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+is work is intended to increase the classification accuracy of single EEG epoch, reduce the number of repeated stimuli, and
improve the information transfer rate (ITR) of P300 Speller. Target EEG epochs and nontarget EEG ones are both mapped to
a space byWavelet. In this space, Fisher Criterion is used to measure the difference between target and nontarget ones. Only a few
Daubechies wavelet bases corresponding to big differences are selected to construct a matrix, by which EEG epochs are
transformed to feature vectors. To ensure the online experiments, the computation tasks are distributed to several computers that
are managed and integrated by Storm so that they could be parallelly carried out. +e proposed feature extraction was compared
with the typical methods by testing its performance of classifying single EEG epoch and detecting characters. Our method
achieved higher accuracies of classification and detection. +e ITRs also reflected the superiority of our method. +e parallel
computing scheme of our method was deployed on a small scale Storm cluster containing three desktop computers. +e average
feedback time for one round of EEG epochs was 1.57ms.+e proposedmethod can improve the performance of P300 Speller BCI.
Its parallel computing scheme is able to support fast feedback required by online experiments.+e number of repeated stimuli can
be significantly reduced by our method. +e parallel computing scheme not only supports our wavelet feature extraction but also
provides a framework for other algorithms developed for P300 Speller.

1. Introduction

+e advances in the field of brain-computer interfaces
(BCIs) are encouraging researchers to explore its various
possibilities of benefiting the studies of neuroscience, arti-
ficial intelligence, biomedical engineering, and so on. A BCI
is a system that measures the activity of central nervous
system (CNS) and converts it to artificial output which can
change the interactions between the brain and its envi-
ronment [1]. Although the activity of CNS can be measured
by all kinds of brain signals, most BCIs rely on electrical
measures because they can be acquired easily [1, 2]. Elec-
troencephalogram (EEG) is the electrical measure of the
activity of CNS from electrodes placed on the scalp. BCIs
based on EEG are noninvasive. Because of this, the pro-
spective applications of this kind of BCI on persons,

including special patients and everyman, impress the re-
searchers in the area.

+e EEG-based BCIs could be fulfilled in diverse ways,
which mainly include P300 Speller, sensorimotor rhythm
(SMR), steady-state visual evoked potential (SSVEP), and
slow cortical potential (SCP) [1–4]. +ey rely on different
neuroscience principles and have different features. P300
Speller BCIs were first proposed in [3] and constructed on
the basis of P300 event-related potentials (ERP) that are
evoked by the target stimulus in an oddball paradigm and
mean that the subjects are paying attention to the target
[1–4]. An advantage of P300 Speller BCIs is that only a few
trainings enable subjects to use them to spell words to
a computer and achieve a stable performance [1, 2]. Many
researchers are attracted by the potential of P300 Speller
BCIs to seek the possible improvements and their
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applications [1, 5–10]. In the research [5], an asynchronous
BCI, which is able to automatically detect the intention of
subjects starting to spell words, was designed by combining
P300 and SSVEP. It was reported that a system using dy-
namic P300 Speller matrix can facilitate the access of severely
motor-impaired persons to the World Wide Web and
multimedia content [6]. According to [7], some researchers
explored the approach to improving the P300 Speller per-
formance by using a green family faces paradigm. Krumpe
and colleagues considered the situation where a stimulus-
locked classification cannot be used. +ey evaluated the
feasibility of detecting a P300 in a reactive EEG-based BCI
through an asynchronous classification in their study [8]. Jin
et al. observed the decrease of subjects’ attention during the
presentation of stimuli in P300 Speller BCI and proposed to
use honey-comb-shaped figures with 1–3 red points as
stimuli to catch subjects’ attention [9]. According to [10],
Mao et al. reviewed the progress of the application of EEG-
based BCI to interaction with robots and enumerated many
promising examples of applying P300-based BCI.

To implement P300-based BCI, the key is the detection
of P300 ERP. As for ERP estimation, averaging many EEG
epochs is the most common practice. Although this method
can serve the implementation of P300-based BCI, it faces
very big challenges because the stimulus is needed to be
repeated many times. It is hard to improve the response time
and information transfer rate (ITR) of P300-based BCI if
averaging EEG epochs underlies the detection of P300 ERP.
As a result, many approaches based on machine learning
have been developed for P300 detection in this kind of BCIs.
+ey usually consist of a few important steps such as
extracting the features from EEG and training an appro-
priate classifier. Since EEG or ERP are the signals acquired
from the scalp, wavelet analysis, one of excellent signal
processing tools [11], is very suitable to be used to handle the
problem of extracting the features from EEG.

According to [11], unlike the Fourier transform, whose
basis functions, sine or cosine, are all in a frequency and
extend infinitely in time, wavelet analysis is based on
completely different basis functions that are localized in time
and frequency. +e ability of wavelet analysis to highlight
specific time and frequency components of signals makes
itself very useful for processing EEG or ERP [12, 13]. Some
examples of applying wavelet analysis in the field include
EEG spike detection, ERP component separation, denoising
EEG or ERP, etc [12, 13]. Demiralp et al. discovered that the
delta response dominates the P300 component in their
research and then used the wavelet coefficients of EEG
epochs in the frequency range of 0.5–4Hz during the time
period of 310–430ms after stimulus onset to detect P300 and
found that the cognitive state could influence the presence of
P300 [14, 15]. Perseh and Sharafat developed a scheme that
extracts the features from EEG epochs for P300 Speller BCI
by applying wavelet transform [16]. In [17], Robinson and
colleagues showed that the wavelet-common spatial pattern
algorithm could effectively extract informative features from
EEG data for classifying the two different speeds of the right-
hand movement. Aniyan et al. designed an algorithm to
separate ERP components in single-trial EEG data by

making use of the asymmetry of wavelet [18]. Huang and
Zheng [19] presented a method to process P300 ERP on the
basis of the combination of autoregression model and
wavelet representation.

Wavelet methodology has had a significant impact in the
area of time series [11] and has been extensively used to deal
with all kinds of problems on EEG and ERP [12–19]. In this
paper, we use wavelet analysis to address the issue of EEG
feature extraction in P300 Speller BCI. According to [3, 20],
in P300 Speller BCI, a target EEG epoch is among the
consecutive EEG epochs that are overlapped on one another
so that nontarget EEG epochs could also contain P300
waveform just in a bit different time range, compared to
target EEG epochs. Hence, it is still difficult to highlight the
difference between target EEG epochs and nontarget EEG
epochs simply using wavelet in P300 Speller BCI. Here, we
proposed an algorithm to extract informative features from
EEG epochs for P300 Speller BCI by combining wavelet
analysis with Fisher Criterion [21]. +e idea underlying this
algorithm is that the ERP evoked in P300 Speller is a kind of
sparse signal in the wavelet domain. So, we call it sparse
wavelet feature extraction. Considering the speed re-
quirement of the online experiments, we also designed and
implemented the parallel computing scheme of the algo-
rithm based on our previous work [22] and the real-time
distributed computation platform of storm [23, 24]. We
tested our algorithm in the experiment, and the results
demonstrated its effectiveness. +is work was partly pre-
sented in the conferences [25, 26].

2. Materials and Methods

+e P300 Speller paradigm [3, 20] intuitively tells us that the
difference between target EEG epochs and nontarget EEG
epochs is not obvious. Averaging enough EEG epochs could
highlight the difference. However, it would be accomplished
only at the cost of time and efficiency. Our intention is to
seek a way in which the features substantially reflecting the
difference could be extracted from single-trial EEG epochs.
+e key of our method is to find the sparse wavelet bases for
P300 Speller BCI. +e algorithm is implemented on Matlab.

2.1. Wavelet Transform. Wavelet transform can explore the
details of a signal in different scales at any time position.
Formally, the wavelet transform of a time signal f(t) is
defined as following [11]:

C(a, b) � 􏽚
​ +∞

−∞
f(t)ψ∗a,b(t) dt, (1)

where ψa,b(t) � 1/
��
a

√
ψ((t− b)/a), a> 0, b ∈ R, and ∗ means

complex conjugation.
Equation (1) shows that wavelet transformmaps a function

of time to another function of a and b, which, respectively,
represent scale and time location. So, local frequency in-
formation of signals can be reflected clearly by wavelet
transform.+is is very import to P300 Speller BCI that need to
find the time and frequency range of EEG epochs during which
the differences between target and nontarget exist. +e direct
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numerical implementation of Equation (1) usually is called
continuous wavelet transform (CWT) [11]. However, CWT
involves toomany closely spaced scales and time points that are
highly correlated. +e information provided by CWT is un-
necessarily redundant and CWT is not very efficient. A
computationally simpler implementation is discrete wavelet
transform (DWT) that is constructed on a set of orthogonal
wavelet bases [11], such as Daubechies Wavelet [12]. DWT
algorithm is based on a simple recursive filter scheme. +e
result of DWT algorithm is not redundant but sufficient for
reconstruction of the time function.

In P300 Speller BCI, the f(t) would be digitally sampled,
and in the time window following the stimulus onset, be
extracted into an EEG epoch that can be denoted as a vector
e. DWTtransforms e to another vector in same dimension. It
can be formally written as follows:

b � We, (2)

where W is an orthogonal matrix representing DWT, b as
a vector in same dimension as e, is the result of DWT. In
P300 Speller BCI, the difference between target and non-
target EEG epochs is that P300 component appears at dif-
ferent positions of the EEG epochs, so only a few elements
reflecting the difference benefit the recognition of target EEG
epochs. Selecting them from all elements is helpful.

2.2. Fisher Criterion. Clearly, it is not efficient to use all
elements of b in recognizing target EEG epochs. +e next
problem we face is to find a way in which only the best
elements are selected to be passed to classifiers.

Aniyan et al. [18] reported a wavelet-based method
carrying out the detection and isolation of special ERP
component. +e method is a fully automated algorithm that
selects the best scale analysis from CWT for separating ERP
components from single-trial EEG epochs. Although the
problem handled by [18] is different, it at least demonstrates
the feasibility of developing an algorithm for the issue that
we need to solve.

According to [21], Fisher Criterion is a discriminant
criterion function that is defined by the ratio of the between-
class scatter to the within-class scatter. By maximizing the
criterion function, one can get a projection axis. After the
samples are projected on the axis, the between-class scatter is
maximized and the within-class scatter is minimized.

In P300 Speller BCI, the aim is discriminating target EEG
epochs and nontarget EEG epochs. We denote an EEG
epoch on a channel by a vector e. Further, a e+ represents
a target EEG epoch and a e−means a nontarget epoch. DWT,
respectively, transforms e+ and e− to b+ and b−. Some ele-
ments of b are useful for discriminating b+ and b− but others
not. We need to use Fisher Criterion to optimize DWT for
P300 Speller BCI. In the optimized DWT, only the elements
that clearly benefit the discrimination of the two classes
remain in the results of transformation.

2.3. EEG Feature Extraction Algorithm. In Equation (2), the
matrix represents DWT. In fact, our optimization means

removing some rows fromW in Equation (2). In accordance
with Fisher Criterion, we need to maximize a function
described by Equation (3) to seek a solution.

J(ω) �
ωTb+ −ωTb−􏼐 􏼑

2

ωTΣ+ω + ωTΣ−ω
, (3)

where b+ and b−, respectively, represent the means of b+ and
b− and Σ+ and Σ− are the covariance matrix of b+ and b−.

According to [21], the direction of the expected unit
vector can be obtained by the following equation:

ω � Σ+ + Σ−( 􏼁
−1

b+ − b−􏼐 􏼑. (4)

In the vector ω, the absolute values of the elements mean
their importance to discriminating b+ and b−. Each element
of ω corresponds to a row ofW. +is shows that we can sort
the elements ofω by their absolute values, remove some rows
ofW corresponding to the elements of small absolute values,
and then get a new transform matrixM. In fact,M is a set of
optimal wavelet bases for the channel of the subject. On the
basis of the above analysis, we propose our EEG feature
extraction algorithm for P300 Speller BCI. +e algorithm
includes two stages. In short, the first stage is to get M and
the second stage is to use M.

+e goal of the first stage is to determine an M for each
channel. After training a subject, we can collect some target
EEG epochs and nontarget EEG epochs. By them, a data set
comprising many e+ and e− can be built for every valuable
channel. According to Equation (2), the data set can be
transformed to another data set containing many b+ and b−.
From this new data set,ω can be obtained by Equation (4). In
light of the absolute value of ω elements, the rows ofW that
are important to discriminating the target EEG epochs and
nontarget EEG epochs are selected to construct M. +e first
stage of EEG feature extraction algorithm is depicted as
Algorithm 1. In this, N means that we need to transform
EEG epochs on the channel to N-dimension feature vectors,
Matrix W represents the DWT for the data set comprising
many e+ and e−, andMatrixMwould be used to compute the
feature vectors of EEG epochs on same channel.

In the second stage, every valuable channel of EEG
epochs can be transformed to a low dimension vector by the
following equation:

r � Me. (5)

All r of an EEG epoch can be concatenated into a feature
vector, which is in much lower dimension than the EEG
epoch but has the most information in the EEG epoch that is
helpful to the discrimination of target and nontarget. +e
feature vector is the result of EEG feature extraction
algorithm.

2.4. Parallel Computing Scheme. In a P300 Speller BCI, the
classifiers are always trained offline when the subjects are in
rest. +erefore, the first stage is also carried out offline if
EEG feature extraction algorithm is applied in a P300 Speller
BCI. Its speed is not a critical factor. As for the second stage,
it is performed online when a P300 Speller BCI using the
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algorithm is running. Every EEG epoch is needed to be
computed when it is gotten, and the computation is expected
to be completed as soon as possible. So, the speed is very
important for the second stage of EEG feature extraction
algorithm.

In fact, we have met the speed trouble. Originally, we
implemented the algorithm in BCI2000 and tried online
P300 Speller experiments of the algorithm. BCI2000 often
stopped the experiments since the computation could not
keep up with the steps of the experiments.

Although the speed problem can be solved by replacing
the desktop computer with a high-performance hardware
system, it is not a good solution in view of the cost and
convenience. A preliminary parallel computing framework
was proposed to increase the computation speed of P300
Speller in our previous work [22]. Here, we also seek to
distribute the computing tasks of the algorithm to several
desktop computers that are cooperating with one another. A
very good mechanism for this problem is Storm, an open
source real-time distributed stream data processing system
[23, 24]. Its performances of low latency and fault-tolerance
have been verified by many famous applications. We
designed a parallel computing scheme of EEG feature ex-
traction algorithm on the basis of Storm.

+e parallel computing scheme of the algorithm based
on Storm is shown in Figure 1. +e scheme includes four
kinds of computing units: DataSpout, ExtractBolt, Classi-
fyBolt, and SynthesizeBolt. +ey are built in accordance with
the standard of Spout or Bolt in Storm [23, 24]. +ere is only
one DataSpout in the scheme. DataSpout is connected to the
EEG acquirement system and receives the signal segments
from it. DataSpout assembles an EEG epoch and sends it to
an ExtractBolt when the segments that have come are
enough for an EEG epoch. +e task of ExtractBolt is to
conduct the computation described in Equation (5) for each
channel of an EEG epoch.+ere are many ExtractBolts in the
scheme. +e number of them depends on how many
computers and what kind of computer is included in this
scheme. All ExtractBolts simultaneously operate but, re-
spectively, compute different EEG epochs. An ExtractBolt
outputs a feature vector to a ClassifyBolt when it completes
the computation of an EEG epoch. Every ClassifyBolt is
a computing unit of classifying a feature vector. Although
the classification is not the focus in this paper, the scheme
should contain the classification from the perspective of the
computation integrity. In this scheme, all ClassifyBolts
implement the same classifier. Similar to the ExtractBolts,

many ClassifyBolts run at the same time but handle dif-
ferent feature vectors. Every ClassifyBolt transmits the
score of classifying the feature vector to SynthesizeBolt.
+ere is only one SynthesizeBolt in the scheme. Synthe-
sizeBolt simply picks the row and column corresponding to
the biggest the scores and feedbacks them to other parts of
the BCI system.

Usually, one round of stimuli is not sufficient for a sat-
isfactory detection of characters. +e scores of a few rounds
are necessarily accumulated to enhance the reliability.
SynthesizeBolt does not give out the feedbacks until the gap
between the biggest score and the second biggest one exceeds
a threshold. Since the scores of a few rounds are summed, the
computing units in ExtractBolt and ClassifyBolt are required
to be linear. Equation (5) shows that the computing units in
ExtractBolt are linear. As for ClassifyBolt, nonlinear clas-
sifiers are not acceptable. On the contrary, this scheme does
not have a preference for any linear classifier. +e scheme is
flexible at this point.

3. Results and Discussion

3.1. Preliminary Work

3.1.1. Experiment Design. Ourmain aim is verifying whether
EEG feature extraction algorithm can improve the perfor-
mance of P300 Speller BCI by reducing the number of re-
peated stimuli. We designed the experiment procedure
according to the P300 speller paradigm [1, 3, 4, 20]. +e
subjects were instructed to quietly sit in front of a screen and
gaze at the screen. A 6× 6 matrix of characters was presented
on this screen. +e six rows and six columns of the character
matrix were randomly highlighted. +e duration of high-
lighting was 120ms, and the interval between the two
consecutive highlighting was 80ms. Each of the six rows and
six columns was highlighted once in a round. +is kind of
flash was conducted fifteen rounds, called a sequence, for
a wanted character. +e subjects were asked to silently count
when the wanted characters were being highlighted.

+e experiments involved three phases. +e first phase
aimed to provide the subjects with practice opportunities so

Input: N, a data set comprising many e+ and e−

Output: Matrix M
Construct Matrix W
Compute b+ � We+ for all e+

Compute b− � We− for all e−

Compute ω � (Σ+ + Σ−)−1(b+ − b−)

Construct Matrix M with the rows of W associated with the N largest absolute values of ω elements

ALGORITHM 1: Stage 1 of EEG feature extraction.

DataSpout

ExtractBolt ClassifyBolt

ClassifyBoltExtractBolt

SynthesizeBolt

Figure 1: Parallel computing scheme.
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that they could adapt themselves to operating P300 speller.
+e intention of the second phase was to construct a training
set for each subject. +e goal of the third phase was to build
a test set for each subject.

3.1.2. Subject and Instrument. Nine subjects (three males
and six females) took part in the experiments. Eight of them
were university students (the average age was 24 years old),
and one was a university staff (43 years old). All subjects
were right-handed, and their eyesight varied in the degree of
myopia. All subjects had sufficient rest between the exper-
iments. For convenience, the nine subjects were denoted by
S1 to S9.

+e instrument for EEG signal acquisition was the 64-
channel Neuroscan system, including the EEG cap, the
amplifier, and the signal acquisition software. +e sampling
rate was set to 1000Hz. BCI2000 [20] was used to present the
character matrix and the stimuli, and it was integrated with
the Neuroscan signal acquisition software to process the
signals and save them to the data files.

3.1.3. Data Set. In the second phase, the following steps were
taken to construct the training sets. All characters in the
character matrix were randomly divided into four groups.
Every subject was arranged to input the characters group by
group by the means of P300 speller.+e course during which
a subject input one group of characters is defined as a run.
Between the two consecutive runs, the subjects all had
a chance to sufficiently rest.

EEG signals were acquired when the subjects were
working. First, the signals were filtered by such preliminary
processes such as common average reference (CAR). Next,
the signals except those from the electrodes of FZ, CZ, PZ,
PO7, PO8, and OZ were removed. +e reason for doing so
is that the signals from these electrodes evidently have the
main effect on P300 speller [1]. Every signal epoch of
800ms following a stimulus onset was cut out. A stimulus
onset corresponds to six 800ms signal epochs from the six
electrodes. +e epochs corresponding to the wanted
characters were labeled as positive examples and others as
negative examples. All positive examples and negative ones
belonging to one subject were added into the training set of
the subject.

Before the third phase, every signal epoch was down-
sampled to a 15-dimension vector, then the six vectors
corresponding to one stimulus onset were concatenated to
be a feature vector, and a linear discriminant function was
trained on the set of feature vectors for each subject. In the
third phase, the subjects were instructed to formally use
P300 Speller. BCI2000 was configured to use the trained
linear discriminant functions to recognize the targets. As
mentioned before, the subjects input about 10 characters
in a run and had a rest after a run. Meanwhile, the EEG
signals were stored into the data files for the subsequent
analyses.

+e most experiments in the third phase achieved the
run accuracy of 100% for the character recognition. Al-
though the accuracies of the remaining runs were close to

100%, only the runs with the accuracy of 100% were selected
into the test sets. +is ensured that the test sets were
composed of the best data, and the adverse influence of dirty
data could be excluded as much as possible.

3.2. Procedure andPerformance ofClassifying. +e proposed
method involves both Wavelet Transform and Fisher
Criterion, so we call it WF in a brief form.+e question on
whether or not WF could improve the performance of
classifying EEG epochs in P300 Speller BCI is needed to
be tested. Since WF does not focus on classifier but
feature extraction, WF, downsampling (DS), and
xDAWN (xD) [27] were, respectively, combined with the
stepwise linear discriminant analysis (SWLDA), the de-
fault classifier in BCI2000, to classify the EEG epochs in
the test data sets. According to [28], DS and xD are the
typical feature extractions used to classify ERP in BCI. We
evaluated WF by comparing the three kinds of classifi-
cation results.

For WF, all kinds of mother wavelets are available.
According to [12], the wave shapes of mother wavelets play
an important role in this kind of tasks. On basis of this
opinion, we got the difference wave shape by subtracting the
averaged EEG epoch corresponding to target stimuli from
the averaged EEG epoch corresponding to nontarget stimuli
and compared it with a variety of mother wavelets. Finally,
we chose the Daubechies 4 (DB4) in the study to construct
a matrix for each channel of one subject. As for the di-
mension of feature vector, WF and DS both transformed
a channel of one epoch to a 15-dimension vector.+e reason
for 15-dimension is that, by default, BCI2000 gets a 15-
dimension vector from a channel of one epoch. As six
channels were used, the final feature vectors were of 90-
dimension. For consistency, xD also transformed each epoch
into a 90-dimension feature vector. +e three different al-
gorithms produced the feature vectors of same dimension. It
is to eliminate the possibility that the difference of their
performances stems from the dimension distinction of
feature vector.

+e experiment design has shown that a sequence,
through which a subject input a character, includes 15∗12
EEG epochs. We investigated the classification performance
by using WF, DS, and xD to classify all epochs of each
sequence. For a sequence, three receiver operating charac-
teristics (ROC) [29] curves were drawn, respectively, forWF,
DS, and xD, and the areas under the ROC curve (AUC) [29]
were also worked out. Figure 2 demonstrates a ROC graph
for each subject. TPR means true positive rate, and FPR
means false positive rate. Every graph contains three ROC
curves: WF, DS, and xD.+ey are the results of classification
performance of WF, DS, and xD in a sequence of the
subjects.

For a ROC curve, the AUC indicates the performance of
classification. Bigger means better. In Figure 2, it is obvious
that the WF curves have bigger AUC than those of DS and
xD for S1, S3, S4, S5, S7, and S9. +eir AUCs are very similar
for S2, S6, and S8. Clearly, WF performs better in the
example.
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However, an example is not enough. We figured out all
sequences AUCs of each subject. +eir means and standard
deviations are shown in Figure 3. +e heights of the bars are
the means of AUCs of Subject 1–9. +e error bars represent
the standard deviations of the AUCs. For S1, S2, S3, S6, S7,
S8, and S9, WF AUC means are bigger than those of DS and
xD. For S4 and S5,WFAUCmeans are similar to those of DS
and xD. As for the standard deviations, no significant dif-
ference appears. Figure 3 shows that, in general, WF did
better than DS and xD in classifying the EEG epochs of
single trial from P300 Speller BCI. Furthermore, theWF, DS,

and xD AUC of each sequence were, respectively, paired,
and paired t-tests were conducted over the data sets of the
paired AUCs. P value of the pair of WF and DS is 1.38E-62,
that ofWF and xD 1.43E-60, and that of DS and xD 0.15. It is
very obvious that WF is superior to DS and xD in the task of
classification. On the contrary, DS and xD had similar
performance in the task.

3.3. Detection of Characters and Statistic Analysis. For P300
Speller BCI, the wanted character is recognized by selecting
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Figure 2: ROC curves of subject 1–9.
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the most possible row and column of the character matrix
through the synthesis of the classification results. +e ac-
curacy of classification is not that of detecting characters.
As shown in Figure 4, the accuracy of detecting characters
varies basically from 20% to 75% when only the first round
of EEG epochs are used. Round � n means that the de-
tection of characters is the result of synthesizing the
classification of the first n-round EEG epochs. +e ac-
curacy of detecting characters changes with the round.
+e curves reflect the trend that a higher accuracy could be
achieved when more rounds are used. +erefore, one
round of stimuli is usually not sufficient for P300 Speller
BCI. By default, BCI2000 presents 15 rounds of stimuli for
a wanted character. We did the experiments in the con-
dition of BCI2000 default configuration and constructed
the test data set in which every sequence contains 15
rounds of EEG epochs. +us, we can observe how the
performances of detecting characters change when the
rounds vary from 1 to 15.

In Figure 4, the DS, WF, and xD curves, respectively,
imply the trends that their performances change with the
rounds. +ey can get higher accuracies when more
rounds are processed. For S2, S3, S6, S7, S8, and S9, the
WF curves are above the DS and xD ones, indicating
that WF did better than DS and xD for these subjects.
Especially, there is a big gap between the WF curves and
the other two for S9, meaning that WF achieved much
higher accuracies of detecting characters than DS and xD
for S9. For S1, S4, and S5, the three curves are very
similar, implying that they performed similarly. For the
three subjects, the accuracies exceed 60% when only one
round of EEG epochs is used. It is good enough. So, it is
difficult for WF to obviously perform better than DS
and xD for these subjects. In general, WF can clearly
achieve higher accuracies of detecting characters than the
other two.

Although more rounds mean higher accuracies of
detecting characters, fewer rounds are expected from
the perspective of efficiency. +ere is a trade-off between
the accuracy and efficiency. To seek a good balance,

we turned to the information transfer rate (ITR),
a measure about the amount of communication in unit
time [4]. Equation (6) and (7) show how ITR should be
calculated:

ITR �
B

t
, (6)

B � log2 N + P log2 P +(1−P)log2
1−P

N− 1
, (7)

where N is the number of the characters in the character
matrix, P is the accuracy of recognizing characters, and t is
calculated, respectively, for round� 1, 2, . . . , 15 according to
Equation (8). In Equation (8), the time unit is millisecond,
and gap means the interval between the consecutive se-
quences. Here, we figured out t by setting gap as 2000 and
converted the unit of t to minute before using t in the
following equation:

t � 12 × 200 ×(round− 1) + 11 × 200 + 800 + gap. (8)

+e results of ITR are shown in Figure 5.+e meaning of
round� n is same as that in Figure 4. +e curves reflect the
trends that the ITRs change with the increase of round.
Similarly, WF has higher ITRs than DS and xD for S2, S3, S6,
S7, S8, and S9, and their ITRs are very high and close for S1,
S4, and S5.+is also means that WF is mostly superior to DS
and xD. Additionally, the ITR curves can help seek the trade-
off between accuracy and efficiency. We can see a peak in the
ITR curves for the subjects except S4. For theWF curves, the
peak is at round� 2 for S1, round� 3 for S2, round� 4 for S3,
round� 2 for S5, round� 5 for S6, round� 5 for S7,
round� 4 for S8, and round� 3 for S9. +e peaks are the
biggest ITRs for the subjects. More rounds do not lead to
higher ITRs.+e round numbers corresponding to the peaks
are the best choices for the subjects. As for the exception of
S4, the reason that no peak exists is that the accuracies of
detecting characters are very high at round� 1. So,
round� 1, 2, or 3 is suitable for S4 according to its accuracy
curve. To sum up, WF not only significantly increases the
accuracy of detecting characters but also reduces the round
numbers to 2–5.

3.4. Speed of Parallel Computing. +e parallel computing
scheme is shown as Figure 1. WF was implemented in the
ExtractBolts and SWLDA in the ClassifyBolts. +e four
kinds of computing units in the scheme were deployed on
a Storm platform based on three ordinary desktop com-
puters. +e configurations of the three computers were,
respectively: Intel Pentium dual core E6600 3.06GHz, Intel
Pentium CPU G850 2.90GHz, and Intel core i5-4590
3.30GHz. +e Storm was supported by 1G RAM on each
of the three computers. +e parallel computing scheme
substituted for the signal processing module of BCI2000 and
was connected to the other parts of BCI2000 during our
online experiments. No delay cues emerged in our online
experiments.

When our method is applied in P300 Speller, the
system extracts the feature vector from each EEG epoch,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

S1 S2 S3 S4 S5 S6 S7 S8 S9

DS
WF
xD

Figure 3: AUC means and standard deviations.
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classifies it, and begins to synthesize the classification
results of all EEG epochs at the end of one round of
stimuli. According to the synthesization, the system can
give out the detected character or continue to present the
stimuli. Whether or not the synthesization is completed in
time is an important factor of the performance of our
method.

Under the conditions mentioned above, we tested the
time from the end of one round of stimuli to the moment
when the response to the round is given out. +e prob-
ability distribution of the time value is shown as Figure 6.
+e maximum response time is 16ms, and the mean is
1.57ms. In P300 Speller, every stimulus lasts 200ms. All
the responses were given out before the next stimulus
occurred.

4. Conclusions

BCI not only brings people a lot of visions about the future
but also has many practical applications in the fields of
rehabilitation therapy. Among all kinds of BCIs, the re-
liability of P300 Speller has been attracting the attention of
researchers. Many efforts were made to improve P300
Speller. +is work aims at developing a new feature ex-
traction and its parallel computing scheme for P300 Speller.

+e proposed feature extraction is based on Wavelet
Transform, which has been proved by many researches to be
a good tool for analyzing P300 component. In P300 Speller,
both target EEG epochs and nontarget EEG ones contain
P300 component. +e difference between the two is not
obvious. We mapped the EEG epochs to the wavelet space
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Figure 4: Accuracy of detecting characters.
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and measured the differences between target and nontarget
in the space according to Fisher Criterion. +e wavelet bases
corresponding to small differences were filtered, and a sparse
wavelet space was constructed for each subject. +e feature
extraction algorithm based on the sparse wavelet spaces was
developed for P300 Speller.

+e test results show the superiority of the proposed
feature extraction. Firstly, WF, DS, and xD were applied
in the classification of single-trial epochs from P300
Speller. +eir performances of classifying single trial
epochs were measured by AUC. +e comparison of AUC
between the methods indicated that WF outperformed
the other two in classifying single trial epochs from P300

Speller. Secondly, WF, DS, and xD were further compared
by detecting the wanted characters. For most subjects, the
accuracy curves of WF are above the ones of the other
two, implying that WF achieved better performance in
the detection of characters of P300 Speller than DS and
xD did. Finally, ITRs were calculated on basis of the
detection accuracies. +e comparison of ITRs demon-
strated the result that is consistent with the comparison of
the detection accuracies.

Additionally, the parallel computing scheme of the
feature extraction was designed and implemented to ensure
the fast feedback for online P300 Speller experiments. It is
worth mentioning that the parallel computing scheme is able
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to support any other algorithms for P300 Speller. An al-
gorithm can be implemented on our parallel computing
scheme to extract the features or classify the EEG epochs for
online P300 Speller experiments, even though it is com-
putationally complex.

On the contrary, something should be further handled.
+e problem on which kind of wavelet bases is the best
choice for our method is needed to be systematically
studied. +e matrix used to extract features in WF is
obtained by a supervised training. Some issues on the
supervised training remain unknown. For example, how
much data is enough for the supervised training? When the
supervised training is needed to be conducted again to
adapt to the change of EEG. We plan to study such in-
teresting problems in the future.
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+e P300 Speller BCI data used to support the findings of
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