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Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein,
playing essential roles in immune responses against microbial infections. However,
over-activation of STING is accompanied by excessive inflammation and results in
various diseases, including autoinflammatory diseases and cancers. Therefore, precise
regulation of STING activities is critical for adequate immune protection while limiting
abnormal tissue damage. Numerous mechanisms regulate STING to maintain
homeostasis, including protein-protein interaction and molecular modification. Among
these, post-translational modifications (PTMs) are key to accurately orchestrating the
activation and degradation of STING by temporarily changing the structure of STING. In
this review, we focus on the emerging roles of PTMs that regulate activation and inhibition
of STING, and provide insights into the roles of the PTMs of STING in disease
pathogenesis and as potential targeted therapy.
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INTRODUCTION

Innate immunity is the front line of defense, protecting the host from microbial invasion and
triggering adaptive immunity to eradicate infections. When pathogen-associated molecular patterns
(PAMPs), including bacterial lipopolysaccharide (LPS) and viral nucleic acids, invade the body with
or without tissue damage, pattern recognition receptors (PRRs), which are located on the cell
membrane or in the cytoplasm, can be activated and mediate inflammatory and antiviral pathways
to deal with infection (1, 2). In addition, tissue and cell damage are accompanied by damage-
associated molecular patterns (DAMPs), such as abnormal DNA and cell organelle fragments,
which can also be recognized by PRRs and induce cascades of inflammatory signaling pathways (2).
PRRs are protein family including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-
like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), cyclic GMP-
AMP synthase (cGAS), IFN-g-inducible protein 16 (IFI16), absent in melanoma 2 (AIM2) and
multiple DNA sensors (1–3). Different PRRs can be activated by different PAMPs, which then
trigger innate immune responses to combat infection (1–4).

Specifically, cGAS, a protein that can enter and exit the nucleus, is recruited to abnormal DNA,
which is classified into exogenous pathogenic DNA or endogenous instable heterotopic DNA, leading
to a conformational change to bind to DNA (5–7). After that, AMP and GMP are catalyzed by cGAS,
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releasing the second messenger 2’3’-cyclic GMP-AMP (cGAMP),
which functions as the second messenger to initiate adapter
protein stimulator of interferon genes (STING) on the
endoplasmic reticulum (ER) membrane (7, 8). STING then
relocates to the Golgi apparatus, leading to production of
cytokines, including type I interferon and other cytokines (7–
10). Different immune cells can also produce various cytokines
through cGAS- STING pathway to perform their respective
function (11).

To date, STING has been generally considered to play a
necessary role in immunity and inflammation. However, the
regulatory mechanism of STING remains unclear. In addition to
the direct interaction between cyclic dinucleotides and STING,
post-translation modifications (PTMs) and protein-protein
interactions could also alter STING function (4, 9, 12, 13).
PTMs of proteins have been recognized as an important
regulatory switch to temporally change the functions of
proteins in cells. Most cellular proteins can be decorated by a
diverse range of PTMs, including phosphorylation, acetylation,
methylation, glutamylation, ADP-ribosylation, SUMOylation,
and ubiquitination (14–17). In this review, we review the
PTMs and function of STING signaling, highlighting the
potential targeted therapy afforded by PTMs of STING.
AN OVERVIEW OF STING PATHWAY

STING, namely stimulator of interferon genes, also known as
TMEM173, MITA, ERIS, and MPYS (18, 19), is a ~40-kDa trans-
membrane protein located on the ER membrane (20, 21). It is
composed of a short N-terminal cytosolic segment, four trans-
membranes (TM) located in the ER membrane, a cytosolic
ligand-binding domain (LBD), and a C-terminal tail (CTT)
which is responsible for binding TBK1 (19, 21). It exists widely
in nature, not only humans, but also chicken (22), shrimp (23),
bacteria (24), and Drosophila (25), functioning as pathogen
sensors to avoid infection.

As previously mentioned, cGAMP, catalyzed by cGAS, can
alter the conformation of STING, resulting in the inward rotation
of the two wings of STING toward each other. This process leads
to closure of the ligand binding pocket and activation of STING
(7). Then STING traffics in the form of COP-II vesicles from ER to
ER-Golgi intermediate compartments (ERGIC) (26, 27). Some
vesicles loaded with STING serve as a membrane source for
modification by the ubiquitin-like protein LC3, which is a key
step in autophagosome biogenesis (26). Most STING-coated
ERGIC vesicles continue to traffic through the Golgi and post-
Golgi endosomes. On the ERGIC membrane, STING recruits
TBK1(tank binding kinase 1) and IKK (inhibitor of kappa B
kinase), then TBK1 auto-phosphorylates and STING, IRF3 and
IkBa are phosphorylated (7, 27). Phosphorylated IRF3 dimerizes
and translocates to activate transcription of type I IFN and
interferon-stimulated genes (ISGs). Phosphorylation of IkBa
results in translocation of NF-kB to the nucleus, leading to
transcription of genes encoding pro-inflammatory cytokines and
chemokines such as IL-6 and TNF (28).
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In addition, micronuclei (29), mtDNA (30), abnormal cell
cycle (31), and cytoplasmic chromatin fragments (32) can
activate STING through cGAS- dependent way. Several stimuli
other than cGAMP, which is catalyzed by cGAS, for example,
bacterial or virus cyclic dinucleotides (CDNs) (33, 34), can also
activate STING directly. Apart from the production of type I
interferon and cytokines, STING can also be associated with
other biological and pathological process, such as ER stress (35),
oxidative stress (36), fatty acid metabolism (37), Ca2+

homeostasis (38, 39), T cell proliferation (40), senescence (32)
and so on. Moreover, STING can also participate in cell death
pathways (41), including autophagy (30, 42), apoptosis (43),
pyroptosis (44, 45), ferroptosis (46), necroptosis (47, 48), mitotic
death (49), immunogenic cell death(ICD) (50). However,
sometimes STING can help herpes virus assemble viral
genome to host cell’s nucleus and survive in host cells, leading
to severer virus infection at the early stage of infection (51).

Now that STING plays critical roles in biochemical processes,
the expression and function of STING are tightly regulated.
Apart from direct interaction between cGAMP and STING,
protein-protein interaction and post-translational modification
(PTMs) are also important (9, 12). Hundreds of proteins may
interact with STING and affect its function (52). However, the
regulation of STING in cells are basically dependent on the
PTMs. In a word, PTMs are the key to regulating protein
function and play a critical role in modulation of STING.
Thus, we review PTMs of STING and prospect related
targeted therapy.
MODIFICATION AND REGULATION
OF STING

STING, a protein located in the ER, is composed of 379aa in
human. Some residues of STING can be modified for its
compartmentalization, dimerization, oligomerization,
trafficking and degradation, which regulate immunological and
other processes (Figure 1, 2). The consequence of PTMs is
dependent on amino acid residue, type of modification group,
thus biochemical process can be fully developed in cells.
Therefore, we focus on different PTMs of STING and propose
critical role of PTMs in activation or inhibition of STING.
Modified residues and related proteins are shown in Figure 1.
While Figure 2 shows how PTMs of STING affects STING
pathway. Therefore, some PTMs in Figure 1 are not shown in
Figure 2 due to the lack of literature.

Phosphorylation and Dephosphorylation
Phosphorylation is the most common PTMs in mammalian cells.
It means the addition of phosphate groups to proteins, especially
to amino acid residues, such as Ser and Thr (53). The addition or
removal of phosphate groups (dephosphorylation) acts as a
biological “on/off” in many reactions, including modulation of
STING (9) (Figure 2).

It is confirmed that, oligomerized STING recruited TBK1,
then TBK1 phosphorylated S366 of human STING (S365 in
May 2022 | Volume 13 | Article 888147
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mice), with the consequence of classic activation of STING
pathway (54–56). CSK (C-terminal src kinase), another
tyrosine kinase expressed broadly among mammalian cells,
phosphorylates STING at Y240 and Y245 and activates
immune responses via promoting aggregation of STING after
HSV-1 infection (57). PPP6C, namely protein phosphatase 6
catalytic subunit, is a phosphatase. Knockdown of PPP6C greatly
increased STING phosphorylation at S366 after dsDNA
stimulation to enhance immune response (58). Y245 of STING
can also be phosphorylated directly by EGFR (epidermal growth
factor receptor) for STING trafficking to endosomes, thus type I-
IFN are produced (59). SYK (spleen tyrosine kinase), another
kinase, could also phosphorylate Y240 of STING and promote
activation of STING (60).

However, to achieve cellular homeostasis, STING pathway can
also be down-regulated via phosphorylation and dephosphorylation
(Figure 2). For instance, STING is subsequently phosphorylated by
UNC-51-like kinase (ULK1) at S366 so that sustained innate
immune responses can be prevented (61). Dephosphorylation of
S358 byMg2+/Mn2+-dependent protein phosphatase 1A (PPM1A)
can also inhibit STING aggregation and STING-dependent pathway
(62). SHP1(SH2-containing protein tyrosine phosphatase), a
phosphatase, can dephosphorylate STING at Y162, blocking the
K63-linked ubiquitination of STING at K337 and inhibiting STING
Frontiers in Immunology | www.frontiersin.org 3
pathway (63). Tyrosine-protein phosphatase nonreceptor type
(PTPN) 1 and 2 can dephosphorylate STING at Y245 with the
consequence of degradation of STING via the ubiquitin-
independent proteasomal pathway (64). In a word,
phosphorylation and dephosphorylation of STING play important
roles in modulation of STING. The imbalance between
phosphorylation and dephosphorylation could be critical
mechanism in development of diseases.

Ubiquitylation and Deubiquitylation
Ubiquitylation, a highly-conserved modification of protein, is the
secondmost common PTM for proteins, after only phosphorylation
(53). It can be divided into three types due to structural
characteristics: mono-ubiquitination, poly-ubiquitination and
branched ubiquitination (65). Ubiquitylation (Ub) is initiated by a
cascade of enzymatic reactions, which is catalyzed by Ub-activating
(E1), Ub-conjugating (E2) and Ub-ligating (E3) enzymes (65).
Firstly, ubiquitin (Ub) is activated by E1 in an ATP-dependent
manner and then is transferred to E2. Then, specific E3 catalyzes the
transfer of Ub from E2 to a specific substrate protein with the
assistance of E1 (66). As a result, Ub is assembled covalently to the
specific protein, especially to lysine residues, resulting in the
regulation of quality and quantity of proteins through degradation
in various physiological and/or pathological conditions.
FIGURE 1 | Post-translational modifications of STING. STING can be modified by phosphorylation and dephosphorylation, ubiquitination and deubiquitination,
SUMOylation and deSUMOylation, palmitoylation, alkylation, glycosylation, carbonylation, oxidation, and disulfide bond, which are indicated according to the keys in
the bottom. The PTMs that promote activation of STING are shown above, whereas those that inhibit STING activation are shown below. Related enzymes are
presented around the PTMs.
May 2022 | Volume 13 | Article 888147
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Deubiquitylation happens along with ubiquitylation, and both of
them together affect the maturation and degradation of proteins.

Specifically, STING can also be modified by Ub via E3
ubiquitin ligase (Figure 2). RNF115(RING finger protein) can
catalyze K63-linked polyubiquitination of STING at K224/20/
289, promoting the translocation of STING from ER to Golgi
(67). TRIM56(tripartite motif protein) induces K63 linkage
ubiquitination of STING at K150 due to stimulation of
exogenous DNA, and promotes STING dimerization and
recruitment of TBK1 (68). UBXN3B (ubiquitin regulatory X
domain-containing proteins 3 b) facilitates TRIM56-dependent
Frontiers in Immunology | www.frontiersin.org 4
K63-linked ubiquitination of STING, thus leading to
dimerization, trafficking, and activation STING signaling (69).
MUL1 (mitochondrial E3 ubiquitin protein ligase 1) can catalyze
K63-linked polyubiquitination of STING at K224 to help
activation of STING (70). TRIM32 targeted STING for K63-
linked ubiquitination at K20/150/224/236 and promoted the
STING pathway (71) . However , HSV1 VP1/2 can
deubiquitinate K63-linked polyubiquitination of STING, which
is mediated by TRIM32, thus help HSV escape from immune
responses and promote brain infections (72). Reverse
transcriptase domain of HBV can also physically bind to
FIGURE 2 | PTMs in STING pathway. PTMs are going along with the life of STING, from activation to degradation. When CDNs bind to STING, STING is recruited
and dimerized with the help of reversible oxidation and disulfide bond. SUMOylation and ubiquitination can help STING with oligomerization, while phosphorylation is
related to the activation of STING. Then STING transports from ER to Golgi. Palmitoylation and sGAGs could help STING reside on Golgi, thus continuous activation
of STING leads to increasing pro-inflammatory cytokines. On the other hand, inhibition of STING happens along with activation to achieve cellular homeostasis.
Sequential oxidation inhibits STING dimerization. Dephosphorylation and deubiquitination of STING decrease the oligomerization of STING. Also, carbonylation
caused by ROS and alkylation caused by NO2-FAs can competitively inhibit palmitoylation and block sequential residence of STING on Golgi, thus immune
responses are inhibited. In addition, dephosphorylation, ubiquitination and deSUMOylation could facilitate protein degradation to maintain proteostasis.
May 2022 | Volume 13 | Article 888147
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STING and s ign ifican t l y r educe s the K63- l inked
polyubiquitination of STING, protecting HBV from innate
immune responses (73). These indicate that pathogen has
developed PTMs targeted strategy to evade from host immune
system. Autocrine motility factor receptor (AMFR) catalyzed the
K27-linked polyubiquitination of STING in an insulin-induced
gene 1 (INSIG1)-dependent manner, recruiting TANK-binding
kinase 1 (TBK1) and facilitating its translocation to the
perinuclear microsomes (74). Therefore, K63-linked and K-27
linked polyubiquitination play important roles in activation of
STING pathway.

While RNF5 and RNF90 target STING at K150 for K48-
linked ubiquitination and lead to degradation of STING after
viral infection (75, 76). However, RNF26 promotes K11-linked
polyubiquitination of STING at K150 and protects STING from
RNF5-mediated K48-linked polyubiquitination and degradation,
thus enhancing quick and efficient anti-viral responses
(77).TRIM29 catalyzes K48-linked polyubiquitination at K288/
337/370 and promotes the degradation of STING (78, 79).
TRIM30a induces K48-linked ubiquitination of STING at
K275 for proteasome-dependent degradation (80). There is
another interesting protein, death-associated protein kinase 3
(DAPK3), which modifies STING ubiquitination differently in
different situations. When cells are in basic condition, DAPK3
inhibited STING K48-linked poly-ubiquitination and
proteasome-mediated degradation. By contrast, DAPK3 is
required for STING K63-linked poly-ubiquitination and
STING-TBK1 interaction after cGAMP stimulation (81).
Recently, TRIM13 is discovered to bind to STING at resting
state. After HSV-1 infection, K6-linked polyubiquitination at
K19 is triggered by TRIM13, thus promoting degradation of
STING (82). In a word, different types of ubiquitination precisely
regulate activation or degradation of STING, including K11-
linked, K27-linked, K48-linked, K63-linked, K6-linked, leading
to different effects in immune responses (69). K27-linked, K11-
linked and K63-linked polyubiquitination can promote transport
and activation of STING, while K6-linked, and K48-linked
polyubiquitination mostly lead to degradation of STING
(Figures 1, 2).

On the other hand, ubiquitin-specific protease (USP)21, a
deubiquitinating enzyme, hydrolyzes K27/63-linked
polyubiquitin chain on STING, resulting in negative regulation
of STING and significant decrease of type I interferons (83).
USP13 uncouples K27-linked polyubiquitin chains from STING
and prevents the recruitment of TBK1 to inhibit STING pathway
(84). USP35 directly removes K11-, K27-, K63-linked
polyubiquitin of STING, thus inhibits phosphorylation and
multimerization of STING to limit STING signaling (85). The
MYSM1 (Myb-like, SWIRM, and MPN domains 1 protein),
interacts with STING and cleaves STING K63-linked
ubiquitination at K150 to inhibit cGAS-STING signaling (86).
On the other hand, OTUD5 and USP20 catalyze the K48-linked
deubiquitination of STING and inhibit STING degradation, thus
maintain the stability of STING and promote activation of STING
pathway (87–89). In conclusion, targeted ubiquitination could be
potential therapeutic approach (Figures 1, 2).
Frontiers in Immunology | www.frontiersin.org 5
SUMOylation and deSUMOylation
Small ubiquitin-related modifier (SUMO) is a widely expressed
Ub-like protein, which is similar with Ub in structure and
enzymatic cascade (16). There are three major SUMOs. SUMO-
1 usually modifies a substrate as a monomer; while SUMO-2/3 can
form poly-SUMO chains. Both SUMO-1 and poly-SUMO chains
can interact with other proteins through SUMO-interactive motif
(SIM) (16). Thus, SUMO modification participated mainly in
enhancing protein-protein interaction and regulating proteins’
localization, stability and activity (16, 65). As for STING,
TRIM38 mediates the SUMOylation of STING at K338 to
inhibit STING degradation, promoting oligomerization of
STING and recruitment of IRF3 (90). On the other hand, at the
late stage of infection, STING is deSUMOylated by SUMO-
specific protease (SENP)2 after phosphorylation at S366,
eventually leading to STING degradation and dampening innate
immune responses (90)(Figures 1, 2). More studies are needed to
figure out whether other SUMO-enzymes play roles in regulation
of STING, for example, SAE1 (SUMO-activating enzyme subunit
1), a subunit of SUMO-activating enzyme, which might interact
with STING and plays a role in regulation of STING (52).
Palmitoylation
Palmitoylation, or S-palmitoylation, a type of lipidation, can
make proteins bind non-polar structures more tightly, with
important function for the localization, diffusion, and physical
interactions of these proteins within the cell. It is namely related
to palmitic acid (PA), which comes out either with intrinsic fatty
acid synthesis, or fatty acid uptake from outside of cells (91).
However, studies have also discovered that palmitoylation is not
only associated with PA concentration, but also with the zinc
finger DHHC-type containing (ZDHHC) family of palmitoyl S-
acyltransferases (PATs), ZDHHC3, ZDHHC7, ZDHHC15,
which are mostly localized to the ER and Golgi apparatus (92,
93). On the other hand, depalmitoylation, which means the
removal of S-palmitoylation, can be catalyzed by some
depalmitoylases, which belong to the serine hydrolase family,
including APT1 (LYPLA1), APT2 (LYPLA2) and so on (94).

It has been confirmed that the palmitoylation of cysteines 88
and 91 of STING participates in regulation of STING, but not
trafficking of STING (95)(Figures 1, 2). Palmitoylation of
STING triggers composition of a multimeric complex at the
lipid rafts of the trans-Golgi network, which triggers STING
interacting with TBK1 (96). Suppression of palmitoylation with
2-bromopalmitate (2-BP) and hydoxylamine eliminates the
transcription of downstream inflammatory cytokine genes,
thus the phenotype of STING-associated vasculopathy with
onset in infancy (SAVI, an auto-inflammatory disease related
to gain-of-function mutations of STING) could be improved.
Mutation of C88/91 inhibits palmitoylation and decreases the
activation of STING-dependent host defense genes (95).
However, it is still unknown whether STING can be
depalmitoylated by any of the depalmitoylases. More studies
are needed to investigate functions of depalmitoylated STING
and related mechanisms.
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Nitro-Alkylation
Nitro-alkylation, which is related to nitro-fatty acids (NO2-FAs),
has been discovered as potent inhibitors of STING signaling.
NO2-FAs is a recently discovered group of bioactive lipids with
anti-inflammatory and tissue protective functions (97). It is
produced mainly in gastrointestinal tract during digestion.
Meanwhile, it can come out locally to modify specific proteins
through Michael addition reactions, so that inflammation
responses can be regulated accurately (98).

As mentioned above, there are two cysteine residues in the N-
terminal region of STING, Cys88/91, which can be recognized by
NO2-FAs to covalently interact with, resulting in nitro-alkylation
of STING (92). Once STING is nitro-alkylated by NO2-FAs,
palmitoylation of STING is abolished and STING pathway is
inhibited (92). In addition, treatment with nitro-fatty acids is
sufficient to inhibit production of type I IFN in fibroblasts
derived from SAVI patients (99). In conclusion, nitro-
alkylation can be a potent inhibitor of palmitoylation in cells
and disease (Figures 1, 2). However, there is still no enzymes
covered which is responsible for alkylation of STING, or other
proteins. In addition, studies have suggested that, prostaglandin
reductase-1 (PtGR-1) promotes nitroalkene transition to inactive
nitroalkanes, thus decreases alkylation of protein (100).
However, it is still not clear, whether PtGR-1 affects regulation
of STING, and how palmitoylation could be replaced or inhibited
by alkylation under physiological conditions. More studies are
needed to figure out deeper mechanisms.

Glycosylation
Glycosylation is one of the most diverse post-translational
modifications in eukaryotic cells (101). Proteins are
glycosylated by either enzymes or interaction directly with
glucose (aldehyde form) through lysine and arginine residues
in proteins, and eventually leading to advanced glycation end
products so that participating in biological or pathological
process (101). Glycosylation of proteins are complex, indicated
by the diverse types of glycans, the multiple positions of glycans,
various structures of glycoproteins and different glycosyl-
transferase enzymes, leading to various functions of proteins
(102). Studies have discovered that, N41 of STING in mice could
be a potential N-linked glycosylation site, however, no N-linked
glycosylation was detected with deglycosylation experiments
(43). Another experiment showed that, there are four putative
N-glycosylation sites of STING in Drosophila, N84, N187, N270,
N333. Among two forms of STING in drosophila (long form and
short form), only long form of STING could be glycosylated thus
promoting residence of STING on ER (103). However, the
glycosylation of STING in human has not been studied well
for unknown reasons.

Glycosaminoglycans (GAGs) are linear acidic polysaccharides,
which can be divided into many groups (104). GAGs are
subsequently modified by epimerization and sulfation to
produce sulfated GAGs (sGAGs) (105). Researchers have
discovered that sGAGs can interact with various proteins
through their negatively charged sulfate groups (106). Studies
have suggested that STING translocates to sGAG-containing
Frontiers in Immunology | www.frontiersin.org 6
vesicles after vaccinia virus infection and evolutionally-conserved
bounds to sGAGs through its luminal, positively charged, and
polar residues (Figures 1, 2). It is hypothesized that STING
palmitoylation facilitates its clustering into lipid rafts on the
Golgi apparatus from the STING cytosolic side, while sGAGs
induce STING polymerization from the STING luminal side, and
both of two methods together lead to full activation of STING and
TBK1 (107). However, whether STING is glycosylated and
regulated by other substances, especially glucose, are still unclear.

Carbonylation
Carbonylation, one of the most harmful irreversible oxidative
protein modifications, is linked to lipid peroxidation. It is
considered as a major hallmark of oxidative stress-related
disorders, leading to biomolecule malfunctions and eventually
cell death (108, 109). A large amount of evidence has indicated
the role of carbonylated proteins in the initiation of
inflammation and autoimmune responses (110). However,
situation becomes different in STING. There are two
carbonylation sites of STING, namely residues C88 and C257,
which are conserved across species (111). It is confirmed that
both HSV-1 infection and 4-hydroxynonenal (4-HNE, a type of
lipid peroxidation metabolite) induce STING carbonylation
through lipid peroxidation, preventing the palmitoylation and
translocation of STING from the ER to the Golgi, with the
consequence of down-regulating immune responses (Figure 2).
While glutathione peroxidase 4 (GPX4) inhibits STING
carbonylation and promote activation of STING. Although the
critical carbonylation site of STING has been discovered, there
are still many questions to be resolved: why does carbonylation
of STING result in inhibition of inflammation, which is different
from that of other proteins? Is there a deeper mechanism
regulating inflammatory phenotype after carbonylation of
proteins? Also, there are still doubts whether carbonylation
could be a therapeutic target.

Reversible Oxidation and Others
Reversible oxidation is a type of reversible oxidative PTM, which
is generally related to oxidation of cysteine (Cys), namely Cys ox-
PTMs (112). Reversible Cys ox-PTMs consist of various patterns,
including S-sulfenylation (Cys-SOH), S-glutathionylation (Cys-
SSG), and disulfide bond (113). The characteristics of this
oxidation pattern are fast and reversible, contributing to quick
transition of protein function, so that cells can adapt to a
complicated environment. Studies have discovered that the
reversible oxidation of C148 and C206 of STING in cells
participate in the contradictory regulation of STING. C148 of
STING is oxidized independent on CDNs interaction in basic
state. And this oxidation state of C148 makes for the binding of
2’3’-cGAMP to STING (114). However, sequential oxidation of
C206 of STING in response to 2’3’-cGAMP leads to a
conformational change which inhibits the phosphorylation of
S366 and prevents over-activation of STING (114). In addition,
excessive ROS induced by viral infection can oxidize C148 and
inhibit polymerization and activation of STING, thus helping
virus evade from cellular defenses (115). However, it is still
May 2022 | Volume 13 | Article 888147
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unclear, whether other Cys of STING can be oxidized and play
roles in regulation of STING. More researches are needed
(Figures 1, 2).

It is suggested that disulfide bond is also a type of reversible
oxidation, which mainly exists in secreted proteins. Disulfide
bond is formed by Cys in the oxidizing environment of the
cytosol and in the luminal part of proteins (lumen of
mitochondria, ER, etc), with the consequence of a more stable
structure of protein. There are five cysteines in the cytosolic
domain of STING, only one of which (C148) are engaged in
disulfide bonds (116). It is discovered that 2’,3’-cGAMP induces
closing of the human STING homo-dimer and leads to the
formation of disulfide bond via C148. When C148 is mutated
to alanine, the affinity of STING to cGAMP is weaker (116).
However, more studies are needed to figure out, why disulfide
bonds of STING can be produced in the cytosol, and whether
disulfide bonds are associated with phase separation. Due to the
important role of disulfide bond, it could be potential therapeutic
target to improve STING-related auto-inflammatory diseases
(Figures 1, 2).

There are still other PTMs which are important in biological
and pathological processes, such as acetylation and deacetylation,
methylation, biotinylation, ribosylation, carboxylation. However,
there is still no evidence favoring these PTMs on STING.
Therefore, more research and efforts should be taken into to
discover more detailed regulatory mechanisms of STING.
Understanding and exploring the underlying network of PTMs
may provide new idea of targeted STING therapy.
PTM RELATED DISEASES AND
TARGETED THERAPY

As mentioned above, PTMs play critical roles in stabilization,
activation and inhibition of STING, thus the immune responses
could be accurately regulated in biological and pathological
processes (9) (Figure 2). The competition of different PTMs at
the same residue is important for the regulation of STING
activity and can be critical factor in development of diseases,
including infectious diseases (117), cancer (118), auto-
inflammatory diseases (116). Therefore, targeted STING
therapies have been developed on the basis of PTMs. Since
phosphorylation is the classic activation PTMs form of STING,
almost all of the STING-related diseases are discovered to be
associated with phosphorylation of STING. Therefore, we review
as follows mainly those diseases, which are covered to be related
to non-phosphorylation of STING. All of STING-related diseases
are presented in Figure 3.

Infectious Diseases
Infection is caused by pathogens, including bacteria, virus, by
which PAMPs can be produced, thus STING pathway can be
activated to deal with infection (1). In most time, activation of
STING can help to eliminate pathogens (4), while sometimes
STING can also help pathogens survive in cells and evade from
host immune surveillance (51, 119). Virus is unique, with the
Frontiers in Immunology | www.frontiersin.org 7
simple structure consisting of nucleic acid (DNA or RNA) and
protein. Most studies about STING are developed in viral
infection model, for example, HSV-1. On this basis, PTMs of
STING are gradually discovered, especially carbonylation,
ubiquitination, SUMOylation, deubiquitination, glycosylation
(Table 1), and related strategies are implemented in virus
vaccination (120). However, more studies are needed to figure
out in which cases STING is beneficial for clearance of virus, and
how we utilize STING in treatment of viral diseases (Table 1).

Bacterial infections are major infectious diseases worldwide,
leading to many diseases, including pneumonia (121),
tuberculosis (122), and sepsis (123). It is confirmed that, many
gram-positive and negative bacterial (117) can release not only
bacterial DNA, but also cyclic diadenosine monophosphate (c-
di-AMP) and virulence factors, which can trigger cGAS-STING
pathway and inflammatory responses. However, not all of
STING activation is beneficial for the host. Activation of the
cGAS-STING pathway can promote bacterial replication and
intracellular bacterial survival after staphylococcus aureus and
Brucella abortus infection (124, 125). Some important
physiological or pathological processes such as blood
coagulation and autophagy could also be influenced by cGAS-
STING pathway after bacterial infection (117). When Listeria
monocytogenes enters a cell, c-di-AMP can be secreted and
promote activation of STING, resulting in the reduction of
protective immune responses (126). Therefore, regulation and
function of cGAS-STING pathway are complicated when
pathogens invade. Studies about STING potential mechanism,
apart from the mediator of immune responses, are still on
the way.

Cancer
To date, tumorigenesis is regarded as a process driven by
inflammation (127). Previously, it is favored that the formation
of tumor is related to weakened surveillance of immune system.
Therefore, as an activator of immune responses, activation of
STING could be potential therapy of cancer (118, 128, 129).
Therapy of cGAMP or analogs into tumor-bearing mice results
in substantial inhibition of tumor growth and improves the
survival of the mice (130). As mentioned above, USP35 can
directly deubiquitinate STING with K6/K11/K27/K29/K63-
linked polyubiquitin chains and inhibit STING. Silencing
USP35 potentiates cisplatin effects in ovarian cancer cells (85).
Another kinase, DAPK3, is required for STING K63-linked poly-
ubiquitination to activate STING pathway. However, DAPK3
loss-of-function has been discovered in several human tumor
types (131), which could help tumor cells evade from host
immunity and cancer immunotherapy. All of these encourage
us that, cancer cells may develop anti-PTMs of STING strategy to
avoid surveillance of host immune system, and targeted PTMs of
STING could be potential therapy for cancer, especially those
STING-sensitive cancers (Table 1).

Autoimmune and Inflammatory Disease
Mutation or abnormal activation of STING can lead to varieties
of auto-immune and auto-inflammatory diseases, including
systemic lupus erythematosus (SLE) and STING-associated
May 2022 | Volume 13 | Article 888147
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vasculopathy with onset in infancy (SAVI). SLE is a typical auto-
immune disease, in which pathogenic auto-antibodies are
produced, resulting in excessive inflammation and severe tissue
damage (132). It remains controversial whether STING plays
necessary role in SLE (133). However, MYSM1 has been
discovered as a suppressor of SLE, which actually triggers K63-
linked deubiquitination of STING and inhibits STING pathway.
Increased MYSM1 can decrease type I IFN, IL-6, and other
inflammatory cytokines in SLE mice (86). This indicates us that
targeted ubiquitination of STING therapy could help improve
auto-immune and inflammatory diseases.

SAVI is an auto-inflammatory disease with the gain-of-
function mutations of STING (V147L, V147M, N154S,
V155M, C206Y, R281Q, R284G), characterized by early onset
systemic inflammation, vasculopathy and interstitial lung disease
(ILD) (134, 135). Studies have discovered that, mutants of
STING in SAVI are accompanied by enhanced STING
translocation, IRF3 phosphorylation, and IFN-b activity.
Blocking C148-mediated disulfide bond can alleviate
inflammatory responses in SAVI-modeled cells (116). In
addition, treatment of NO2-FAs, which can alkylate STING
Frontiers in Immunology | www.frontiersin.org 8
and inhibit palmitoylation, can decrease production of type I
IFN in fibroblasts cultured from SAVI patients. Also, 2-BP can
decrease type I IFN in SAVI-mutant HEK293T cells (99). All of
these indicate that inhibition of palmitoylation and
conformational change of STING, or promotion of nitro-
alkylation could be potential target to treat SAVI, which reveal
the importance of PTMs of STING in diseases.

PTMs Targeted Therapy
Considering the critical role of STING signaling pathway in
inflammation and diseases, targeting STING may lead to novel
therapeutics (27, 136). Many strategies are developed, including:
production of STING, activation of STING, translocation and
oligomerization of STING, degradation of STING and
downstream signaling (137). Targeted these strategies develop
agonists and inhibitors, some of which are related to
PTMs (Table 2).

Agonists of STING have been developed for a long time. The
most efficient agents are CDNs, which are fit to LBD of STING,
resulting in rapid activation of STING pathway (137). Later,
more agonists are reported and some of them have been applied
FIGURE 3 | STING related diseases. Red indicates diseases caused by over-activation of STING, while black indicates disease with low-activation of STING. This
figure is created with BioRender.com
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TABLE 1 | PTMs of STING and associated study models.

Diseases Amino acid
residues

PTMs Related
molecular

Function References

Viral
infection

S366 phosphorylation TBK1 activation Zhong B, et al.
(54)

Y240/Y245 phosphorylation CSK promoting binding of STING and cGAMP, activation Gao P, et al.
(57)

Y245 phosphorylation EGFR STING trafficking to endosomes, activation Wang C, et al.
(59)

Y240 phosphorylation SYK activation Wang C, et al.
(60)

S366 phosphorylation ULK1 inhibition Konno H, et al.
(61)

S358 dephosphorylation PPM1A inhibiting STING aggregation, inhibition Li Z, et al. (62)
Y162 dephosphorylation SHP1 inhibition Wang Y, et al.

(63)
– dephosphorylation PPP6C inhibition Ni G, et al. (58)
Y245 dephosphorylation PTPN1/2 promoting degradation of STING, inhibition Xia T, et al. (64)
C88/C257 carbonylation GPX4 inhibiting palmitoylation of STING, inhibition Jia M, et al.

(111)
K224/20/289 K63-linked ubiquitination RNF115 promoting aggregation of STING and recruitment of TBK1,

activation
Zhang ZD, et al.

(67)
K150 K63-linked ubiquitination TRIM56 promoting STING dimerization and recruitment of TBK1,

activation
Tsuchida T,

et al. (68)
– K63-linked ubiquitination UBXN3B activation Yang L, et al.

(69)
K224 K63-linked ubiquitination MUL1 activation Ni G, et al. (70)
K20/150/224/236 K63-linked ubiquitination TRIM32 promoting recruitment and activation of TBK1, activation Zhang J, et al.

(71)
K137/150/224/236 K27-linked polyubiquitination AMFR/INSIG1 promoting recruitment of TBK1, activation Wang Q, et al.

(74)
K150 K48-linked ubiquitination RNF90 enhanceing the degradation of STING Yang B, et al.

(76)
K150 K11-linked ubiquitination RNF26 protecting STING from RNF5-mediated degradation, activation Qin Y, et al (77)
K288/K337/K370 K48-linked ubiquitination TRIM29 promoting the degradation of STING Li Q, et al. (78)

Xing J, et al (79)
K275 K48-linked ubiquitination TRIM30a proteasome-dependent degradation, inhibition Wang Y, et al

(80)
K19 K6-linked ubiquitination TRIM13 promoting the degradation of STING Li X, et al (82)
K347 K48-linked deubiquitination OTUD5 maintaining the stability of STING, activation Guo Y, et al.

(89)
K338 SUMOylation TRIM38 maintaining the stability of STING, activation Hu MM, et al.

(90)
– K63/K27-linked deubiquitination USP21 inhibiting translocation of STING and recruitment of TBK1,

inhibition
Chen Y, et al

(83)
– K48-linked deubiquitination USP20/

USP18
maintaining the stability of STING, activation Zhang M, et al.

(88)
– K27-linked depolyubiquitination USP13 preventing the recruitment of TBK1, inhibition Sun H, et al.

(84)
K150 K48-linked ubiquitination RNF5 promoting degradation of STING, inhibition Zhong B, et al.

(75)
Y46/H50/P110/
Y106/S108

glycosylation sGAGs promoting aggregation of STING, activation Fang R, et al.
(107)

C148 oxidation ROS Inhibiting polymerization and activation of STING, inhibition Tao L, et al
(115)

SAVI C88/91 palmitoylation DHHC3/7/15 promoting clustering of STING on TGNs, activation Mukai K, et al.
(95)

C88/91 nitro-alkylation NO2-FAs inhibiting palmitoylation of STING, inhibition Hansen A L.,
et al. (99)

C148 disulfide bond – promoting the dimerization of STING, activation Ergun S L.,
et al. (116)

SLE K150 K63-linked deubiquitination MYSM1 blocking STING dimerization and aggregation and TBK1 and
IRF3 recruitments, inhibition

Tian M, et al.
(86)

ovarian
cancer

– K6/K11/K27/K29/K63-linked
depolyubiquitination

USP35 inhibiting the binding of STING and TBK1, inhibition Zhang J, et al.
(85)
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into clinical trials to help with symptoms or enhance treatments,
especially cancer (137). Novel STING agonist strategies include:
bacterial vectors, CDNs, non-CDNs, nano vaccines, antibody-
drug conjugate, exo-STING, etc. (160) (Table 3). In addition,
other potential therapeutic agents have been explored in
experiments in vivo or in vitro, such as CEP (156), KAS-08
(155), DW2282 (155), etc. These agents are mostly tightly related
Frontiers in Immunology | www.frontiersin.org 10
to phosphorylation of STING, which is considered as the marker
of STING activation. It has been confirmed that diABZI (147),
compound 53 (150), M04 (151), etc, regulate directly
phosphorylation of STING (Table 2). While bisphenol A
(BPA) can up-regulate ZDHHC1, a palmitoylase, indicating
the underlying therapy of palmitoylation in regulation of
STING (161). Therefore, PTMs play critical role in strategies of
TABLE 2 | Structure and function of STING agonists and inhibitors.

Inhibitors

Compound type Compound
name

Structural formula Function Disease References

vermiculine LH519 blocking phosphorylation of STING – Liu H, et al
(155)

LH531
blocking phosphorylation of STING –

nitrofuran derivatives C176 decreasing expression of STING acute lung
injury

Wu B, et al
(156)

inhibiting the palmitoylation of STING Trex1-/- Haag, S. M.
et al (96)

C178

H151

inhibiting the palmitoylation of STING

inhibiting the palmitoylation of STING

Trex1-/-

Trex1-/-

Haag, S. M.
et al (96)

Haag, S. M.
et al (96)

NO2-FA 9-NO2-OA promoting nitro-alkylation and inhibiting
the palmitoylation of STING

SAVI, viral
infection

Hansen, A.
L.et al (92),
Hansen, A.
L.et al (99)

10-NO2-OA

NO2-cLA

2-BP

4-HNE

inhibiting the palmitoylation of STING

inducing STING carbonylation and
inhibiting the palmitoylation of STING

viral infection

viral infection

Mukai K, et
al (95)

Jia M, et al
(111)

cyclopeptide astin C blocking the recruitment of IRF3 to
STING

viral infection Li S, et al
(157)

(Continued)
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TABLE 2 | Continued

Inhibitors

Compound type Compound
name

Structural formula Function Disease References

Benzodioxane Variants compound18 inhibiting binding of 2'3'-cGAMP and
STING

– Siu T, et al
(145)

compounds containing a
benzene-1-sulfonamido-3-
amide group

SN-011 blocking CBD of STING and inhibiting
oligomerization and phosphorylation of
STING

Trex1-/- Hong Z, et al
(146)

ester alkaloids homoharringtonine
(HHT)

inhibiting interaction of STING and TBK1 – Park G, et al
(158)

flavonol Kaempferol (KPF) blocking phosphorylation of STING cisplatin-
induced

cardiac injury

Qi Y, et al
(159)

Agonists
amidobenzimidazole diABZI-4 inducing oligomerization of STING viral infection Humphries F,

et al (160)

compound 2 inducing phosphorylation of STING colorectal
tumours

Ramanjulu, J.
M, et al (161)

diABZI inducing phosphorylation of STING viral infection Zhou Z, et al
(141)

(Continued)
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TABLE 2 | Continued

Inhibitors

Compound type Compound
name

Structural formula Function Disease References

24b inducing phosphorylation of STING colorectal
tumours

Xi Q, et al
(162)

3,4-dihydroquinazolin-2(1H)-
one cyclic urea

compound92 inducing phosphorylation of STING – Basu S, et al
(163)

benzothiazinone compound53 inducing phosphorylation of STING – Pryde, D.C.,
et al (142)

2-(cyclohexylsulfonyl)-N,N-
dimethyl-4-tosylthiazol-5-amine

M04 inducing phosphorylation and trafficking
of STING

viral infection Abraham, J,
et al (143)

triazoloquinoxaline 1a inducing phosphorylation of STING – Hou H, et al
(164)

– SINCRO promoting activation of STING melanoma Kimura, Y, et
al (165)

1H-benzimidazole-4-
carboxamide derivatives

CHX710 activation of STING – Khiar, S, et al
(166)

sulfonylureas DW2282 inducing phosphorylation of STING colorectal
tumours

Jung, H. R.,
et al (140)

(Continued)
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agonists. All of these agonists activate immune responses
through cGAS-STING pathway, thus play a critical role in
anti-cancer therapy.

As for inhibitors, strategies have also been developed to
inhibit STING pathway: decreasing the expression of STING,
blocking binding of 2’3’-cGAMP and LBD of STING, inhibiting
phosphorylation, blocking traffic of STING, etc (27). Compound
18 is discovered to inhibit binding of 2’3’-cGAMP and STING,
leading to inhibition of STING pathway (141). Other inhibitors
are mainly associated with PTMs of STING. C176/C178/H151
have been discovered to inhibit palmitoylation of STING (96),
while NO2-FAs result in nitro-alkylation to competitively inhibit
palmitoylation (99). SN-011 can block phosphorylation of
STING to decrease production of type I-IFN and inflammatory
cytokines (142). Therefore, PTMs of STING can be important
therapeutic target to regulate STING in inflammatory diseases.
Targeted PTMs could be potential efficient strategy to improve
related diseases.
Frontiers in Immunology | www.frontiersin.org 13
In a word, many therapeutic targets related to STING are
based on phosphorylation, palmitoylation (92), alkylation (99).
There are few studies on agonists or inhibitors related to other
PTMs, for example, ubiquitination, glycosylation, sumoylation,
oxidation, carbonylation, which are also critical in regulation of
STING. There have been developed many reviews about targeted
therapy of ubiquitination (162–164), glycosylation (165),
sumoylation (166), oxidation (167). More studies could focus
on the role of these agonists and inhibitors in regulating STING
pathway, proposing more comprehensive therapeutic strategies
to improve STING-related diseases.
SUMMARY AND FUTURE PERSPECTIVE

Innate immune response is an important defender to deal with
endogenous and exogenous abnormal situation in cells. As
TABLE 2 | Continued

Inhibitors

Compound type Compound
name

Structural formula Function Disease References

KAS-08 inducing phosphorylation of STING

isoquinoline alkaloid Cepharanthine
(CEP)

inducing phosphorylation of STING viral infection Liu Y, et al
(139)

acridone compound 12b activation – Hou S, et al
(167)

– compound 22 activation colorectal
tumours

Cherney, E.
C., et al (168)

carboxamide BNBC inducing the peri-nuclear translocation viral infection Zhang X, et
al (169)
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mentioned above, STING pathway participates importantly in
regulation of immune responses (4). Since the discovery of the
cGAS-STING pathway, a series of biochemical, structural and
genetic studies have been conducted and related mechanisms have
been established. It is confirmed that, PTMs of STING are
important in regulation of STING pathway (9). Many types of
PTMs participate in regulation of activation or degradation of
STING (12), including phosphorylation and dephosphorylation,
palmitoylation, nitro-alkylation, glycosylation, ubiquitylation and
deubiquitylation, SUMOylation, carbonylation, oxidation and so
on, so that immune responses induced by STING could be
activated or inhibited efficiently.

It is inspiring that the same amino acid residues of STING
could be modified by different groups, resulting in distinct, even
contrary consequences. For example, C88 could be palmitoylated
to activate immune responses (92), while ROS and NO2-FA
could result in carbonylation and alkylation of STING to inhibit
Frontiers in Immunology | www.frontiersin.org 14
production of type I IFNs (99, 111). Add or remove
phosphorylated groups on Y245 and S366 can also function
differently, which indicates the importance of PTMs to precisely
regulate STING (56, 57, 61, 64).

Due to important role played by STING in immune responses
and inflammation, the critical mechanism of PTMs of STING is
deserved to explore and transform into potential therapeutic
target. Since then, targeted therapy of STING has been
highlighted in treatment of many diseases (27, 137). Most
agonists have been explored to improve prognosis of cancer
(168). Among them, the most common mechanism is to
phosphorylate STING to activate immune responses. By
contrast, nitrofuran derivatives, astin C and others are
inhibitors of STING (96, 169), which could potentially help
with auto-immune diseases and hyper-activation of
inflammation. However, the potential mechanisms of those
molecular agents are not clearly clarified, which limits wider
TABLE 3 | STING agonists in clinical development.

AGENT PHASE TYPE OF CANCER TIME CLINICAL
TRIAL NCT

CODE

E-7766 single agent phase I advanced solid tumors or lymphomas, melanoma, head and neck squamous
cell carcinoma (HNSCC), breast cancer, colorectal cancer, and/or other tumors
including lymphomas

2020.3-
2022.12

NCT04144140

exoSTING
(CDK-
002)

single agent phase II advanced/metastatic, recurrent, injectable solid tumors 2020.9-
2022.12

NCT04592484

IMSA-101 single agent or+Immune checkpoint
inhibitor (ICI)/Immuno-oncology (IO)
therapy

phase
I/II

Advanced Treatment-Refractory Malignancies 2019.9-
2023.2

NCT04020185

ADU-
S100

Single agent or + Ipilimumab phase I Advanced/Metastatic Solid Tumors or Lymphomas 2016.4-
2020.8

NCT02675439

+Pembrolizumab phase II Head and Neck Cancer 2019.8-
2021.6

NCT03937141

+PDR001 phase
Ib

Advanced/Metastatic Solid Tumors or Lymphomas 2017.9-
2020.12

NCT03172936

MK-1454 Single agent or + Pembrolizumab phase I Advanced/Metastatic Solid Tumors or Lymphomas 2017.2-
2022.10

NCT03010176

+Pembrolizumab phase II Metastatic or Unresectable, Recurrent Head and Neck Squamous Cell
Carcinoma

2020.3-
2023.4

NCT04220866

TAK-676 +Radiation+Pembrolizumab phase I Non-small-cell Lung Cancer, Triple-negative Breast Cancer, or Squamous-cell
Carcinoma of the Head and Neck

2021.9-
2024.1

NCT04879849

Single agent or + Pembrolizumab phase I Advanced or Metastatic Solid Tumors 2020.7-
2023.3

NCT04420884

SB-
11285

Single agent or + Atezolizumab phase I Advanced Solid Tumors 2019.9-
2022.5

NCT04096638

SYN-
STING

Single agent or + Atezolizumab phase I Advanced/Metastatic Solid Tumors and Lymphoma 2019.11-
2023.6

NCT04167137

GSK-
3745417

Single agent or + Pembrolizumab phase I refractory/relapsed solid tumors 2019.3-
2025.1

NCT03843359

BI-
1387446

single agent or +BI 754091 phase I Solid Tumors 2020.3-
2025.1

NCT04147234

SNX-281 Single agent or + Pembrolizumab phase I Advanced Solid Tumors and Lymphoma 2020.11-
2024.3

NCT04609579

BMS-
986301

Single agent or + Nivolumab/
Ipilimumab

phase I Advanced Solid Cancers 2019.3-
2024.7

NCT03956680

TAK-500 Single Agent or + Pembrolizumab phase I Select Locally Advanced or Metastatic Solid Tumors 2022.1-
2025.4

NCT05070247

MK-2118 + Pembrolizumab phase I Advanced/Metastatic Solid Tumors or Lymphomas 2017.9-
2022.6

NCT03249792
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use of these drugs. In a word, due to complexity of immunity
regulation, much remains to be learned about the regulation of
STING and details of PTMs in STING pathway. Future
therapeutic strategies could focus on optimizing PTMs on
STING function in the right disease at the optimal time.
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