
Discovery of Novel Reductive
Elimination Pathway for
10-Hydroxywarfarin
Dakota L. Pouncey1†, Dustyn A. Barnette1†, Riley W. Sinnott 1, Sarah J. Phillips2,
Noah R. Flynn3, Howard P. Hendrickson2,4, S. Joshua Swamidass3 and Grover P. Miller1*

1Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little
Rock, AR, United States, 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical
Sciences, Little Rock, AR, United States, 3Department of Pathology and Immunology, Washington University School of Medicine,
St. Louis, MO, United States, 4Department of Pharmaceutical Social and Administrative Sciences, McWhorter School of
Pharmacy, Samford University, Birmingham, AL, United States

Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the
formation of blood clots; however, significant inter-individual variations in response
risks over or under dosing resulting in adverse bleeding events or ineffective therapy,
respectively. Levels of pharmacologically active forms of the drug and metabolites depend
on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R-
and S-warfarin to 6-, 7-, 8-, 10-, and 4′-hydroxywarfarin, and warfarin alcohols form
through a minor metabolic pathway involving reduction at the C11 position. We
hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo
reduction, possibly impacting their pharmacological activity and elimination. We modeled
reduction reactions and carried out experimental steady-state reactions with human liver
cytosol for conversion of rac-6-, 7-, 8-, 4′-hydroxywarfarin and 10-hydroxywarfarin
isomers to the corresponding alcohols. The modeling correctly predicted the more
efficient reduction of 10-hydroxywarfarin over warfarin but not the order of the
remaining hydroxywarfarins. Experimental studies did not indicate any clear trends in
the reduction for rac-hydroxywarfarins or 10-hydroxywarfarin into alcohol 1 and 2. The
collective findings indicated the location of the hydroxyl group significantly impacted
reduction selectivity among the hydroxywarfarins, as well as the specificity for the
resulting metabolites. Based on studies with R- and S-7-hydroxywarfarin, we predicted
that all hydroxywarfarin reductions are enantioselective toward R substrates and
enantiospecific for S alcohol metabolites. CBR1 and to a lesser extent AKR1C3
reductases are responsible for those reactions. Due to the inefficiency of reactions,
only reduction of 10-hydroxywarfarin is likely to be important in clearance of the
metabolite. This pathway for 10-hydroxywarfarin may have clinical relevance as well
given its anticoagulant activity and capacity to inhibit S-warfarin metabolism.
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INTRODUCTION

Coumadin (rac-warfarin) is frequently prescribed in the
prophylaxis of thromboembolism in the setting of atrial
fibrillation, stroke, and many other hypercoagulable
conditions. This anticoagulant effect of warfarin is derived
from the inhibition of vitamin K oxidoreductase complex 1
(VKORC1), which is involved in the recycling of vitamin K
during the maturation of coagulation factors (Ansell, et al.,
2008). Despite its important role in anticoagulant therapy
since the 1950s, warfarin remains underutilized due to its
interindividual unpredictability in dose response and narrow
therapeutic range. Patients have their own response to the
medication routinely tested to optimize dosing and mitigate
the possibility of hemorrhaging (over-dosing) or clotting
(under-dosing); nonetheless, warfarin remains in the top ten
drugs for hospitalizations due to side effects (Wysowski et al.,
2007). A deeper understanding of the underlying causes of
response variation may lead to improved management
strategies for achieving and maintaining an optimal dose,
while simultaneously minimizing possible adverse drug events.

Warfarin therapy entails oral treatments of a racemic mixture
of R- and S-warfarin. Reported R-warfarin levels in patients are
on average 2-fold higher than S-warfarin, however S-warfarin is
thought to be 3–5 times more effective as an anticoagulant than
R-warfarin (Lewis et al., 1974; Jones et al., 2010a; Haque, et al.,
2014; Miller 2010). In addition, warfarin potency is impacted by
its extensive metabolism (Figure 1). Each warfarin enantiomer
undergoes primarily oxidation into 6-, 7-, 8-, and 4′-
hydroxywarfarins and a pair of 10-hydroxywarfarin isomers.
Minor but relevant, competing pathways are warfarin
reductions into pairs of alcohols (Kaminsky and Zhang 1997;
Jones et al., 2010b; Jones and Miller 2011). Metabolism decreases
levels of the parent drugs but do not necessarily eliminate the

anticoagulant response (Lewis et al., 1973). Hydroxywarfarins
and warfarin alcohols may still inhibit VKORC1 (Haque, et al.,
2014) or even inhibit metabolism of the parent drugs (Jones, et al.,
2010c) that may contribute to the overall anticoagulant effect.
Those outcomes will ultimately depend on processes impacting
warfarin metabolite levels. Warfarin hydroxylation introduces an
essential site for glucuronidation leading to elimination of most
hydroxywarfarins (Zielinska, et al., 2007; Bratton, et al., 2012;
Kim, et al., 2019; Pugh, et al., 2018), as glucuronides in patient
urine (Kaminsky and Zhang 1997; Miller, Jones, et al., 2009). 10-
Hydroxywarfarin is the only primary metabolite that does not
undergo glucuronidation and interestingly, is not eliminated in
the urine as an unmodified metabolite, so that its elimination
pathway remains unknown.

As an alternative to glucuronidation, we hypothesized that
hydroxywarfarin reduction is an alternate, competing pathway
for elimination of these primary metabolites. For each
enantiomer, this process involves reduction of the C11
carbonyl into two possible alcohols or four for a racemic
substrate mixture. Historically, studies carried out with rac-
warfarin yielded partially resolvable isomers called alcohol 1
(minor metabolite) and alcohol 2 (major metabolite)
(Alshogran, et al., 2014; Malátkova, et al., 2016). Our previous
study further assessed the role of chirality in warfarin reductive
reactions with authentic standards for all isomers (Barnette, et al.,
2017). We determined that alcohol 1 consisted of two co-eluted
alcohol isomers sharing common chiral orientations (9R-11R-
hydroxywarfarin and 9S-11S-hydroxywarfarin), whereas alcohol
2 was the combination of alcohols with mixed chiral centers (9R-
11S-hydroxywarfarin and 9S-11R-hydroxywarfarin).
Nevertheless, R-warfarin was more efficiently metabolized than
S-warfarin and both reactions resulted mainly in formation of the
S alcohol by CBR1 and AKR1C3 (Malátkova, et al., 2016;
Barnette, et al., 2017). Consequently, rac-warfarin reactions

FIGURE 1 |Hydroxywarfarins are the predominant metabolites of warfarin metabolism that may be cleared through a novel carbonyl reduction pathway. Warfarin is
directly metabolized via a major pathway by membrane-bound cytochromes P450 to form hydroxywarfarins and a minor pathway by cytosolic reductases to form
warfarin alcohols (Kaminsky and Zhang 1997; Jones and Miller 2011). Further reduction of the hydroxywarfarin major metabolites by reductases to form hydroxywarfarin
alcohols may also be possible as a secondary reaction.
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mainly yielded 9S-11S-hydroxywarfarin (alcohol 1, minor
metabolite), and 9R-11S-hydroxywarfarin (alcohol 2, major
metabolite). Given access only to rac-hydroxywarfarins, we
anticipated similar metabolic profiles of diastereomeric isomers
from reductive reactions. How the regiospecificity of warfarin
hydroxylation would impact those subsequent reductive reactions
remained unknown.

We tested then the hypothesized reduction of
hydroxywarfarins through a combination of computational
and experimental in vitro metabolic studies. For a rapid initial
analysis, we predicted the likelihood for warfarin and
hydroxywarfarin reduction at the C11 carbonyl using the
publicly available Rainbow Model for metabolism developed
by our group (Dang, et al., 2020). The model does not
consider chirality but does yield a useful, scalable output for
ranking the likelihood of reactions like reductions to occur. For
experimental studies, we leveraged our previous methodologies
(Barnette, et al., 2017) for characterizing R- and S-warfarin
reduction by human liver cytosolic fractions to assess this
metabolic pathway for 6-, 7-, 8-, 10-, and 4′-hydroxywarfarins.
Isomeric mixtures were necessary for these studies given the lack
of commercial availability of the individual isomers. Initially, we
screened for metabolic activities and characterized the resulting
metabolites by liquid chromatography coupled to mass
spectrometry (LC-MS) to confirm the occurrence of
reductions. We then determined conditions suitable for
steady-state studies and measured reaction kinetics for rac-6-,
7-, 8-, and 4′-hydroxywarfarins along with the 10-
hydroxywarfarin mix of isomers. We then chromatographically
purified 7-hydroxywarfarin enantiomers and carried out steady-
state studies to explore the impact of chirality toward reductase
selectivity and specificity during reactions. It was not possible to
carry out similar studies with 10-hydroxywarfarin due to the
presence of chiral centers at positions 9 and 10 (Jones and Miller
2011) leading to four unresolvable isomers. 7- and 10-
Hydroxywarfarin are metabolites of major metabolic pathways,
and so we identified possible reductases responsible for their
reduction using inhibitor phenotyping. Taken together, this study
provides insights into the importance of hydroxywarfarin
reduction in vitro and serves as a foundation to further
evaluate the potential impact of this process on maintaining
levels of active metabolites on the anticoagulant response in
patients.

MATERIALS AND METHODS

Materials
Unless otherwise stated, common reagents were ACS grade
and purchased from Sigma-Aldrich. Toronto Research
Chemicals was the source for rac-warfarin and rac-6-, 7-,
8-, and 4′-hydroxywarfarin along with the 10-
hydroxywarfarin mixed isomers. High Performance liquid
chromatography grade methanol and acetonitrile were
obtained from Thermo Fisher (Pittsburgh, PA). Human
liver cytosol pooled from 150 donors (HLC150) was
purchased from Corning Gentest (Corning, NY).

Modeling Hydroxywarfarin Reductions
For rapid insights on possible reactions, we predicted
hydroxywarfarin reductions at the C11 carbonyl using our
deep neural Rainbow Model that simultaneously labels sites of
metabolism and classifies them into five key reaction classes:
stable and unstable oxidations, dehydrogenation, hydrolysis,
and reduction (Dang, et al., 2020). The model was trained on
9674 unique molecules and 20736 human in vitro and in vivo
records, including 1590 reduction reactions, from literature-
curated databases. This powerful tool is available for use free
and online through our secure server at http://swami.wustl.
edu/xenosite/p/phase1_rainbow. For each atom or bond site
on the molecule, the model generates a score from 0 to 1.0, with
higher values corresponding to greater likelihood for a
reaction to occur at that location. This model output is
analogous to a probability and provides a strategy to scale
reaction relative likelihoods. In our case, we used this metric to
rank hydroxywarfarin reductions in comparison to parent
drug warfarin. We could then compare the findings to those
from experimental kinetic studies, which are more labor and
resource intensive.

Steady-State Reduction of Warfarin and
Hydroxywarfarins by Human Liver Cytosol
Steady-state studies involved a two-stage approach to first
identify suitable reaction conditions and then to use them for
determining kinetic profiles for reactions. Initially, control
experiments were conducted to determine the optimal
reaction time and protein concentration to ensure steady-
state conditions. Hydroxywarfarin stocks were prepared in
methanol solutions. For steady-state kinetic reactions,
hydroxywarfarin aliquots were dried down using an
evaporator under nitrogen using an Organomation
Microvap Nitrogen Evaporator System (Organomation
Associates, Inc., Berlin MA) to remove the carrier solvent.
The residual rac-hydroxywarfarin was then resuspended in
50 mM potassium phosphate buffer pH 7.4 and sonicated for
5 min. HLC150 was added to the substrate to final
concentrations of 0.25–1.0 mg/ml protein. The mixture was
incubated for 10 min at 37°C with 350 rpm rotation and then
the reaction was initiated with the addition of 1 mM NADPH.
Reactions were quenched after 10, 20, 40, or 60 min using ice
cold acetonitrile containing 1 µM coumatetryl (final) as an
internal standard. Quenched reactions were centrifuged at 5°C
at 2,500 rpm for 15 min with the supernatant transferred to a
96 well half-area plate for injection. Those studies identified
conditions leading to linear response as a function of time and
protein concentration, 40 min and 1.0 mg/ml protein,
respectively, that were used in subsequent steady-state
kinetic studies. Initial rates were measured for substrate
concentrations ranging from 50 to 1,000 µM.
Hydroxywarfarin alcohol initial rates were plotted as a
function of substrate concentration and analyzed by
comparing the fit of the data to the Michaelis-Menten
equation (hyperbolic curve) and Hill equation
(nonhyperbolic curve) using GraphPad Prism 9.2
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(San Diego, CA). The best fit was determined using extra sum-
of-squares F test.

Characterization of Hydroxywarfarin
Metabolites by Mass Spectrometry
For structural characterization, sample reactions were injected
onto a Shimadzu UHFLC equipped with an SPD-10A UV–Vis
(280 nm) and RF-10AXL fluorescence (excitation 280 nm,
emission 650 nm) detectors.

Waters Acquity LC series (Waters-Millipore Corp, Milford,
MA) and analytical separation were achieved on a 2.1 × 50 mm
Hypersil Gold 5 µm column (Thermo Scientific). Parent
compounds and metabolites were separated using a linear
binary gradient (mobile phase A: water containing 0.1%
formic acid, Mobile phase B: acetonitrile containing 0.1%
formic acid). The flow rate was 0.4 ml/min, and the
gradient was: initial 20% (B), 0–2.0 min 20–40% (B),
2.0–2.75 min 40 to 55% (B), 2.75–3.5 min 55–65% (B), held,
and then returned to 20% (B) at 3.6 min. The total run time was
5.0 min. Subsequent mass spectrometry involved a Quattro
Premier triple quadrupole mass spectrometer (Waters-
Millipore Corp.), which used electrospray ionization to
interface the LC system. Positive ions were generated using
a cone voltage of 25 V. Product ions were generated using
argon collision induced disassociation at a collision energy of
15 eV while maintaining a collision cell pressure of 1.2 × 10−3

torr. Detection was achieved using MS scan from 100 to
400 m/z for fragments of parent ions, m/z 311.2 for
warfarin alcohols, andm/z 327.2 for hydroxywarfarin alcohols.

Quantitative Analysis of Hydroxywarfarin
Alcohol Metabolites
Samples were injected onto a 4.6 × 150 mm Zorbax Eclipse
3.5 µm XDB-C18 column (Agilent) heated to 45°C using a
Shimadzu UHFLC equipped with SPD-10A UV–Vis and RF-
10AXL fluorescence detectors. Analytes including warfarin,
hydroxywarfarins, reduced metabolites, and coumatetryl
(internal standard) were resolved with an isocratic method
of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffer pH 6.5 and 3:1 methanol:acetonitrile. The
elution of analytes was monitored by absorbance at 325 nm
and fluorescence (excitation: 325 nm, emission: 393 nm). Peak
areas were normalized to internal standard and quantified by
inference using the substrate response. Due to the absence of
authentic metabolite standards, we inferred their quantitation
based on the corresponding responses. Molecular fluorescence
was more sensitive than absorbance; however, carbonyl
reduction impacted fluorescence but not absorbance based
on initial studies with warfarin and warfarin alcohols.
Consequently, for substrate and metabolite in each reaction,
we calculated the response ratio as the normalized peak area
for the fluorescence response divided by that for absorbance
(Rflu/abs). Division of the metabolite response ratio by that for
substrate yielded a conversion factor, i.e., CF � Metabolite
Rflu/abs ÷ Substate Rflu/abs. Metabolite fluorescence responses

could then be multiplied by the conversion factor to generate a
response comparable to that for substrate making its
quantitation by inference using substrate fluorescence
possible.

Inhibitor Phenotyping to Identify
Reductases Responsible for
Hydroxywarfarin Reduction
As major oxidized warfarin metabolites, rac-7- and 10
hydroxywarfarin attain the highest levels in patients
(Locatelli, et al., 2005; Pouncey, et al., 2018), and thus,
reductases involved in their metabolism may have clinical
relevance. Consequently, we identified those enzymes using
inhibitors relatively specific for common cytosolic reductases.
Under steady state conditions established in the control
experiments, reactions contained 250 µM rac-
hydroxywarfarin or warfarin (positive control) along with
either methanol alone (control) or with inhibitor (5% final
methanol from carrier solvent). Reactions were conducted
using three different inhibitors to selectively inhibit
individual and classes of cytosolic reductases as discussed
in a previous study (Barnette, et al., 2017) and review
(Malátková and Wsól 2014). We employed concentrations
about 5-fold above reported IC50 values to ensure target
inhibition while minimizing off target effects. We used
flufenamic acid (FFA) at a lower concentration (2 µM) to
more selectively inhibit AKR1C3 and at a high concentration
(10 µM) to inhibit all Aldo-keto reductase family 1C members
(AKR1C). Similarly, indomethacin (IND) at lower
concentration (5 µM) selectively blocks AKR1C3 activity
with only limited effects on CBR1 inhibition, but at a high
concentration (180 µM), indomethacin broadly inhibits all
AKR1C members and Carbonyl Reductase 1 (CBR1).
Lastly, we used 60 µM quercetin to target only CBR1
activity for inhibition.

RESULTS

Modeling Enabled Ranking of Reduction
Predictions for Hydroxywarfarin Isomers
Warfarin and the hydroxywarfarins were all predicted to
undergo reduction at the C11 carbonyl bond with a
moderate to low likelihood compared to the rest of the
Rainbow Model training set. Figure 2 illustrates the
predicted likelihood for reductive reactions, while the actual
values are reported in Table 1. For comparative purposes, we
normalized model predictions for hydroxywarfarins to warfarin.
That strategy showed that introduction of the hydroxyl group
impacted the predicted reduction of the carbonyl. When the
hydroxyl group was added to the 6, 7, or 8 position on the 4-
hydroxy-coumarin scaffold, there was a slight decrease in
possible reductions. A significant reduction occurred upon
inclusion of a 4′ hydroxyl group on the phenyl group distal
from the site of reduction. By contrast, a hydroxyl group at

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8051334

Pouncey et al. Novel 10-Hydroxywarfarin Reductive Pathway

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


position 10 for 10-hydroxywarfarin resulted in the highest
likelihood of reduction at the C11 carbonyl group.

Hydroxywarfarins Underwent Reduction
Into Isomeric Alcohols
Initially, we screened rac-hydroxywarfarins for the potential for
reduction by pooled human liver cytosolic fractions (HLC150)
with rac-warfarin serving as a positive control (Figure 3). Like the
parent drug, rac-hydroxywarfarins underwent metabolism into a
minor metabolite (alcohol 1) followed by a major metabolite
(alcohol 2). Unlike warfarin, the addition of a hydroxyl group
impacted specificity of reduction rates and their relative values for
alcohols 1 and 2. In fact, the minor alcohol 1 metabolite was not
observable for rac-4′-hydroxywarfarin reactions. In general, rac-
10-hydroxywarfarin underwent the highest rates of reduction for
both alcohols followed by warfarin and 6-hydroxywarfarin with
7-, 8-, and 4′-hydroxywarfarin showing the lowest rates. Lastly,

differences in these initial rates for rac-warfarin and the
hydroxywarfarins were not the same at 100 and 1,000 μM,
suggesting differences in the respective binding specificities,
e.g., Km, among reactions. Subsequent LC-MS characterization
provided evidence for the expected metabolite structures, namely,
311 m/z for warfarin alcohols (positive controls) and 327 m/z for
hydroxywarfarin alcohols (Figure 4).

Steady-State Reduction Kinetics Varied
Among Hydroxywarfarins Compared to
Warfarin
Steady-state reactions in HLC150 were conducted to determine
mechanism and kinetics for reduction of hydroxywarfarin
isomers compared to the warfarin parent drug. Initial reaction
studies showed linearity in initial rates as a function of time and
protein concentration ensuring steady-state conditions (data not
shown). Figure 5 shows the resulting kinetic profiles from

FIGURE 2 |Hydroxywarfarin alcohols with reduction model predictions. Reduction predictions for hydroxywarfarins were made using the Xenosite RainbowModel
(Dang, et al., 2020). Individual bonds are scored from 0 to 1 with higher scores indicating higher likelihood of reduction and indicated pictorially with color shading from
blue to red. Scores for reduction at the C11 position to form hydroxywarfarin alcohols are shown in Table 1. Asterisks denote chiral centers. All hydroxywarfarins contain
a chiral center at C9 except for 10-hydroxywarfarin, which contains another at position 10.

TABLE 1 | Model predictions for reduction of warfarin and hydroxywarfarin isomers.

Absolute reduction scorea Relative reduction scoreb

Warfarin 0.204 1
6-hydroxywarfarin 0.195 0.96
7-hydroxywarfarin 0.195 0.96
8-hydroxywarfarin 0.195 0.96
10-hydroxywarfarin 0.256 1.25
4′-hydroxywarfarin 0.176 0.86

aOutput value generated by Xenosite Rainbow Model (Dang, et al., 2020) for reduction reactions.
bRelative values calculated by dividing reduction scores by that of warfarin.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8051335

Pouncey et al. Novel 10-Hydroxywarfarin Reductive Pathway

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


rac-hydroxywarfarin kinetic studies for minor (alcohol 1) and
major (alcohol 2) metabolites. For almost all alcohols, kinetic
profiles fit best to the Michaelis-Menten mechanism with the
exception of alcohol 1 for rac-6-hydroxywarfarin, which did not
reach saturation by 1,000 μM, so initial rates in the linear range
up to 400 µM were fit to a line yielding a slope to approximate
reaction specificity (Vmax/Km). The corresponding kinetic
parameters, Vmax and Km, and calculated specificities
(Vmax/Km) for reactions are reported in Table 2. Like
warfarin, the most efficient reduction pathways led to alcohol
2 and in the case of rac-4′-hydroxywarfarin, the minor pathway
for alcohol 1 was not even measurable. In general, lower Vmax

values accompanied lower Km values suggesting substrate
recognition comes at the cost of substrate turnover. Overall
substrate recognition was moderate to very poor as reflected in
large Km values, and the maximal reaction rates (Vmax) varied
widely among the hydroxywarfarins and their alcohol
metabolites. Moreover, the relative specificities for the pairs of
alcohols for each hydroxywarfarin differed in magnitude. Taken
together, these findings indicated that introduction of the
hydroxyl group led to regioselectivity in metabolism but no
clear patterns, when compared to warfarin. For both alcohols,
rac-10-hydroxywarfarin had the highest specificities, and yet the
order of the less specific reactions depended on the location of the
hydroxyl group with rac-warfarin always the second most
efficient.

Multiple Reductases Were Responsible for
Metabolism of 7- and 10-Hydroxywarfarin
Major oxidative metabolic pathways for warfarin yield primarily
7- and 10-hydroxywarfarin (Locatelli, et al., 2005; Pouncey, et al.,
2018) making them more relevant to in vivo clearance pathways,
and so we carried out phenotyping assays using reductase
inhibitors to identify enzymes responsible for the reduction of

those hydroxywarfarins (Figures 6A,B). The inhibition patterns
for the major alcohol were similar for both substrates with about
30% inhibition by H-FFA, 60% inhibition by QUE, and 70%
decrease in activity with H-INDO. Together, these results
implicate significant contributions by Carbonyl reductase 1
(CBR1) and slightly less, though still significant, contribution
by Aldo-Keto reductase Family 1 Member C3 (AKR1C3) toward
formation of alcohol 2 for both substrates. Similarly, H-INDO
and QUE decreased formation of the major alcohol from both
substrate reactions by 60–70% implicating a minor role for CBR1
in the pathways. For 7-hydroxywarfarin, there was also reaction
inhibition by 50% with H-FFA and 20% with L-FFA, while the
inhibition was less significant inhibition for 10-hydroxywarfrin
reactions. These trends suggest AKR1C3 involvement in the
pathways is possibly more significant for 7-hydroxywarfarin
than that for 10-hydroxywarfarin. Overall, inhibition results
indicated that 7- and 10-hydroxywarfarin reduction involves
mainly CBR1 with potential contributions from AKR1C3 as
reported for warfarin (Barnette, et al., 2017).

Reductases Showed Chiral Preferences in
R- and S-7-Hydroxywarfarin Reductions
We sought insights on the impact of chirality toward reductase
selectivity and specificity during reactions. Studies with racemic
hydroxywarfarins yielded chromatographically resolved but
ambiguous alcohol metabolite peaks. Individual
hydroxywarfarin isomers are not commercially available;
however, we had previously synthesized R- and S-7-
hydroxywarfarin for studies published on their
glucuronidation (Pugh, et al., 2018). In this case, we used
them to assess effects of chirality on the specificity of
hydroxywarfarin reduction. It was not possible to carry out
similar studies with 10-hydroxywarfarin due to the presence of
chiral centers at positions 9 and 10 (Jones et al., 2011) that pose a

FIGURE 3 | Screening hydroxywarfarins for reduction by human liver cytosol. Initial reactions were carried out with 1.0 mg/ml protein human liver cytosol in 50 mM
potassium phosphate pH 7.4 with either (A) 100 or (B) 1,000 μM rac-warfarin (positive control) or rac-hydroxywarfarin. Reactions yielded alcohol 1 (minor metabolite,
light purple) and alcohol 2 (major metabolite, dark purple), although the reaction for rac-4′-hydroxywarfarin generated only alcohol 2.
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significant challenge for synthesis. As a baseline for 7-
hydroxywarfarin reactions, we carried out a reaction with
200 µM rac-7-hydroxywarfarin resolving the minor alcohol 1
and major alcohol 2 metabolites (Figure 7A). Those reactions

contained 100 µM of R- and S-7-hydroxywarfarin, so we carried
out studies with the enantiomers at those concentrations
(Figure 7B). When compared to the rac-7-hydroxywarfarin
reaction, the reduction of R-7-hydroxywarfarin yielded a large,

FIGURE 4 | TandemMass Spectrometry (LC-MS/MS) analysis confirmed the predicted masses of the reduced hydroxywarfarin metabolites with reduced warfarin
as a control. Parent mass scans were conducted for the metabolites from cytosolic reduction reactions for (A) rac-warfarin, (B) rac-6-hydroxywarfarin, (C) rac-7-
hydroxywarfarin, (D) rac-8-hydroxywarfarin, (E) 10-hydroxywarfarin isomer mixture, and (F) rac-4′-hydroxywarfarin. Each panel includes the mass spectrum for alcohol
1 (top) and alcohol 2 (bottom). The colored line indicates the expected and observed 311 m/z for warfarin alcohol 1 (light purple) and alcohol 2 (dark purple) and the
expected and observed 327 m/z for hydroxywarfarin alcohol 1 (light purple) and alcohol 2 (dark purple), respectively.
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single peak with a retention time matching that for alcohol 2,
while S-7-hydroxywarfarin reduction led to a small peak
corresponding to the retention time for alcohol 1. Subsequent
kinetic studies yielded kinetic profiles confirming those
observations (Figure 7C). Both data sets fit best to the
Michaelis-Menten equation. For R-7-hydroxywarfarin, the
kinetic constants and corresponding 95% confidence intervals
for alcohol 2 were Vmax 30 pmol/min/mg protein (29–31), Km

220 µM (190–260), and specificity 0.14 (Vmax/Km). For S-7-
hydroxywarfarin, the values were Vmax 2.4 pmol/min/mg
protein (1.9–3.2), Km 290 µM (160–550), and specificity 0.0083
(Vmax/Km). Taken together, these findings demonstrate that 7-
hydroxywarfarin undergoes enantioselective reduction favoring
to the R isomer and regiospecific product formation yielding a
single metabolite for either substrate.

DISCUSSION

Hydroxywarfarin Reduction Depended on
Location of the Hydroxyl Group
We report the first evidence for reductases catalyzing the conversion
of the C11 carbonyl of hydroxywarfarins into an alcohol as a novel
pathway for their elimination. As a rapid screen for metabolism, our
Rainbow metabolism model predicted that for the warfarin
metabolites, reduction would increase with closer proximity of
the hydroxyl group to the site of metabolism. That trend
correctly ranked 10-hydroxywarfarin, as the most likely to
undergo reduction followed by warfarin. Nevertheless, the pattern
did not hold true for the remaining hydroxywarfarins whether
considering the specificity for individual alcohol metabolites or
their combination. In fact, the experimental studies did not

FIGURE 5 | Kinetic profiles for reduced metabolites formed from hydroxywarfarin metabolism by human liver cytosol. Steady-state reactions were carried out with
1.0 mg/ml protein human liver cytosol in 50 mM potassium phosphate pH 7.4 with varying concentrations of substrate. Plots of the initial rates for alcohol 1 (light purple)
and alcohol 2 (dark purple) as a function of hydroxywarfarin concentration were fit to Michaelis-Mentenmechanisms for reduction of (A) rac-6-hydroxywarfarin, (B) rac-7-
hydroxywarfarin, (C) rac-8-hydroxywarfarin, (D) 10-hydroxywarfarin isomer mixture (note difference in scaling versus other plots), and (E) rac-4′-hydroxywarfarin.
The corresponding Michaelis-Menten parameters for the best fit curve are reported in Table 2. Error bars represent standard deviation of at least six replicates.
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indicate any clear trends in the specificity of reduction for the rac-
hydroxywarfarins or 10-hydroxywarfarin that varied up to six-fold
for overall specificity of reductions. rac-6-Hydroxywarfarin
demonstrated similar metabolic kinetics as rac-warfarin followed
by rac-8-hydroxywarfarin and lastly, rac-7-hydroxywarfarin.
Moreover, the specificity of reactions for alcohol 1 and 2 differed
among the hydroxywarfarin reactions. The collective findings
indicate the location of the hydroxyl group significantly impacted
reduction selectivity among the hydroxywarfarins, as well as the
specificity for the resulting metabolites. Those effects may be due to
structural discriminations of individual reductases or the collection
of reductases present in cytosolic fractions.

Reductases Carried Out Likely
Enantioselective and Enantiospecific
Hydroxywarfarin Metabolism
The reliance on racemic substrates for reactions masked
potentially important roles for chirality in metabolic flux for
individual hydroxywarfarins to the respective alcohol
metabolites. For comparison, our previous work with warfarin
revealed significant chiral bias in reactions (Barnette, et al., 2017).
CBR1 and AKR1C3 demonstrated a higher specificity toward
R-warfarin reduction and a preference for formation of S alcohols
regardless of substrate chirality (Barnette, et al., 2017; Malátková
and Wsól 2014). In following, reactions with rac-warfarin in the
literature (Barnette, et al., 2017; Alshogran, et al., 2014;
Malátkova, et al., 2016) then yielded predominantly a minor
metabolite (alcohol 1, 9S-11S-hydroxywarfarin) and a major
metabolite (alcohol 2, 9R-11S-hydroxywarfarin). This trend
may also apply to hydroxywarfarin reactions. We explored the
impact of chirality on 7-hydroxywarfarin reduction and observed
many similarities to warfarin reactions (Barnette, et al., 2017).

First, 7-hydroxywarfarin reductions were enantioselective toward
the R substrate isomer. Second, reduction of either
hydroxywarfarins resulted in preferentially a single alcohol
despite two possibilities. This outcome indicated an
enantiospecific process likely reflecting the formation of S
alcohols based on warfarin reduction studies. The elution
order pattern for warfarin alcohols matched that observed for
7-hydroxywarfarin alcohols. Moreover, both warfarin and 7-
hydroxywarfarin are predominantly metabolized by CBR1 and
to a lesser extent AKR1C3 that favor formation of warfarin S
alcohols and presumably the same for 7-hydroxywarfarin. In
following, 7-hydroxywarfarin reduction likely generated 9S-
7,11S-dihydroxywarfarin (alcohol 1, minor metabolite) and
9R-7,11S-dihydroxywarfarin (alcohol 2, major metabolite).
These studies suggest that the hydroxyl group at position 7
did not alter chiral bias in metabolism. If this trend extends to
the other substrates in this study, then all hydroxywarfarin
reductions are enantioselective toward R substrates and
enantiospecific for S alcohol metabolites.

10-Hydroxywarfarin Reduction May be a
Clinically Relevant Pathway Impacting
Anticoagulation Therapy
The reduction of 10-hydroxywarfarin is the only elimination
pathway that may have clinical significance. By comparison,
reductive reactions for the other hydroxywarfarins were much
less efficient. Moreover, 6-, 7-, 8- and 4′-hydroxywarfarins readily
undergo glucuronidation (Zielinska, et al., 2007; Bratton, et al.,
2012; Kim, et al., 2019; Pugh, et al., 2018) to yield glucuronides
excreted in the urine (Kaminsky and Zhang 1997; Miller, Jones,
et al., 2009). The effectiveness of those pathways presumably
explains the very low nanomolar levels of those hydroxywarfarins

TABLE 2 | Michaelis-Menten kinetic parameters for reduction of warfarin and hydroxywarfarin isomersa.

Substrate Kinetic constants Alcohol 1 Alcohol 2

rac-warfarinb Vmax (pmol/min/mg) 4.8 (3.2–6.4) 78 (57–100)
Km (µM) 330 (48–610) 710 (350–1,100)
Vmax/Km 0.015 0.11

rac-6-hydroxy-warfarin Vmax (pmol/min/mg) — 57 (52–61)
Km (µM) — 510 (427–593)
Vmax/Km 0.0041c 0.11

rac-7-hydroxy-warfarin Vmax (pmol/min/mg) 0.78 (0.51–1.06) 8.5 (8.1–9.0)
Km (µM) 390 (0.64–580) 175 (140–210)
Vmax/Km 0.0027 0.049

rac-8-hydroxy-warfarin Vmax (pmol/min/mg) 9.54 (7.5–11.6) 33 (30–36)
Km (µM) 644 (370–920) 540 (420–560)
Vmax/Km 0.015 0.061

10-hydroxy-warfarin Vmax (pmol/min/mg) 31 (27–36) 156 (130–180)
Km (µM) 500 (340–650) 600 (430–770)
Vmax/Km 0.063 0.26

rac-4′-hydroxy-warfarin Vmax (pmol/min/mg) NA 18 (17–20)
Km (µM) NA 180 (130–230)
Vmax/Km NA 0.10

aSteady-state reactions were carried out with 1.0 mg/ml protein human liver cytosol in 50 mM potassium phosphate pH 7.4 with varying concentrations of substrate.
bBarnette et al., 2017.
cKinetic profile did not reach saturation by 1,000 μM, so initial rates in the linear range up to 400 µM were fit to a line yielding a slope to approximate reaction specificity (Vmax/Km).
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in patient plasma (Haque, et al., 2014; Pouncey, et al., 2018),
including S-7-hydroxywarfarin, a metabolite of the main pathway
for S-warfarin elimination (Krishna Kumar et al., 2013; Rettie,
et al., 1992). In contrast, 10-hydroxywarfarin is not detectable in
patient urine (Miller, Jones, et al., 2009) and accumulates
collectively almost up to micromolar levels in patient plasma
following warfarin maintenance dosing (Haque, et al., 2014;
Pouncey, et al., 2018). The resulting 10-hydroxywarfarin levels
are sufficient to potentate anticoagulation directly by inhibiting
VKORC1 (Haque, et al., 2014) and indirectly by inhibiting
S-warfarin metabolism (Jones, et al., 2010c). Reported warfarin
interactions with rifampicin (Kendan Alexander, 2014) and

possibly nafcillin (Rulcova, et al., 2010) are consistent with
those mechanisms. Both drugs induce CYP3A4 and thus, its
role in metabolizing warfarin into 10-hydroxywarfarin.
Clinically, the drug combinations decreased the R-warfarin
half-life and increased the S-warfarin half-life resulting in
warfarin sensitivity and a higher risk for bleeding. The
reduction of 10-hydroxywarfarin provides a counterbalance to
those outcomes. The metabolic pathway would alleviate 10-
hydroxywarfarin inhibition of CYP2C9 metabolism of the
pharmacologically potent S-warfarin and facilitate elimination
of 10-hydroxywarfarin contributions to anticoagulation. In the
clinic, the importance of reductases on those patient outcomes

FIGURE 6 | Inhibitor phenotyping for 7- and 10-hydroxywarfarin carbonyl reduction reactions in human liver cytosol. Inhibitor reactions contained 1.0 mg/ml
protein human liver cytosol in 50 mM potassium phosphate pH 7.4 and 5% methanol with 250 μM substrate with and without reductase inhibitors for AKR1C3 and
CBR1 for (A) rac-7-hydroxywarfarin and (B) 10-hydroxywarfarin. The specificities of the inhibitors are indicated by the bars in which some inhibitors and conditions were
specific for either reductase while other conditions inhibited both reductases. Significance was determined using one way ANOVA statistical test. Abbreviations are
as follows: L-FFA: low flufenamic acid (2 μM); H-FFA: high flufenamic acid (10 μM); L-INDO: low indomethacin (5 μM); H-INDO: high indomethacin (INDO, 180 μM); QUE:
quercetin (60 μM).
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will depend on clinical factors like genetics, personal habits, and
environmental factors that influence CBR1 and possibly AKR1C3
activities toward 10-hydroxywarfarin reduction (Kassner, et al.,
2008).

Limitations
The challenges in handling chirality in reactions were the main
limitations of this work. The Rainbow Model lacked chiral
descriptors for substrates and its application to possible
metabolites. Additionally, model outputs were qualitative
predictions for likelihood of a reaction to occur that did not
scale to quantitative experimental kinetic mechanisms and
constants. Consequently, we compared reaction specificities
(Vmax/Km) as an approximation of model predictions for
reactions to occur. The consistency of modeling and
experimental results for the most efficient reactions but not
the others may indicate the scaling limitations of model
predictions to experimental data and/or performance of the
model itself. Retraining of the model with larger, more diverse
sets of reduction reactions would aid in resolving performance
issues. Lastly, experimental studies relied on racemic
substrates and inference for quantitating mixtures of
alcohol isomers due to the absence of pure, authentic
reagents. Nevertheless, interpretation of our results was

possible by using our prior work with warfarin and alcohol
standards along with exploratory studies with R- and S-7-
hydroxywarfarin. Our results showed enantiospecificity and
enantioselectivity of 7-hydroxywarfarin reduction that
matched the general trend observed previously for warfarin
reduction. Based on this finding, we predicted a similar trend
occurs with the other hydroxywarfarin isomers.

Concluding Remarks
Coumadin (rac-warfarin) is a highly efficacious drug that poses
challenges to adequate dosing due to a narrow therapeutic range
and sometimes unpredictable responses in patients. Critical
determinants of that uncertainty are gaps in our understanding
about how metabolism impacts the potency and levels of
pharmacologically active parent drugs and metabolites. The
studies reported herein revealed a previously unknown reduction
pathway for the elimination of 10-hydroxywarfarin that may play a
role in the uncertainty in patient response to warfarin therapy.
Knowledge of pathways leading to 10-hydroxywarfarin by
CYP3A4 and elimination by reductases provides a more complete
picture of the metabolic flux for this metabolite. The resulting 10-
hydroxywarfarin levels would then mediate its direct and indirect
effects on the anticoagulant response that would be the foundation for
important follow up clinical studies based on this research.

FIGURE 7 | Enantioselective and enantiospecific metabolism of R- and S-7-hydroxywarfarin. An exploration of the impact of chirality on hydroxywarfarin reduction
carried out with chromatographically purified 7-hydroxywarfarin enantiomers. (A) As a baseline for comparison, chromatographic analysis of 200 μM rac-7-
hydroxywarfarin reduction (100 μM of each enantiomer) using 1.0 mg/ml protein human liver cytosol in 50 mM potassium phosphate pH 7.4 in the absence or presence
of NADPH. (B) Chromatographic analysis of the reduction of 100 μM of either R-7-hydroxywarfarin (red) or S-7-hydroxywarfarin (blue) under the same reaction
conditions. (C) Steady-state kinetics were carried out with the same reaction conditions but varying concentrations of substrate. Plots of initial rates as a function of 7-
hydroxywarfarin concentration were fit to the Michaelis-Menten mechanism for R-7-hydroxywarfarin (red, alcohol 2) or S-7-hydroxywarfarin (blue, alcohol 1). The
corresponding kinetic constants are reported in Reductases Showed Chiral Preferences in R- and S-7-Hydroxywarfarin Reductions under Results.
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