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Abstract

Background: Most previous studies have focused on the effects of social defeat in male juvenile individuals. Whether chronic 
social defeat stress in adulthood affects female emotion and the underlying mechanisms remains unclear.
Methods: Using highly aggressive adult female mandarin voles (Microtus mandarinus), the present study aimed to determine 
the effects of chronic social defeat stress on anxiety- and depression-like behaviors in adult female rodents and investigate 
the neurobiological mechanisms underlying these effects.
Results: Exposure of adult female voles to social defeat stress for 14 days reduced the time spent in the central area of the 
open field test and in the open arms of the elevated plus maze and lengthened the immobility time in the tail suspension and 
forced swimming tests, indicating increased anxiety- and depression-like behaviors. Meanwhile, defeated voles exhibited 
increased neural activity in the prelimbic cortex of the medial prefrontal cortex. Furthermore, chronic social defeat stress 
reduced serotonin projections and levels of serotonin 1A receptors in the medial prefrontal cortex-prelimbic cortex. Intra-
prelimbic cortex microinjections of the serotonin 1A receptor agonist 8-OH-DPAT reversed the alterations in emotional 
behaviors, whereas injections of the serotonin 1A receptor antagonist WAY-100635 into the prelimbic cortex of control voles 
increased the levels of anxiety- and depression-like behaviors.
Conclusions: Taken together, our results demonstrated that chronic social defeat stress increased anxiety- and depression-
like behaviors in adult female voles, and these effects were mediated by the action of serotonin on the serotonin 1A receptors 
in the prelimbic cortex. The serotonin system may be a promising target to treat emotional disorders induced by chronic 
social defeat stress.
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Introduction
Repeated exposure to stressful social environments strongly 
correlates with the development of stress-related psychologi-
cal disorders, such as anxiety-like behaviors (Smith and Wang, 
2014; Takahashi et al., 2017) and depression-like behaviors (Yu 
et al., 2011; Huang et al., 2013; Hollis and Kabbaj, 2014). Social 

defeat stress has proven to be a powerful method for explor-
ing the mechanisms underlying stress susceptibility (Valmaggia 
et al., 2015; Solomon, 2017). Chronic social defeat stress (CSDS) 
is a predominant social stressor for many species, particularly 
species living in groups (Valmaggia et al., 2015; Solomon, 2017). 
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In humans, social defeat stress in the form of bullying is cor-
related with a greater incidence of stress-related psychiatric 
and addictive disorders (Bjorkqvist, 2001; Krishnan et al., 2007). 
Based on accumulating evidence, exposure to CSDS increases 
the levels of anxiety- and depression-like behaviors in rodents 
(Becker et al., 2008; Venzala et al., 2013; Jianhua et al., 2017). In 
addition, the consequences of chronic social stress may depend 
on the sex and age of the animals (McCormick et al., 2008).

Researchers are increasingly recognizing that women 
may have a higher susceptibility to violence and higher rates 
of stress-associated disorders  than men (Laredo et  al., 2015; 
Jianhua et al., 2017; Steinman and Trainor, 2017). More import-
antly, CSDS exposure increases the risk of many psychological 
disorders not only during development but also through-
out adulthood (Kovalenko et al., 2014; McCormick et al., 2015). 
However, almost all behavioral and neuroscience studies exam-
ining social defeat stress have focused on adolescent male 
rodents, and the failure to include females in these studies is 
a serious limitation. According to multiple lines of evidence, 
exposure to social defeat stress in male adolescent rodents 
induces anxiety-like behaviors (Watt et al., 2009; Huang et al., 
2013) and depression-like behaviors (Sanchez et al., 2001; Paus 
et al., 2008). Until now, few studies have investigated the altera-
tions in emotional behaviors in female rodents after exposure 
to social defeat stress (Greenberg et al., 2015; Takahashi et al., 
2017; Harris et al., 2018), and the neurobiological mechanisms 
by which CSDS induces anxiety and depression in adult female 
rodents remain poorly understood.

In mammals, serotonergic neurons are mainly located in the 
dorsal raphe of the brainstem (DRN) (Barnes and Sharp, 1999). 
Projections from these neurons release serotonin (5-hydroxy-
tryptamine, 5-HT) to the entire central nervous system, includ-
ing the medial prefrontal cortex (mPFC) and medial amygdala 
(MeA) in the limbic system (Bockaert et al., 2006). In these brain 
areas, 5-HT plays an important role in regulating numerous 
emotional disorders, including depression- and anxiety-related 
behaviors, in both humans and rodents (Canli and Lesch, 2007; 
Jans et al., 2007). For example, tryptophan (TPH, an amino acid 
necessary for serotonin synthesis) depletion followed by a 
decrease in 5-HT levels in the brain increases the risk of depres-
sion (Moreno et al., 1999; Neumeister et al., 2004). In addition, 
CSDS downregulated the expression of serotonergic genes (such 
as TPH2, SERT, Maoa, and Htr1a) in male mice (Boyarskikh et al., 
2013) and decreased the level of 5-HT in the mPFC to induced 
depression and anxiety (Lowry et al., 2008; Venzala et al., 2013). 
In addition, 5-HT levels are reduced in the PFC of patients with 
major depression (Lowry et  al., 2008; Michelsen et  al., 2008). 
Researchers have not clearly determined whether CSDS induces 
emotional disorders by altering 5-HT projections to the PFC.

At least 14 different serotonin receptor subtypes have been 
identified in the brain, of which serotonin 1A receptors (5-HT1AR) 

are among the best characterized (Polter and Li, 2010). More 
importantly, signalling through 5-HT1AR has been shown to 
moderate mood-related behavior in animals (Garcia-Garcia 
et  al., 2014). In the mammalian brain, 5-HT1AR is divided into 
autoreceptors and heteroreceptors. The 5-HT1A autorecep-
tors located in the 5-HT neurons mediate negative feedback, 
and 5-HT1A heteroreceptors are expressed in brain areas that 
receive serotonergic projections and are expressed at particu-
larly high levels in brain regions implicated in the regulation of 
emotion, such as the mPFC and MeA (Garcia-Garcia et al., 2014).

Among the brain areas modulating emotional responses 
to stress, the mPFC is considered  to be an important region 
(Rosenkranz et al., 2003; Morrison et al., 2013). In rodents, the 
mPFC consists of the cingulate (Cg), prelimbic (PrL), and infral-
imbic (IL) cortices, these regions have different functions that 
can generate distinct patterns of behaviors (Heidbreder and 
Groenewegen, 2003). The PrL is involved in regulating emotional 
responses (Petty et al., 1997; Broersen et al., 2000). In addition, 
stimulation of postsynaptic 5-HT1A heteroreceptors in the mPFC 
is involved in the response to antidepressants (Fukumoto et al., 
2018), and suppressing the 5-HT1A heteroreceptors in the mPFC 
is reported to result in a depression-like phenotype (Garcia-
Garcia et al., 2017). More importantly, sustained antidepressant 
effects are mimicked by intra-mPFC injection of a 5-HT1AR agon-
ist and attenuated by a 5-HT1AR antagonist (Fukumoto et  al., 
2018). Nevertheless, 5-HT1A autoreceptors have consistently 
been shown to impact anxiety-like behavior (De Vry, 1995; Albert 
and Lemonde, 2004; Garcia-Garcia et al., 2014). More importantly, 
the PFC-DRN pathway of 5-HT is reported to be a key neural cir-
cuit controlling the effect of stress (Amat et al., 2005). However, 
researchers have not yet determined whether 5-HT1A hetero-
receptors in the mPFC are involved in the anxiety- and depres-
sion-like behaviors induced by CSDS in adult female rodents.

One limitation to incorporating females into studies of 
social defeat stress and its neural mechanism may be that most 
female rodents do not show spontaneous aggression in a resi-
dent-intruder situation (Steinman and Trainor, 2017). Although 
recent studies have focused on the female social defeat model 
in rodents, the establishment of those models is relatively com-
plex (Lukas and Neumann, 2014; Takahashi et al., 2017; Finnell 
et al., 2018). Valid animal models are needed to investigate the 
effects of social defeat stress on female adults. The mandarin 
vole (Microtus mandarinus) is a socially monogamous species, all 
family members live in one burrow system, and both males and 
females defend territories. More importantly, the adult female 
mandarin vole displays stark spontaneous aggression (Tai and 
Wang, 2001). In particular, this species represents a valuable ani-
mal model for examining the effects of social defeat stress on 
females (Wang et al., 2018).

Thus, using this animal model, the goal of the present study 
was to determine the potential impact of CSDS on anxiety- and 
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depression-like behaviors in adult female voles and to investi-
gate the underlying neurobiological mechanisms in the sero-
tonin system. We predict that CSDS may increase levels of 
anxiety- and depression-like behavior in female mandarin voles, 
possibly via reducing the number of 5-HT projections and levels 
of 5-HT1AR in the mPFC.

Materials and Methods

Animals

Mandarin voles were derived from a wild population in Henan 
province, China. The voles used in this experiment were adult 
virgin females obtained from the laboratory-reared F3 gen-
eration. Remarkably, socially monogamous female prairie 
voles (Microtus ochrogaster) do not display spontaneous ovarian 
activity or ovulation before encountering a male (Sawrey and 
Dewsbury, 1985), and behavioral estrus occurs after the female 
is introduced to a novel male (Morgan et al., 1997). Unpublished 
data from our laboratory also show a similar pattern that female 
mandarin voles are always in diestrus before encountering 
a male. Therefore, estrus cycles had no effects on the results 
reported in this article. Voles were housed with a female cage-
mate in polycarbonate cages (44 × 22 × 16  cm) with unlimited 
access to carrots and were maintained on a 12-hour-light/-dark 
photoperiod at a temperature of 23°C ± 1°C. All procedures were 
approved by the Animal Care and Use Committee of Shaanxi 
Normal University and in accordance with the Guide for the 
Care and Use of Laboratory Animals of China.

Chronic Social Defeat Stress 

The resident-intruder paradigm of social defeat stress was con-
ducted as previously reported (Wang et al., 2018). Based on the 
results of the preliminary experiment, female-female social 
defeat interactions were more intense than male-male social 
defeat interactions in mandarin voles. During the screening test, 
we randomly selected older (80–120  days) and heavier female 
mandarin voles to perform the social interaction test. The vole 
with an attack latency of less than 30 seconds in 3 consecu-
tive tests was selected as aggressive resident vole. Six in 10 old 
females showed aggressive behaviors and were used as resident 
voles. These aggressive resident females were housed separately 
before the encounters. Young adult virgin female mandarin 
voles (70 days old, 23–27 g), which were designated as intruders, 
were assigned to the defeated group or the control group. Each 
experimental group included voles from different litters, and 
voles in each litter were divided across the experimental groups 
to avoid effects of genetic diversity. During the resident-intruder 
paradigm, almost every female intruder from the defeated 
group received attacks and exhibited at least 5 times submissive 
defeat posture (supine position). After a 10-minute confronta-
tion, the animals were separated by a perforated Plexiglas panel 
(they could see, hear, and smell each other, but could not make 
physical contact) for 24 hours. This defeat process was repeated 
daily at 9:00 am for 14 consecutive days. During the defeat pro-
cess, if defeated females were injured, they were not involved 
in the next test. Approximately 30% of the voles were excluded 
because of injury. Control voles, which had similar backgrounds 
as animals in the defeated group, were also exposed to a female 
resident without aggression during a 10-minute period and 
housed in a manner similar to the defeated voles. On the second 
day after the last defeat stress, behavioral tests were performed 
in the defeated and control groups to assess anxiety- and 

depression-like behaviors using the open field test, elevated 
plus maze test, tail suspension test, and forced swimming test 
at 1-day intervals (Figure 1).

Open Field Test

The open field test (OFT) has been used to assess activity and lev-
els of anxiety in previous studies (Choleris et al., 2001). The OFT 
was performed 1 day after the CSDS (day 86). The defeated and 
control voles (n = 10 animals per group) were placed individually 
in the center of a black-painted Plexiglas box (50 × 50 × 25 cm) for 
the OFT (the light intensity was approximately 20 lx). The box 
was divided into 16 quadrants: 4 inner sections (central area) and 
12 outer sections. For the test, each vole was placed into the cen-
tral area and allowed to explore for 5 minutes. The time spent in 
the central area and the total distance travelled in the entire area 
during this period was recorded with the digital video tracking 
system and quantified afterwards using OBSERVER (V5.0; Noldus, 
NL) software. At the end of each experiment, the box was thor-
oughly cleaned with 30% ethanol to remove odor cues (Kovalenko 
et al., 2014). All tests were conducted at the same time each day.

Elevated Plus Maze Test

The elevated plus maze test (EPM) was used to assess anxiety 
behavior (Lister, 1987). The EPM was performed 1 day after the 
CSDS (day 86). The elevated plus maze consisted of 2 open arms 
(25 × 5 cm) and 2 closed arms (25 × 5 × 5 cm), and the entire appar-
atus was elevated 50 cm above the ground (the light intensity 
was approximately 20 lx). The defeated and control voles (n = 12 
animals per group) were placed in the center of the EPM facing 
an open arm and was allowed to explore for 5 minutes. During 
this period, the time spent in the open and closed arms was 
recorded and quantified.

Tail Suspension Test

The tail suspension test (TST) (Cryan and Slattery, 2007) is the 
most widely used test for evaluating depression in rodents. The 
TST was performed 2  days after the CSDS (day 87). Each vole 
from the defeated and control groups (n = 12 animals per group) 
was individually suspended approximately 50-cm above the floor 
with surgical tape for 6 minutes. The time the vole spent remain-
ing completely motionless was defined as the immobility time. 
The duration of immobility was recorded during the final 4 min-
utes of the test by the tail suspension monitor (TSE Systems, V 2.2, 
Germany).

Forced Swimming Test

The forced swimming test (FST) is popularly used to assess lev-
els of depression in rodents (Porsolt et  al., 1977). The FST was 
performed 2  days after the CSDS (day 87). Each vole from the 
defeated and control groups (n = 12 animals per group) was placed 
individually in a glass cylinder (height = 24 cm, diameter = 14 cm) 
containing 15-cm of water (22°C–25°C) for 6 minutes. The dur-
ation of immobility during the last 4 minutes of the 6-minute 
testing period was monitored with a video camera located above 
the cylinder and analyzed using J Watcher software (http://www.
jwatcher.ucla.edu/) by a trained and blinded observer.

Immunofluorescence Staining

CSDS-induced alterations in neuronal activity in different brain 
regions and in 5-HT projections were assessed in this experiment. 

http://www.jwatcher.ucla.edu/
http://www.jwatcher.ucla.edu/
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Six defeated and control voles were used for 5-HT and TPH2 
immunofluorescence staining. To assess Fos expression in the 
brain, additional voles were killed 1-hour after EPM testing, which 
was 1 day after the last defeat in the defeated group (n = 6 animals 
per group) and after the corresponding phase in the control group 
(n = 6 animals per group). Voles were anesthetized with 2% sodium 
pentobarbital (3 mL/kg) and transcardially perfused with PBS buf-
fer (0.1 M, pH 7.2–7.5) followed by 4% paraformaldehyde. The brains 
were collected and immersed in 4% paraformaldehyde and then 
dehydrated in sucrose solution. Serial transverse slices of the 
brain were cut in 30-μm intervals. Sections were incubated with 
0.3% H2O2. After 3 rinses with PBS, sections were immersed in 0.2% 
Triton X-100 and then blocked with 5% BSA.

For Fos immunofluorescence staining, sections were incubated 
with the rabbit anti-Fos (1:500, Santa Cruz, CA) primary antibody 
overnight at 4°C. On the second day, sections were incubated with 
the goat anti-rabbit (TRITC, 1:400) secondary antibody in the dark for 
2 hours. For serotonin and TPH2 immunofluorescence staining, sec-
tions were incubated with the goat anti-serotonin (1:400, Abcam) or 
rabbit anti-TPH2 (1:100, Santa Cruz) primary antibody and then incu-
bated with the donkey anti-goat (DyLight 488, 1:200, YEASEN) or goat 
anti-rabbit (DyLight 488, 1:200, Boster) secondary antibody. Ultimately, 
all sections were photographed using a laser confocal microscope 
(FV-1000, Olympus). The number of 5-HT-immunoreactive (5-HT-ir) 
neurons and TPH2-ir neurons in the DRN, the density of 5-HT-ir fib-
ers in the mPFC and MeA, and the number of Fos-ir neurons in the 
mPFC, MeA, and DRN were measured bilaterally using Image-Pro 
Plus software (V 6.0, Media Cybernetics).

Brain Tissue Preparation and Western Blot

Western blotting was used to measure the changes in 5-HT1AR lev-
els induced by CSDS. Voles from the defeated and control groups 
(n = 6 animals per group) were anesthetized with 2% sodium 
pentobarbital (3 mL/kg) and decapitated. Brains were immediately 
extracted and frozen on dry ice. Coronal sections (200-µm) were cut 
on a cryostat and frost mounted onto microscope slides. Bilateral 
tissue punches with a 1-mm diameter were removed from the 
entire mPFC (Cg, PrL, IL), MeA, and DRN under a stereomicroscope 
with reference to brain atlas (Paxinos and Franklin, 2001) and stored 
at -80°C until processing. Based on the weight of the brain tissue, 
RIPA buffer (1:10 000) and the protease inhibitor PMSF (1:100) were 

added to the tubes for sonication. Samples were centrifuged and 
the supernatant was collected. Total protein concentrations were 
quantified using the BCA Protein Assay kit (Tiangen). Protein sam-
ples were separated on SDS-PAGE gels and transferred to a PVDF 
membrane. Membranes were blocked and then incubated with 
rabbit anti-5-HT1AR (1:2000, Abcam) or mouse anti-β-actin (1:3000, 
Abcam) primary antibody. Then, the membranes were incubated 
with the goat anti-rabbit or goat anti-mouse secondary antibody 
(1:10 000, Zhongshan Goldenbridge). All protein bands were visu-
alized using a fully automatic chemiluminescence image analysis 
system (Tanon) and analyzed using ImageJ software. 5-HT1AR- and 
β-actin immunoreactive bands were visualized at molecular 
weights of 62 kDa and 43 kDa, respectively.

Pharmacological Studies

This experiment was used to test whether the microinjection of a 
5-HT1AR agonist and antagonist into the PrL of mPFC altered anxiety- 
and depression-like behaviors. Another cohort of defeated voles 
(n = 32 animals per group) and control voles (n = 16 animals per group) 
were anesthetized with a mixture of isoflurane and oxygen and then 
received stereotaxic cannulation surgery under sterile conditions. 
Next, 26-gauge stainless steel guide cannulae (RWD) were implanted 
bilaterally, aimed at the PrL (AL 2.2 mm, ML ± 0.5 mm, DV 2.1 mm). 
Finally, cannulae were affixed to the skull with dental cement. 
After 3  days of recovery, each vole with normal activity received 
microinjections of either saline/200 nL, 0.03-μg 8-OH-DPAT/200 nL, 
0.3-μg 8-OH-DPAT/200  nL, 3-μg 8-OH-DPAT/200  nL, and 0.4-μg 
WAY-100635/200 nL (n = 8 animals per group). The 5-HT1AR agonist 
8-OH-DPAT (Sigma-Aldrich) (0.03 μg, 0.3 μg, or 3 μg in 200 nL) and 
the 5-HT1AR antagonist WAY-100635 (Sigma-Aldrich) (0.4 μg in 200 
nL) were dissolved in saline, and doses were chosen based on effect-
ive doses used in previous studies (Cooper et al., 2008; Fukumoto 
et al., 2018) with little modification, based on their effects on manda-
rin voles in the preliminary experiment. The speed of injection was 
0.1 μL/min for 1-minute per side. Fifteen minutes after the micro-
injection of the drug, anxiety- and depression-like behavior were 
assessed using the methods described above.

Statistical Analysis

All data were assessed for normality using one-sample 
Kolmogorov-Smirnov test. The time spent in the “central area” 

Figure 1.  The timeline of the experimental procedures performed in this study.
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and total distance travelled in the OFT, the time spent in the 
open or closed arms of the EPM, the immobility time during the 
TST and FST, the number of Fos-ir and 5-HT-ir cells, TPH2-ir and 
5-HT-ir fibres densities, and 5-HT1AR relative densities were com-
pared using independent sample t tests. The effects of the treat-
ment (saline, 8-OH-DPAT and WAY-100635) on the results of the 
behavior tests were compared using one-way ANOVA. Posthoc 
tests were performed using Tukey’s test. All statistical analyses 
were performed using SPSS V 20.0 (SPSS Inc.) and presented as 
means ± SEM. The level of significance for all tests was .05.

Results

CSDS-Induced Anxiety-Like Behaviors in Adult 
Female Voles

In the OFT, defeated voles spent significantly less time in the cen-
tral area than control voles (t (18) = 3.996, P < .01) (Figure 2A). The 
total distance travelled in the OFT did not differ between the 2 
groups during the 5-minute test (t (18) = 1.006, P = .328) (Figure 2B). 
In the EPM, the defeated voles spent significantly more time in 
the closed arms than the controls (t (22) = -3.150, P < .01) (Figure 2C) 
and significantly less time in the open arms than the controls (t 
(22) = 3.301, P < .01) (Figure 2D). Based on the data from these experi-
ments, CSDS results in anxiety-like behaviors in adult female voles.

CSDS Induced Depression-Like Behaviors in Adult 
Female Voles

CSDS significantly increased the immobility time of female voles 
in the TST (t (22) = -6.89, P < .01) (Figure 3A). In the FST, defeated 
voles also exhibited a significant increase in immobility time 

compared with control voles (t (22) = -2.543, P < .05) (Figure  3B). 
Thus, CSDS results in depression-like behaviors in adult 
female voles.

Brain Neural Activation Induced by CSDS

Fos is an endogenous marker of neuronal activity. Stress causes 
a rapid and transient increase in Fos expression (Martinez 
et al., 2002; Yu et al., 2011). Thus, we assessed Fos expression 
in specific brain areas using immunofluorescence staining 
1 hour after the 14-day defeat phase. In the defeated voles, 
Fos expression was significantly increased in the mPFC-Cg (t 
(10) = -3.015, P < .05) (Figure 4A–C), mPFC-PrL (t (10) = -6.294, P < .01) 
(Figure  4D–F), and mPFC-IL (t (10) = -3.126, P < .05) (Figure  4G–I) 
compared with control voles, among which the increased in PrL 
area was the most significant. In addition, the density of Fos-ir 
cells in the MeA was higher in defeated voles than in the con-
trol voles (t (10) = -8.004, P < .01) (Figure 4J–L). Social defeat stress 
also induced Fos expression in the DRN (t (10) = -8.595, P < .01) 
(Figure 4M–O).

CSDS Reduced 5-HT Projections in PrL

CSDS changed the 5-HT projections in the brain in a region-
specific manner. The control group exhibited higher densi-
ties of 5-HT-ir fibers in the mPFC-PrL than the defeated group 
had (t (10) = 2.679, P < .05) (Figure 5D–F). CSDS did not affect the 
densities of 5-HT-ir fibers in the mPFC-Cg (t (10) = 1.105, P = .295) 
(Figure  5A–C), mPFC-IL (t (10) = 0.214, P = .835) (Figure  5G–I), or 
MeA (t (10) = 1.053, P = .317) (Figure 5J–L), or the numbers of 5-HT-
ir neurons (t (10) = -1.661, P = .128) (Figure 5M–O) and TPH2-ir neu-
rons (t (10) = -1.189, P = .262) (Figure 5P–R) in the DRN.

Figure 2.  Chronic social defeat stress (CSDS) induced anxiety-like behaviors in adult female voles. (A) The time control and defeated voles spent in the central area 

in the open field test (OFT). (B) The total distance travelled by control and defeated voles in the OFT. (C) The time control and defeated voles spent in the closed arms 

in the elevated plus maze test (EPM). (D) The time of control and defeated voles spent in the open arms in the EPM. CON, control group; DEF, defeated group. Data are 

presented as the means ± SEM. *P ≤ .05 and **P ≤ .01, CON vs DEF.
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Figure 3.  Chronic social defeat stress (CSDS) induced depression-like behaviors in adult female voles. (A) The immobility time of control and defeated voles in the 

tail suspension test (TST). (B) The immobility time of control and defeated voles in the forced swimming test (FST). CON, control group; DEF, defeated group. Data are 

presented as the means ± SEM. *P ≤ .05 and **P ≤ .01, CON vs DEF.

Figure 4.  Effects of chronic social defeat stress (CSDS) on the number of Fos-ir cells in some brain areas. (A–C) Effects of CSDS on the number of Fos-ir cells in the med-

ial prefrontal cortex- cingulate cortex (mPFC-Cg). (D–F) Effects of CSDS on the number of Fos-ir cells in the mPFC-prelimbic cortex (PrL). (G–I) Effects of CSDS on the 

number of Fos-ir cells in the mPFC- infralimbic cortex (IL). (J–L) Effects of CSDS on the number of Fos-ir cells in the medial amygdala (MeA). (M–O) Effects of CSDS on 

the number of Fos-ir cells in the dorsal raphe of the brainstem (DRN). Aq, aqueduct; CON, control group; DEF, defeat group; SON, supraoptic nuclei. Data are presented 

as the means ± SEM. *P ≤ .05 and **P ≤ .01, CON vs DEF. Bar = 200 μm.
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CSDS Reduced the Relative 5-HT1AR Density in the PrL

The schematic drawing illustrates tissue punch locations in the 
PFC (Cg, PrL, and IL), MeA, and DRN (Figure 6A). CSDS reduced 
the relative density of 5-HT1AR in the PrL (t (10) = 4.025, P < .01). 
This effect on the relative density of 5-HT1AR was not observed 

in other brain areas, including the Cg (t (10) = -0.091, P = .929), IL 
(t (10) = -0.300, P = .771), and MeA (t (10) = 0.221, P = .829), indicating 
that the effect was brain region specific. In addition, the relative 
5-HT1AR density in DRN was increased by CSDS compared with 
control conditions (t (10) = -2.496, P < .05) (Figure 6B).

Figure 5.  Effects of chronic social defeat stress (CSDS) on the density of serotonin-immunoreactive (5-HT-ir) fibers and the numbers of 5-HT-ir and TPH2-ir neurons in 

some brain areas. (A–C) Effects of CSDS on the density of 5-HT-ir fibers in the medial prefrontal cortex-cingulate cortex (mPFC-Cg). (D–F) Effects of CSDS on the density 

of 5-HT-ir fibers in the mPFC-prelimbic cortex (PrL). (G–I) Effects of CSDS on the density of 5-HT-ir fibers in the mPFC-infralimbic cortex (IL). (J–L) Effects of CSDS on the 

density of 5-HT-ir fibers in the medial amygdala (MeA). (M–O) Effects of CSDS on the number of 5-HT-ir neurons in the dorsal raphe of the brainstem (DRN). (P–R) Effects 

of CSDS on the number of TPH2-ir cells in the DRN. Aq, aqueduct; CON, control group; DEF, defeat group; SON, supraoptic nuclei. Data are presented as the means ± SEM. 

*P ≤ .05, CON vs DEF. Bar = 200 μm.
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An 8-OH-DPAT Infusion into the PrL Reduced the 
Anxiety-Like Behaviors in Adult Defeated Female 
Mandarin Voles

The 26-gauge stainless-steel guide cannulae were implanted 
in subjects aimed at the PrL (Figure 7A). A schematic drawing 
illustrating the location of microinjections in all subjects is pre-
sented in Figure 7B.

In the OFT, the 0.3-μg 8-OH-DPAT group spent more time in 
the central area than the other groups. In addition, 0.4-μg WAY-
100635 treatments significantly reduced the time spent in the 
central area (F (5, 42) = 8.146, P < .01) (Figure 7C). The total distance 
travelled in the OFT did not differ among the 6 groups of adult 
female voles (F (5, 42) = 1.686, P = .162) (Figure 7D).

In the EPM, the 0.3-μg 8-OH-DPAT group spent less time in 
the closed arms, and treatment with 0.4-μg WAY-100635 signifi-
cantly increased the time spent in the closed arms (F (5, 42) = 8.786, 
P < .01) (Figure  7E). In addition, the 0.3-μg 8-OH-DPAT group 
spent more time in the open arms than the other groups, and 
the treatment with 0.4-μg WAY-100635 significantly reduced the 
time spent in the open arms (F (5, 42) = 11.748, P < .01) (Figure 7F).

An 8-OH-DPAT Infusion into the PrL Reduced the 
Depressive-Like Behaviors in Adult Defeated Female 
Mandarin Voles

In the TST, the 0.3-μg 8-OH-DPAT group exhibited a significant 
increases in the immobility time compared with the other 3 
groups of defeated female voles. In addition, the 0.4-μg WAY-
100635 group displayed a lower immobility time than the saline 
group of control female voles (F (5, 42) = 7.160, P < .01) (Figure 7G).

In the FST, the drug treatments significantly altered the 
immobility time. The 0.3-μg 8-OH-DPAT group displayed a longer 
immobility time than the other 3 groups of defeated female 
voles. In addition, 0.4-μg of WAY-100635 significantly reduced 

the immobility time compared with the saline treatment in con-
trol female voles (F (5, 42) = 7.101, P < .01) (Figure 7H).

Discussion

In this paper, using highly aggressive adult female mandarin 
voles, we demonstrated that CSDS increased levels of anx-
iety- and depression-like behaviors in adult female voles. 
Moreover, CSDS reduced 5-HT projections and 5-HT1AR lev-
els in the PrL and reduced the levels of 5-HT1AR in the DRN. 
We also found that microinjection of 8-OH-DPAT into the PrL 
effectively reversed the emotional disorders induced by CSDS, 
and an infusion of WAY-100635 into the PrL of control female 
voles increased anxiety- and depression-like behaviors. Based 
on these results, 5-HT acts on the 5-HT1AR of the mPFC-PrL 
is involved in the anxiety- and depression-related behaviors 
induced by CSDS.

Effects of CSDS on Anxiety and Depression

According to our results from the OFT and EPM, CSDS increased 
anxiety-like behaviors in adult female mandarin voles. These 
findings are consistent with many previous studies that focused 
on adolescent males. For example, adolescent male mice or rats 
exposed to repeated social defeat stress show increased anxiety-
like behaviors compared with controls (Watt et al., 2009; Huang 
et al., 2013). Likewise, after social defeat stress, subordinate male 
mice consistently show an increase in anxiety-like behavior 
(Huang et al., 2011; Boyarskikh et al., 2013). In addition, repeated 
exposure to social defeat stress enhances the anxiogenic effect 
on adult male rats (Jaisinghani and Rosenkranz, 2015). However, 
only a very limited number of studies have tested the effects 
of chronic social defeat stress on emotional behaviors in adult 
female rodents, and our result is consistent with the findings of 
these recent studies showing that CSDS increases anxiety-like 
behavior (Greenberg et al., 2015; Takahashi et al., 2017; Finnell 
et al., 2018; Harris et al., 2018).

Another interesting discovery from the TST and FST in the 
present study was that CSDS increased depression-like behav-
iors in adult female mandarin voles. Consistent with the results 
from our study, CSDS also increased depression-like behavior in 
adolescent male rodents (Becker et al., 2008; Hayashida et al., 
2010; Huang et al., 2013), adult male C57BL/6J mice (Covington 
et  al., 2009; Yu et  al., 2011; Boyarskikh et  al., 2013) and adult 
female C57BL/6J mice (Takahashi et al., 2017). However, a sin-
gle exposure to defeat stress or 5 days of social defeat stress in 
adult male mice or rats did not affect sucrose preference (Von 
Frijtag et al., 2002; Croft et al., 2005; Razzoli et al., 2011). In male 
mice, social defeat stress did not produce significant effects 
on the immobility time during the TST (Kinsey et  al., 2007; 
Krishnan et al., 2007). This inconsistency may be due to the dif-
ferent lengths of time of exposure to defeat stress, indicating 
that acute or short social defeat stress was too brief to induce 
depression-like behaviors (Lehmann et al., 2016) or that female 
mandarin voles with high levels of sociability are particularly 
sensitive to the CSDS.

Overall, our findings strikingly resemble those observed in 
CSDS-exposed male rodents (Krishnan et  al, 2007) and some 
female rodents (Takahashi et al., 2017; Harris et al., 2018) and 
provide the foundation for comparing the underpinnings of 
emotional disorders in males and females. Future studies 
designed to compare the effects of CSDS on individuals of dif-
ferent sexes and ages would be interesting.

Figure 6.  Effects of chronic social defeat stress (CSDS) on serotonin 1A recep-

tors (5-HT1AR) levels in the brain. (A) Schematic drawing illustrates tissue punch 

locations in the medial prefrontal cortex-cingulate cortex (mPFC-Cg), mPFC-

prelimbic cortex (PrL), mPFC-infrlimbic cortex (IL), medial amygdala (MeA), and 

dorsal raphe of the brainstem (DRN). (B) Levels of 5-HT1AR in the Cg, PrL, IL, MeA, 

and DRN of defeated and control female voles. CON, control group; DEF, defeated 

group. Data are presented as the means ± SEM. *P ≤ .05 and **P ≤ .01, CON vs DEF 

for 5-HT1AR relative density.
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Social Defeat Stress and Serotonin System

In the present study, the defeated female voles showed signifi-
cantly decreased 5-HT projections and 5-HT1AR levels in the 
mPFC-PrL.

A previous study using the FST and foot shock test reported 
increases in the 5-HT content in DRN projection regions 
(Yoshioka et  al., 1995). Exposure to stressors such as chronic 
restraint stress upregulated levels of the 5-HT1A mRNA in the 
PFC of male rats (Iyo et al., 2009). Furthermore, no differences 

Figure 7.  (A) The 26-gauge stainless steel guide cannulae were implanted in subjects aimed at the medial prefrontal cortex (mPFC)-prelimbic cortex (PrL). (B) Schematic 

drawing illustrating the location of microinjections for all subjects. (C and D) Effects of microinjection of saline, 8-OH-DPAT, or WAY-100635 in the PrL on the time in 

the central area or total distance travelled in the open field test (OFT). (E and F) Effects of microinjections of saline, 8-OH-DPAT, or WAY-100635 into the PrL on the time 

spent in the closed or open arms of the elevated plus maze test (EPM). (G and H) Effects of microinjections of saline, 8-OH-DPAT, or WAY-100635 into the PrL on immo-

bility time in the tail suspension test (TST) and forced swimming test (FST). Groups not sharing the same letters are significantly different from each other (P ≤ .05). 

Data are presented as the means ± SEM.
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in the expression of the 5-HT1A mRNA are observed in the DRN 
and hippocampus of rats after maternal separation (Neumaier 
et al., 2002). Our current results using the CSDS paradigm contra-
dict these previous studies. This finding is not entirely surpris-
ing because different stressors may induce different responses 
in different brain regions.

More recently, 4 days of social defeat stress were consistently 
shown to increase 5-HT levels in the hippocampus (Ahnaou and 
Drinkenburg, 2016). The inconsistency of 5-HT levels observed 
following social defeat stress may be due to observed differ-
ent duration of social defeat stress. A  short period of defeat 
stress promoted an exaggerated synthesis and release of 5-HT, 
and 4  days of threat stress may not be sufficient to deplete 
the 5-HT content. However, a greater number of 5-HT-ir fibers 
were observed within the hypothalamus and lateral septum 
of defeated male golden hamsters after exposure to 14 days of 
social defeat stress during development (Delville et  al., 1998). 
Nevertheless, 4 weeks of CSDS reduced levels of 5-HT1AR in the 
PFC of adult male Wistar rats (Kieran et al., 2010). Therefore, the 
discrepancy in the changes in the 5-HT level may also be due to 
the examination of different brain areas or rodents of different 
sexes and ages.

Our study focused on the mPFC, a region that has been impli-
cated in psychological disorders and the modulation of emo-
tional responses to stress (Kieran et  al., 2010; Morrison et  al., 
2013), and our results seem to parallel the decreased 5-HT and 
5-HT1AR levels observed in the mPFC-PrL in brains of defeated 
adult female voles. Importantly, the discrepancy may be due to 
the analysis of different brain regions following exposure to the 
stressor for different duration or at different intensities. In add-
ition, the inconsistency may be due to the different sexes and 
ages studied.

Serotonin System and Anxiety and Depression

In the present study, the 5-HT projections were decreased in 
the mPFC-PrL of voles that exhibited high levels of anxiety- 
and depression-like behaviors induced by CSDS. The mPFC is 
implicated in mediating anxiety and depression (Krishnan and 
Nestler, 2008; Morrison et al., 2013). The present results are con-
sistent with recent reports showing that ketamine, an effective 
antidepressant, increases 5-HT release in the mPFC during treat-
ment for depression (Nishitani et  al., 2014; Pham et  al., 2017). 
Furthermore, 5-HT levels are reduced in the PFC of patients with 
major depression (Lowry et  al., 2008; Michelsen et  al., 2008). 
Thus, the increased levels of anxiety- and depression-behavior 
induced by CSDS may be associated with fewer 5-HT projections 
to the mPFC.

CSDS significantly reduced 5-HT1AR levels in the PFC-PrL 
of female adults that displayed higher levels of anxiety- and 
depression-related behaviors in the present study. This result is 
consistent with a previous report that levels of 5-HT1AR protein 
were decreased in the PFC of patients with depression (Szewczyk 
et  al., 2009). Stimulation of postsynaptic 5-HT1AR in the mPFC 
and limbic system is involved in the response to antidepressants 
(Haddjeri et  al., 1998), and suppressing the activity of 5-HT1A 
heteroreceptors in the mPFC has been reported to results in a 
depression-like phenotype (Garcia-Garcia et  al., 2017). 5-HT1A 
knockout mice exhibit an anxiety-like phenotype in behavioral 
tests, indicating that a 5-HT1AR deficit can elicit anxious behavior 
(Ramboz et al., 1998). 5-HT1AR agonists seem to possess anxio-
lytic (Ramboz et al., 1998; Lacivita et al., 2008) and antidepres-
sant effects (Robinson et  al., 1990). Partial 5-HT1AR agonists, 
such as buspirone and vilazodone, exert modest anxiolytic and 

antidepressant effects on animals (Detke et al., 1995; Bartoszyk 
et  al., 1997). In addition, sustained antidepressant effects are 
mimicked by an intra-mPFC injection of 8-OH-DPAT, and the 
sustained antidepressant effects are attenuated by intra-mPFC 
injections of WAY-100635 (Fukumoto et al., 2018). The injection of 
8-OH-DPAT into the DRN results in an anxiolytic action (Andrews 
et  al., 1994; De Almeida et  al., 1998). Furthermore, several pre-
clinical studies have provided evidence that 5-HT1A autorecep-
tors impact anxiety-like behaviors, with 5-HT1A heteroreceptors 
being particularly important in the antidepressant response 
(De Vry, 1995; Garcia-Garcia et al., 2014). Nevertheless, whether 
5-HT1A heteroreceptors in the mPFC also exert an anxiolytic 
effect on females remains unclear. Consistent with the previous 
reports described above, microinjection of the 5-HT1AR agonist 
8-OH-DPAT into the mPFC-PrL effectively reversed the emo-
tional disorders induced by CSDS, and an infusion of the 5-HT1AR 
antagonist WAY-100635 into the PrL of control adult female voles 
increased anxiety- and depression-like behaviors. Thus, we pos-
tulate that 5-HT acting via 5-HT1A heteroreceptors in the mPFC 
is involved in the CSDS-induced increase in anxiety- and depres-
sion-like behaviors in adult females.

Based on the findings from the present study, CSDS increased 
anxiety- and depression-like behaviors of adult female manda-
rin voles, and reduced 5-HT and 5-HT1AR levels in the mPFC-PrL 
were possibly involved in these effects. This female social defeat 
model will allow us to expand previously published reports in 
males to an examination of anxiety- and depression-related bio-
logical pathways in females and provide a new target to develop 
an effective approach for treating violence-induced emotional 
disorders in women.
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