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I dream things that never were, and I say “Why not?”

—George Bernard Shaw

Pancreatic b-cells secrete insulin to maintain physiological
health. While the glucose level is the principle driver of
insulin secretion, b-cells also respond to other regulatory
inputs including circulating metabolites (most notably
amino acids), regulatory hormones, gut peptides, and neu-
rotransmitters. Insulin secretion increases when glucose
levels are high, thereby increasing total body glucose
utilization and suppressing endogenous glucose produc-
tion. Of critical importance, insulin secretion is suppressed
when glucose levels are low, which protects against life-
threatening hypoglycemia.

There have been remarkable advances to enhance effi-
cacy and safety of insulin therapy since the discovery of
insulin 100 years ago. Insulin pharmacokinetics has been
optimized through both formulation and modification of
the peptide itself. Sophisticated mechanical devices can
provide continuous insulin delivery and continuous glu-
cose monitoring. Pancreatic islets can be transplanted, and
bihormonal pumps more closely mimic normal physiology.
Despite technological advances, most insulin-dependent
patients do not achieve physiological glucose control. The
risk of severe hypoglycemia is particularly troublesome be-
cause it limits the ability to safely achieve optimal glycemic
control, which in turn makes it harder to protect against
the long-term risk of microvascular complications (1,2). To
underscore this point, half of the Diabetes Control and
Complications Trial (DCCT)/Epidemiology of Diabetes Inter-
ventions and Complications (EDIC) cohort experienced se-
vere hypoglycemia (;40 episodes per 100 patient-years) (3).
Furthermore, self-reported severe hypoglycemia is associated
with 3.4-fold increased risk of death during a 5-year follow-
up period (4).

The pursuit of a glucose-responsive insulin (GRI) ther-
apy is an ambitious technical objective. In type 2 diabetes,
incretin therapy enhances insulin secretion when glucose
levels are high but does not cause hypoglycemia because it

does not promote insulin secretion when glucose levels are
low. Similarly, GRI technology aims to mimic the ability of
b-cells to respond differentially to high versus low glucose.
At least three approaches have been attempted, broadly
including the following:

� Insulin formulations with glucose-responsive release prop-
erties, either in the form of subcutaneous microemulsion
or a defined nanoparticle (5,6)

� Glucose-regulated insulin clearance (7,8)
� An insulin with intrinsic activity that is glucose

responsive (9)

At least one GRI (MK-2640) advanced into clinical studies
but failed to achieve clinical proof of concept despite having
achieved improved therapeutic index in small and large
animal models (10,11). Thus, from a drug discovery per-
spective, there is an important unmet research need to
improve the predictive value of experimental results ob-
tained in preclinical animal models. In this issue of Diabetes,
Yang et al. (12) address this unmet need by providing
amathematical model (Pharmacokinetic AlgorithmMapping
GRI Efficacies in Rodents and Humans [PAMERAH]) to
predict whether a GRI can provide a favorable outcome in
clinical studies based upon preclinical observations in mice
and rats. Their compartmental model describes the complex
set of integrated interactions that control plasma glucose.
The mathematical details may prove daunting to most
readers of Diabetes (including the authors of this Commen-
tary), but the insights are nonetheless potentially important.
Most importantly, the model is testable. Furthermore, data
obtained in pursuit of an optimized GRI will permit further
refinement of mathematical models. Similar mathematical
models integrating pharmacokinetics (PK) and pharmacody-
namics (PD) are often applied in drug discovery projects, but
the extensive literature about insulin PK/PD contributed to
the ability to construct the high-quality PAMERAH model.
Of particular note, Yang et al. (12) suggest that a universal
signature of glucose responsiveness is the ability of GRI
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therapy to enhance hepatic glucose uptake in hyperglycemia
more than an equivalent concentration of a non-GRI treat-
ment. This is consistent with the hypothesis that an insulin
preferentially active at the liver might diminish hypoglyce-
mia risk (13). Nevertheless, an optimized GRI would need to
achieve the optimal balance among all the pharmacodynamic
actions of insulin.

GRI technology can transform insulin therapy, but the
model underscores the challenge in its design and the in-
ability to directly translate rodent pharmacology to humans.
Here are some of the principal challenges that must be
successfully addressed.

� Chemistry: set point and kinetics. Daily glucose concen-
trations vary between;95–150mg/dL (5.3–8.3mmol/L)
in healthy volunteers; insulin levels range between;10–
50 mU/mL (1.7–8.3 pmol/L) (14). Higher insulin levels
(i.e., .50 mU/mL; .8.3 pmol/L) are often required to
manage hyperglycemia in patients with diabetes. Insulin
levels are suppressed to,5 mU/mL (,0.8 pmol/L) during
hypoglycemia (15). In other words, circulating insulin
bioactivity varies tenfold to prevent excessive glucose
elevation on one end while avoiding hypoglycemia at the
other end. A GRI must be near-maximally suppressed
when plasma glucose levels are#50mg/dL (#2.8 mmol/L)
while having at least tenfold higher bioactivity when
plasma glucose levels are$150mg/dL (8.3mmol/L). Thus,
a threefold decrease in plasma glucose concentration must
drive a greater than tenfold decrease in insulin bioactivity.
By way of contrast, for enzymes following Michaelis–
Menten kinetics, the rates of chemical reactions typically
change less than threefold in response to a threefold change
in substrate concentration. Consequently, it may be ex-
tremely challenging to achieve the necessary greater-than-
proportional change in insulin bioactivity in response to
glucose levels. Just as the pancreaticb-cell responds rapidly
to changes in glucose concentration, the biological activity
of a GRI must change on a similarly rapid timescale.

� Biology: inter- and intrapatient variation. Certain GRI
designs rely on endogenous biological processes. For
example, MK-2640 acquired glucose responsivity by
virtue of being cleared by the lectin mannose receptor
C-type 1 (MRC1) (7,8,10,11). This molecular mechanism
has the potential to be altered by interindividual vari-
ation in MRC1 expression levels and inherent activity.
If an individual patient displayed enhanced MRC1-
mediated clearance, this might accelerate the rate of GRI
clearance, thereby compromising glucose-lowering effi-
cacy. A very low level of MRC1 expression could di-
minish, or even abolish, glucose responsiveness. Other
GRI technologies use glucose-regulated insulin release
from otherwise quiescent drug depots. Differences in
administration technique and adiposity at site of in-
jection have the potential to introduce a high degree of
both interday and interindividual variation in the dy-
namic response of this class of GRI. Furthermore,
physical exercise may alter blood flow and glucose

metabolism, thereby indirectly potentially altering
GRI performance. It may be challenging to model all
these complexities in a simple experimental protocol
(e.g., a euglycemic insulin clamp).

� Compatibility with current technology. Advances in bio-
medical devices—including continuous glucose moni-
toring and glucagon as a buffering agent against
excessively low glucose concentration—are beginning to
replicate endogenous pancreatic regulation of insulin
secretion in response to ambient glucose levels (16,17).
To the extent that these advances succeed at minimizing
the risk of hypoglycemia, they have potential to decrease
the need for a GRI. Nevertheless, a GRI technology that
uses a mechanism compatible with closed-loop technol-
ogies might prove doubly valuable relative to those that
are incompatible. Indeed, it is possible that a GRI could
be optimized to function in the context of a closed-loop
system, further refining the ability to provide an optimal
combination of efficacy and safety. Of course, to the
extent that the pharmacokinetics and pharmacodynam-
ics of a GRI would differ from human insulin, this would
necessitate changes in algorithms underlying a closed-
loop insulin delivery system.

� Cost considerations. List prices of insulin have increased
rapidly in the U.S. in recent years (18), which has
created a public health crisis for affordable access, especially
for uninsured patients. Although space does not per-
mit a thorough discussion of challenges to achieve the
right balance between medical economics and tech-
nological innovation, these two perspectives are in-
extricably intertwined. In any case, the current politically
charged environment complicates the challenges to attract
the investments required to support the high risk/high
reward research required to develop a GRI.

MK-2640 provides a case study illustrating uncertainties
about whether rodent pharmacology studies will predict clin-
ical efficacy in humans. The mathematical model of Yang et al.
(12) holds promise to eventually facilitate design and selection
of molecules with improved probability of achieving clinical
proof of concept. The same mathematical model can be used
for all species, albeit themodel’s parametersmust be estimated
by empirical data obtained in each species. Such models also
hold promise to define a role for large animal models such as
minipigs, despite their increased expense and lower through-
put. Ultimately, clinical data will be required to validate any
drug candidate and to refine the predictive value of the
proposed mathematical model (12). This mathematical
model comes at a time of increased interest in mathe-
matical modeling and other in silico approaches to in-
crease the eventual likelihood of success by better targeting
investment of time and money in support of research and
development.
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