an allelic distance from one
to 2028. Bovine Escherichia coli isolates in this study differed
among each other in a minimum of one and a maximum of
1855 alleles. Based on the defined complex threshold (CT) of
20 allelic differences (Leopold et al., 2014) three clusters were
obtained. The three Nigerian poultry isolates were closely related
with a maximum allelic difference of 7 and were all located in
cluster 1 and differed by a minimum of 1272 alleles from the
bovine isolates from this study. Three bovine isolates (cluster 2,
ST23) obtained from two different farms that were not in close
proximity were closely related with a maximum allelic difference
of 1. Two other bovine isolates (ST10) in this study from the
same farm were also closely related with an allelic difference of
11 (Figure 2). The poultry isolates used in the strain comparison
were obtained from a different state far from the farm locations
in this study hence no close relatedness was observed.

Multilocus Sequence Typing of Other
Recovered Isolates
The animal Klebsiella variicola isolates had ST227 and 259
respectively. One animal Klebsiella quasipneumoniae had ST1136.
The Proteus terrae, Serratia marcescens, and one Klebsiella
quasipneumoniae animal isolate had previously unknown
sequence types. One resistant E. coli animal isolate also had
a new sequence type. The resistant Proteus terrae, Proteus
faecis, Citrobacter koseri, Enterobacter hormachei, Enterobacter
quasiroggenkampii, Klebsiella quasipneumoniae environmental
isolates also had new sequence types (Supplementary Table 1).
The Klebsiella. variicola environmental isolate was assigned
to the new ST314.

DISCUSSION

Enterobacteriaceae are typically found in animals and the
environment (Otokunefor et al., 2018) and have been
reported as reservoirs of resistance genes that could be

passed to other bacterial cells in the system. The use of
antibiotics in livestock production results in an increase in
antibiotic resistant strains in people (Bevan et al., 2017).
Sewage, humans, companion, and domestic animals and
the industries have been previously reported as sources of
resistant microorganisms to the environment in African
settings (Moremi et al., 2017). Determination of antimicrobial
resistance in bacteria using phenotypic characterization
is very important for therapeutic purposes, but further
genetic characterization may sometimes seems appropriate.
Whole-genome sequencing plays a key role in enhancing
our understanding of how bacteria evolve, are transmitted,
and monitoring of antimicrobial resistance. Regardless of the
source of isolation in this study, the phenotypic antimicrobial
susceptibility testing revealed high frequency of resistance
to trimethoprim and cefoxitin. Recently, plasmid mediated
FOX-1 AmpC ß-lactamases were detected in Escherichia
coli isolates from cows in Nigeria (Ejikeugwu et al., 2018).
A recent review on antimicrobial use revealed a high level
of antimicrobial usage of tetracyclines, aminoglycosides and
penicillins in animal production systems in Africa because
they belong to the cheapest antibiotics (Kimera et al., 2020).
The previous report showed high prevalence of antimicrobial
resistance including multidrug resistance in the environment.
Reports from developing countries especially in Africa are of
major public health concern as only limited diagnostic and
therapeutic options are available (Kimera et al., 2020). The
presence of antimicrobial-resistant (AMR) and multidrug-
resistant (MDR) bacteria that colonize the gut of animals
might play an important epidemiological role in the spread of
antimicrobial resistance between livestock animals and humans,
either directly or through consumption of contaminated food.
Several mechanisms of bacterial resistance to antimicrobial
agents have been previously reported (Kumar and Varela, 2013;
Sun et al., 2014). They include antibiotic efflux, antibiotic
target alteration, antibiotic inactivation, antibiotic target
replacement and antibiotic target protection. In this study
various resistance determinants that encode antimicrobial
efflux pumps were detected both in the resistant and multidrug
resistant isolates. Over-expression of such determinants has been
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FIGURE 2 | Minimum spanning tree for 15 E. coli isolates based on cgMLST of E.coli. Colors corresponds to the sequence types of the isolates. Each circle
represents isolates with an allelic profile based on the sequences of 2520 core genome targets. Isolates with closely related genotypes were identified with a
maximum of 11 allelic differences and are shaded in gray.

connected to a rise of clinically important multidrug-resistant
pathogens (Nikaido, 1994). The regulatory system modulating
antibiotic efflux (Resistance-Nodulation-Division multidrug
efflux pumps) for example has been previously reported as an
important determinant of multidrug resistance in Gram-negative
bacteria (Fernando and Kumar, 2013). Resistance determinants
that encode multidrug efflux pumps of the major facilitator
superfamily were also detected in this study and have also
been previously reported to contribute to the emergence of
multidrug-resistant organisms (Kumar et al., 2020). Results of
this study underline the wide distribution and importance of this
resistance mechanism.

Some African studies identified antimicrobial resistance
genes [blaCTX−M, blaTEM, blaSHV, blaOXA, aac(6′)-lb-cr, tet(A),
tet(B), sul1, sul2, qnr] in bacteria from humans, animals, and
environmental sources (Hamza et al., 2016; Ribeiro et al., 2016;
Eguale et al., 2017; Seni et al., 2018), indicating that drug resistant
pathogens have high tendency to spread widely (De Boeck
et al., 2012; Ekwanzala et al., 2018; Oloso et al., 2018). Results

from this study correlate with the previous African reports as
blaTEM, aph(6)-ld, tet(A), tet(D), sul1, sul2, qnr, dfrA1, dfrA5,
dfrA14 were some identified resistance genes in the resistant
Enterobacteriaceae isolates. Significantly, no extended spectrum
beta-lactamase (ESBL) gene was detected in the bovine and
environmental Enterobacteriaceae isolates. This is in contrast
with a recent report on human clinical Enterobacteriaceae
isolates collected from the same geographical location that
had a high rate of ESBL genes detected among the isolates
(Jesumirhewe et al., 2020).

The role of Enterobacteriaceae as a reservoir for ESBL genes
and other resistance determinants is enhanced by the presence
of IncF plasmid family type which evolves quickly by replicon
diversification and acquisition of antibiotic resistance traits
(Carattoli, 2013). Various plasmid replicon types detected among
the resistant isolates in this study indicate their importance for
dissemination of antibiotic resistance. For example, in this study,
resistance genes mediating quinolone resistance and transmitted
by plasmids, oqxA, qnrD, and qnrS1 were detected in the resistant
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animal and environmental isolates indicating that resistance
to quinolones was promoted through the plasmid-mediated
determinant. Plasmid-mediated quinolone resistance (PMQR)
determinants play an important role in the transmission of
resistance among bacterial isolates (Santhosh et al., 2017). The
predominating presence of IncF plasmid replicon type in the
animal and environmental isolates increases the possibility of
acquiring more resistance determinants as well as the emergence
of novel resistance determinants (Amos et al., 2014). Efflux
pumps have been previously reported to be encoded by plasmid
borne genetic elements which plays an important role in the
transmission of multidrug-resistance (Nikaido, 1994; Nelson and
Levy, 2011).

Most developing countries in Africa like Nigeria have
been reported to lack effective antimicrobial surveillance
systems or are at different stages of developing them (Alonso
et al., 2017; Kimera et al., 2020). Monitoring the emergence
and spread of antibiotic resistant isolates may assist in
developing strategies for treatment and prevention of infections
especially for animals which have limited choice of prophylactic
and therapeutic antimicrobials. A systematic antimicrobial
resistance surveillance using more advanced techniques like
WGS is required especially in African settings to detect new
antibiotic resistance mechanisms and to determine the virulence
of multidrug resistance pathogens for risk assessment and
prevention of infection (Hamza et al., 2016; Grundmann and
Gelband, 2018). Data from WGS could assist in planning effective
interventional measures.

This study provides detailed genomic characterization of
antibiotic resistance in bovine animal and environmental
Enterobacteriaceae isolates for Nigeria. A number of previous
Nigerian studies described the detection, frequency/prevalence of
resistance to antibiotics in livestock and the environment using
phenotypical techniques (Ayandiran et al., 2014; Onuoha, 2017;
Otokunefor et al., 2018; Ugwu et al., 2018). Only a few Nigerian
studies have been able to explore the genetic mechanisms of
antibiotic resistance in bovine animals and the environment
(Olowe et al., 2015; Sharma et al., 2017; Adelowo et al., 2018;
Ayandiran et al., 2018; Ejikeugwu et al., 2018) which is important
to understand the dissemination of resistant isolates. Further
studies to characterize prevalent clones and plasmids that harbor
antibiotic resistance genes are required.

Whole genome based cgMLST phylogenetic analysis of
the bovine Escherichia coli isolates suggest a probable clonal
spread of the isolates of different sequence types and plasmid
replicon types. ST10 is an important multilocus sequence
type detected in three animal Escherichia coli isolates in this
study. Previously, ST10 Escherichia coli have been detected
in chicken and have been reported as antibiotic resistant
ESBL-producers (Chen et al., 2016). Previous reports show
Escherichia coli ST10 to be commonly associated with other
animals and humans (Ewers et al., 2012; Chen et al.,
2016). This is consistent with our results as the isolates
were found in feces of bovine animals. One limitation of
this study is that samples obtained were not sufficient to
get a large number of isolates to analyze possible links
between the bovine and environmental isolates. Although

resistance determinants were detected in both the animal and
environmental isolates it would be important to further analyze
isolates to characterize the possible linkages between animals and
the environment.

CONCLUSION

We report a wide dissemination of antibiotic resistant and
multidrug resistant Nigerian bovine and environmental
Enterobacteriaceae isolates. The emergence of these
resistant strains is of public health concern indicated by
the difficult treatment options in infections they cause.
Very little data especially genotypic studies of isolates
from animals and the environment exist for surveillance
of antimicrobial resistance in most developing countries
like Nigeria. It is necessary for developing countries like
Nigeria to carry out surveillance systems involving a “One
Health” approach which would be important to monitor
transmission events. Support from global antimicrobial
resistance networks should be sought to assist in developing and
implementing antimicrobial resistance surveillance under one
health approach.
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