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Purpose: The present study aimed to evaluate the performance of radiomics features in

the preoperative prediction of epileptic seizure following surgery in patients with LGG.

Methods: This retrospective study collected 130 patients with LGG. Radiomics features

were extracted from the T2-weighted MR images obtained before surgery. Multivariable

Cox-regression with two nested leave-one-out cross validation (LOOCV) loops was

applied to predict the prognosis, and elastic net was used in each LOOCV loop to select

the predictive features. Logistic models were then built with the selected features to

predict epileptic seizures at two time points. Student’s t-tests were then used to compare

the logistic model predicted probabilities of developing epilepsy in the epilepsy and

non-epilepsy groups. The t-test was used to identify features that differentiated patients

with early-onset epilepsy from their late-onset counterparts.

Results: Seventeen features were selectedwith the two nested LOOCV loops. The index

of concordance (C-index) of the Cox model was 0.683, and the logistic model predicted

probabilities of seizure were significantly different between the epilepsy and non-epilepsy

groups at each time point. Moreover, one feature was found to be significantly different

between the patients with early- or late-onset epilepsy.

Conclusion: A total of 17 radiomics features were correlated with postoperative

epileptic seizures in patients with LGG and one feature was a significant predictor of

the time of epilepsy onset.
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INTRODUCTION

Low-grade gliomas (LGGs) are slow-growing, infiltrative tumors
frequently associated with seizures. Up to 90% of the patients
with LGG may have seizures as the initial presentation leading
to tumor diagnosis. Additionally, epilepsy seizure could be used
as a clinical predictor for early tumor recurrence with LGGs (1).
The persistence of seizures in these patients may be associated
with the worsening of their neurological, neuropsychological,
and psychological status, reducing their quality of life (2, 3).
With a prolonged duration of epilepsy, the symptoms of LGG
may spread to the neocortex and subcortical structures, gradually
disrupting normal brain networks and causing dysfunction
of both the peritumoral area and remote brain tissues (1).
The reported recurrence of epilepsy in 20–40% of patients
demonstrates that the current conventional treatment strategy
used to address glioma-related epilepsy, including antiepileptic
drugs (AEDs) and anti-tumor therapies, remain unsatisfactory
(4–6). The application of AEDs has been a controversial issue
for a long time, there still has no strategy for individualized
prophylactic. Thus, the preoperative prediction of epilepsy
seizures following surgery could help clinicians evaluate the risk
of patients for epilepsy after surgery, further to make decision
of individualized treatment strategy, which was significant for
clinical treatment.

Several studies identified risk factors for the development
of gliomas related epilepsy: tumor location, tumor histology,
microenvironment, and genetic mutation (4, 7–9). Some
investigations have used medical imaging to study the correlation
between LGG and epilepsy (10, 11), and Wang et al. developed a
probabilistic risk atlas of gliomas related epilepsy (8). However,
few studies evaluated the correlation between these factors and
the risk of epilepsy seizure after surgery. In addition, research has
neglected temporal concerning the condition—despite the value
of such information to enhance the timeliness of interventions.

The development of pattern recognition technology has
driven the development of medical imaging data analysis,
and advances in data mining and machine learning have
rendered it possible to convert medical images into minable
data. The concept of “radiomics” first described in 2012
(12, 13), calls a comprehensive analysis of medical images
(14). By converting medical images into high-dimensional,
mineable, and quantitative imaging features, radiomics could
offer large amounts of information inaccessible to the human
eye. Recently, radiomics had been widely and successfully applied
to inform decision making in the treatment of tumors and
neuropsychiatric diseases (15–17), including in gliomas and
epilepsy (18, 19). Liu et al. built a radiomics signature using
quantitative imaging features to predict LGG-related epilepsy
(20). Based on the successful application, we hypothesized that
radiomics analysis could provide a chance for preoperative
prediction of epilepsy seizures following surgery in LGG patients.
Hence, by incorporating the temporal information, the model
could provide a timelier and finer prediction for the intervention.

In this study, we retrospectively collected pretreatment
neuroimaging data and prognosis outcomes of 130 patients with
LGG who underwent surgery. We attempted to explore the

relationship between radiomics features and the prognosis of
postoperative epilepsy by performing a multivariable analysis.

METHODS

Patients
A total of 130 patients who were surgically treated at Beijing
Tiantan Hospital between October 2005 and August 2008 were
collected in this retrospective study. The tumor types of all
patients were identified according to WHO 2016 classification.
The inclusion criteria were set as: all patients underwent
standard surgery and were diagnosed with LGGs confirmed
by postsurgical histopathology. To ensure that prognoses were
accurate for each patient, we assured that at least two years of
follow-up records were available for each patient. All patients
were postoperatively followed up every 6 months during the
first year, and then annually thereafter. The Ethics Committee
of the Beijing Tiantan Hospital approved the study, and written
informed consent was obtained from all participants.

Brain Imaging and Tumor Masking
The feature extraction in the current study followed the
Image Biomarker Standardization Initiative (IBSI) guideline
(21). T2-weighted images were obtained on a Magnetom Trio
3.0T scanner (Siemens, Erlangen, Germany) with a 12-channel
receive-only head coil. The parameters were set as follows:
repetition time = 5,800ms; echo time = 110ms; flip angle =

150 degrees; 24 slices; field of view = 240 × 188 mm2; voxel
size = 0.6 × 0.6 × 5.0 mm3; matrix = 384 × 300. Tumors
were semi-automatically segmented along the lesion contour on
each patient’s T2-weighted images in native space by at least
two experienced neuroradiologists using the ITK-SNAP software
(v 3.6.0; www.itksnap.org), while two other board-certified
experts reviewed the segmentations using imaging features
in combination with seizure history, clinical examination,
neuroimaging data to solve any discrepancies. The areas with
abnormal hyperintense signals on the images were identified as
tumor volumes, and the cerebrospinal fluid signals should not
be involved in. When the concordance between the tumor masks
of one patient identified by the two neuroradiologists was higher
than 95%, the tumor masks were combined.

Feature Extraction
The delineated tumor area was used as the region of interest
(ROI) to extract radiomics features. The features were calculated
with the largest slice of ROI. A total of 4,650 features were
extracted. These features could be divided into 4 types: shape-
based features, first-order statistical features, textural features and
wavelet features. Detailed information and formula are described
in the supplemental content. The radiomics feature extraction
was performed using in-house software written in MATLAB
2017b (MathWorks, Inc., Natick, MA, USA).

Feature Selection and Model Development
This study aimed to find the discriminative radiomics features
capable of predicting epileptic seizures after tumor resection, and
further to distinguish early-onset seizures (patients who would
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develop epilepsy within 6 months after surgery) from late-onset
ones (patients who would develop epilepsy more than 6 months
after surgery). In order to take full advantage of the temporal
information, this study adopted a proportional hazards model
(Cox model) (22). The end point of this study was disease-free
survival (DFS), which was defined as the time from the date
of surgery until the date of epileptic seizures (event) or until
the latest date at which the patient was known to be free of
epilepsy (censored).

Since the dimensionality of the radiomics feature space
was high, and could easily lead to over-fitting or bias in the
multivariable analysis, dimensional reduction was necessary to
ensure the reliability of our results. All features were initially
normalized as z-scores. After normalization, we performed
univariate Cox regression on each feature, retained the significant
features (P < 0.05). Then elastic net (E-net) Cox regression was
used as a multivariable analysis to choose the most important
features. The E-net penalty was a weighted sum of the least
absolute shrinkage and selection operator (LASSO) penalty and
ridge penalty, which retained the advantage of feature selection
while at the same time, compared with LASSO, avoiding the
interference of feature collinearity. The relative weight of LASSO
and ridge penalty was selected to maximize the Cox’s log-partial
likelihood (23):

∑n
i=1 δi

{

X′
iβ − log

[

∑

j∈R(ti)
exp

(

X′
jβ

)

]}

−λ
[

α ‖β‖1

+ 0.5 (1− α) ‖β‖22
]

where ti was the survival time (observed or censored) for
the ith patient, R (ti) was the risk set at time ti, Xi =
(

Xi1, · · · ,Xip

)′
was the regression vector of p-variables for the

ith patient, β =
(

β1, · · · ,βp

)′
was the column vector of the

regression parameters.
Since the sample size of this study was relatively small, we used

two nested leave-one-out cross validation (LOOCV) to maximize
the utilization of samples and to select the regularization
parameters (Figure 1) (24, 25). In the outer LOOCV loop, each
subject in turn was left out as the validation set, the other
129 being used to train an optimal E-net Cox model using the
inner LOOCV loop. Specifically, the inner LOOCV loop was
performed to train the optimal E-net Cox model with a pair
of best parameters λ and α maximizing the Cox’s log-partial
likelihood based on the training data (all 130 samples excepting
the one reserved for validation). We thus obtained 130 different
models, since the training samples used in each model training
were not identical. The features retained in more LOOCV loops
were more stable, implying that they played more important
roles. Therefore, we chose the features which were retained in at
least 90% of the loops (117 loops) as the most important ones.

The features thus selected were used to build a Cox model
and the Harrell concordance index (C-index) was calculated
to evaluate its performance (26). We also built two separate
logistic models to predict the status at 6 and 24 months
using LOOCV, since the 6-month time point was used to
define early-onset and the 24-month time point represented
the longest available follow-up time for the whole dataset.
We then computed the point-biserial-correlation between the
probabilities of epilepsy predicted by the logistic model and the
true labels (27), computing the correlation coefficient and the
corresponding P-values. Additionally, we divided the patients
into epilepsy and non-epilepsy groups based on the true
label, and used the Student’s t-test to compare the predicted
probabilities between the two groups separately at 6 and 24

FIGURE 1 | Flow chart of the study.
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TABLE 1 | Demographics and clinical characteristics of patients with low-grade

gliomas.

Epilepsy

recurrence

Non-epilepsy

recurrence

P

Age (mean ± deviation) 37.667 ±

9.651

38.101 ± 9.517 0.802

Sex 0.856

Male 30 49

Female 21 30

Tumor location 0.365

Frontal lobe 36 60

Temporal lobe 23 22

Parietal lobe 4 9

Insula 8 9

Preoperative epilepsy 0.342

Yes 39 53

No 12 26

Tumor pathology 0.725

Diffuse Astrocytoma

IDH-mutant with 1p/19q no-deleted 17 31

IDH-wildtype 10 13

Oligodendroglioma

IDH-mutant with 1p/19q co-deleted 16 27

NOS 8 8

IDH status 0.875

IDH-mutant 41 64

IDH-wildtype 10 13

The status of epilepsy recurrence is determined at 24 months. The location of the tumor

is determined by the region of the tumor involved, where some patients have tumors

involving multiple regions. Chi-Square test or Student’s t-test were used to compare the

differences between epilepsy and non-epilepsy groups.

months. Finally, Student’s t-test was performed on each selected
feature to identify differences between the patients with early- or
late-onset of epilepsy.

To evaluate the impact of preoperative epilepsy on
radiomics features, we performed a subgroup analysis based
on preoperative seizures status. Specifically, we used Student’s
t-test to compare the predicted risk of the Cox model between
preoperative epilepsy and no-epilepsy groups.

Since the pathological type, tumor location and the tumor
volume could be the risk factors that may lead to postoperative
epileptic seizure, we further investigated the correlation between
the selected radiomics features with clinical factors.

RESULTS

Demographic and Clinical Data
According to the follow-up records, 51 patients were considered
to have developed epilepsy by the end of the follow-up,
specifically, 41 patients within 6 months after surgery, 10 patients
within 6 to 24 months after surgery, and 79 patients were seizure-
free through the end of the follow-up period. We collected six
main clinical factors, age, sex, tumor location, the status of
preoperative epilepsy, the tumor pathology types and the IDH

TABLE 2 | The features selected by the two-nest LOOCV loop.

Name The number of loops P

gabor3_glszm_SZHGE 117 0.007*

gabor7_glcm_cluster_shade 123 0.247

gabor14_glcm_cluster_tendency 129 0.461

gabor18_glcm_IMC2 122 0.591

gabor18_glszm_LZLGE 120 0.564

gabor29_glszm_SZSE 129 0.406

gabor29_glszm_SZHGE 125 0.375

gabor30_glszm_SZHGE 117 0.692

gabor35_glszm_SZLGE 129 0.510

gabor36_glrlm_LGLRE 119 0.979

gabor36_glrlm45_LGLRE 121 0.958

gabor36_glszm_LGLZE 129 0.402

W5S5_fos_skewness 123 0.486

W5S5_fos_mass 129 0.919

W5W5_fos_mean 128 0.431

W5W5_fos_mass 129 0.853

R5S5_fos_median 129 0.847

The number of loops indicates how many LOOCV loops have selected the feature. The

P-value is calculated by the Student’s T-test between the early- and late-onset of epilepsy

patients. *Significant difference.

status. There was no significant difference in the clinical factors
between the epileptic and non-epileptic groups (Table 1). The age
range of the patients was from 18 to 68 when they did the surgery.

Feature Selected
The features were selected by E-net cox in each inner LOOCV
loop, and the loop in which each feature was retained was
recorded. After feature selection, we retained 17 features. The
number of LOOCV loops in which each feature were selected
is listed in Table 2. The features selected by more loops were
considered more robust.

Performance
The C-index of the Cox model built with the features selected
by the two-nested LOOCV was 0.683, meaning that the selected
features were predictive for the risk of epileptic seizures after
surgery in LGG patients. When the predicted risk was compared
between the two groups (no epilepsy and epilepsy) based on the
true labels (Figure 2), the t-test revealed a significant difference
between the two groups (P < 0.001).

The point-biserial-correlation between the probabilities
predicted by the logistic model and the true labels was computed
separately at the two time points of 6 and 24 months after
surgery. At 6 months, the R- and P-values were 0.235 and
0.007, respectively, indicating that the selected features could
predict whether patients would develop epilepsy at 6 months
after surgery. Similarly, the R- and P-values at 24 months were
0.300 and <0.001, respectively, indicating that the predictive
power of the selected features was retained at 24 months
after surgery. Moreover, the Student’s t-test comparing the
probabilities predicted by the logistic model between the epilepsy
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FIGURE 2 | Boxplots comparison differences between predictions in the non-epilepsy and epilepsy groups. (A) Comparation of epilepsy risk. Boxplot of the predicted

risk values of the Cox model corresponding to both the no epilepsy and epilepsy groups. (B) Comparation of probabilities at 6 months. Boxplot of the predicted

probabilities of the logistic model at 6 months. (C) Comparation of probabilities at 24 months. Boxplot of the predicted probabilities of the logistic model at 24 months.

FIGURE 3 | Boxplot of the selected feature comparison between the

early-onset and late-onset epilepsy patients.

and non-epilepsy groups, separately at the two time points, gave
P-values both smaller than 0.001 indicating that the features
could distinguish patients with epilepsy from those without
epilepsy independently of the time point (Figure 2).

Using Student’s t-test, we also compared the early- and
late-onset epilepsy patients in terms of each selected feature.
The P-values are listed in Table 2. The feature named
“gabor3_glszm_SZHGE” was significantly different between the
early- and late-onset of epilepsy groups, implying that the early-
or late-onset of epilepsy in LGG patients could be predicted based
on this feature, as shown in Figure 3 and Figure S1, the values
of the early-onset group were lower than the late-onset group,
indicating that the lower the value of this feature, the sooner that
post-operative seizures would occur.

FIGURE 4 | Boxplot of the postoperative epilepsy risk comparison between

the preoperative epilepsy and non-epilepsy patients.

The subgroup analysis of the preoperative seizures status
demonstrated that preoperative epilepsy was not associated with
the predictive value of the radiomics analysis (P = 0.847), as
shown in Figure 4.

Analysis of Clinical Correlation Analysis
With regard to the pathological type, the corresponding R-values
and P-values were listed in the Table S1. We found there were
no correlation between the selected radiomics features and the
pathological type.

To the tumor location, we determined the location of tumors
based on the region of the tumors involve, and segmented
into frontal lobe, temporal lobe, parietal lobe and Insula. The
Students’ T-tests were used to determine that if there were
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any differences in the selected radiomics features when a
certain brain region was involved in or not. The results were
listed in Table S2. We found that the radiomics feature named
“gabor3_glszm_SZHGE” was significantly different when the
tumor region located in the frontal lobe or not (P = 0.022).

To the tumor volume, we used the Pearson’s correlation to
explore the relationship between the selected radiomics features
and the tumor volume. The corresponding R-value and P-
values were listed in the Table S3. We found six radiomics
features were still significant after multiple correlation. For
the radiomics feature named “gabor3_glszm_SZHGE,” which
was a significant predictor of early or late epilepsy onset, was
also significant after Bonferroni correlation (P < 0.001). The
result showed that this feature was negatively related to the
tumor volume.

DISCUSSION

In the present study, we aimed to evaluate the performance
of the radiomics features in the pretreatment prediction
of epileptic seizure after surgery in patients with LGG.
We used a two-nested LOOCV loop and recorded the
frequency of the features to select the most robust and
distinguishable features, obtaining in the end 17 radiomics
features. The results suggested that the radiomics features
could be successfully used for the pretreatment prediction of
epileptic seizures following surgery. In addition, we further
analyzed the correlation between radiomics features and
the time of seizure utilizing the time information, and
the results demonstrated that the radiomics features could
be used to predict the patients with early- or late-onset
epilepsy. The subgroup analysis proved that the radiomics
features were not influenced by the status of preoperative
epilepsy. The study details according to IBSI was reported in
Table S4.

Since the introduction of radiomics, it has gained wide
application to the treatment of brain tumors: from diagnosis,
through treatment evaluation, to prognosis (28–30). This
increased application of radiomics is attributable to its use in
helping clinicians to extract more high-throughput information
from medical images with higher efficacy, thus improving
decision making (31). The use of radiomics has been recently
extended to neuropsychiatric diseases with success, suggesting
that radiomics might be employable in preoperative prediction
of epileptic seizures following surgery in LGG patients. The
present study extracted 4650 radiomics features which contained
much high-throughput information that beyond of human eyes.
By combining the high-throughput information and the time
information, we utilized a Coxmodel to evaluate the performance
of radiomics features for preoperative prediction of epileptic
seizure after surgery, and the results demonstrated that radiomics
could successfully be applied to the pretreatment prediction of
postoperative epileptic seizures in LGG patients.

Although the radiomics features containedmuch information,
there were also some redundant information. Hence, we used
the E-net regularization to choose the features most predictive of

epilepsy status following surgery. Considering the small sample
size and the randomness of sample, we performed two-nested
LOOCV loops. The features chosen by E-net in each loop
would not be identical since the samples were not identical,
thus we record the number of loops in which each of the
selected features presented because they were chosen by more
loops would be more robust. The 17 radiomics features were
the most predictive and robust features for the pretreatment
prediction of epileptic seizure following surgery, which meant
these features had universality for clinical application. In
addition, our findings suggest that the radiomics feature named
“gabor3_glszm_SZHGE” might be the most important indicator
for clinical application since it was predictive of whether and
when epilepsy occurs following the operation. Additionally, the
mean value of the feature was higher when the frontal lobe
was involved in (25.7 in the frontal lobe involved group >

20.8 in the frontal lobe no involved group) according to the
clinical correlation analysis. It implied that the larger the feature
(gabor3_glszm_SZHGE) value, the later the onset time may
be combining with Figure 3, which means that when tumors
involved in the frontal lobe, seizure may occur early after
surgery. This finding might be helpful for postoperative epilepsy
prevention. The result fromTable S3 showed that this feature was
negatively related to the tumor volume. It implied that the smaller
the feature (gabor3_glszm_SZHGE) value, the earlier the onset
time may be, which means that the larger the tumor volume, the
earlier the onset time based on the current analysis.

The administration of AEDs was a major prophylactic strategy
used to address postoperative epilepsy. Details concerning the
administration of AEDs to glioma patients, including the drug
dosage and duration of prescription, depended on clinical risk
factors such as preoperative GRE and tumor resection, etc. (6, 32–
34). The standard of AEDs was still controversial and too broad
for subjects, and lack of an accurate strategy for individuals
now. The present study would help to inform research on the
development of individualized prophylactic strategies. Moreover,
future clinical applications of our research would help clinicians
plan strategies to address the potential onset of epilepsy
when treating patients with LGG: the dosages of AEDs need
to be raised, and the duration prolonged. Furthermore, our
methodology would allow oncologists to perform more frequent
and timely follow-up observations of the patients with low
values of “gabor3_glszm_SZHGE” and administer an appropriate
early intervention.

This study has some limitations. First, the epilepsy status of
LGG patients was diagnosed based on clinical presentation, and
the patients underwent surgery shortly following diagnosis, so
that many of them could not undergo electroencephalography
necessary to confirm the diagnosis prior to surgery. Second, the
sample size of this study is small, it is difficult to divide an
independent validation dataset in this study. For this reason,
we adopted a two-nested LOOCV loops to maximize the utility
of our sample size and improve the credibility of this study.
Despite the above limitations, the features selected in this
study performed well, as shown by the C-index. We intend
to use a deep learning model and a larger sample size in
future studies.
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CONCLUSIONS

In conclusion, we selected 17 radiomics features that correlated
with postoperative epileptic seizure in patients with LGGs, and
found one feature to be a significant predictor of early or
late epilepsy onset. Our findings indicate that the features we
chose are useful in the management of postoperative epilepsy
and that radiomics analysis can potentially be applied to
the individualization of prophylactic treatment strategies that
address postsurgical epileptic.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because they belong to Beijing Tiantan Hospital. Requests
to access the datasets should be directed to Yinyan Wang
(tiantanyinyan@126.com).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Ethics Committee of the Beijing Tiantan
Hospital. Written informed consent to participate in this study
was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

Study conception and design: JT and YW. Acquisition of data:
YL, LW, XL, TJ, and YW. Analysis and interpretation of data: KS,
ZL, ZT, SW, XZ, LS, and CS. Drafting of manuscript: KS. Critical
revision: KS, ZL, YL, YW, and JT. All authors contributed to the
article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science
Foundation of China under Grant Nos. 81922040, 81930053,
81527805, and 81772012, the Beijing Natural Science Foundation
under Grant No. 7182109, the National Key R&D Program of
China under Grant Nos. 2017YFA0205200, 2017YFA0700401,
and 2016YFA0100902, the Strategic Priority Research Program of
Chinese Academy of Sciences under Grants Nos. XDB32030200
and XDB01030200, Chinese Academy of Sciences under Grant
Nos. QYZDJ-SSW-JSC005, KFJ-STS-ZDTP-059, and Shou Fa Ji
Jin No. SFH 2018-2-1072, and the Youth Innovation Promotion
Association CAS (Grant No. 2019136).

ACKNOWLEDGMENTS

The authors would like to acknowledge the instrumental
and technical support of multi-modal biomedical imaging
experimental platform, Institute of Automation, Chinese
Academy of Sciences.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.01096/full#supplementary-material

Figure S1 | T2-weighted images with tumor masks for two cases with similar

tumor location and size. Case 1 corresponds to a patient who developed epilepsy

within 6 months of surgery, the radiomics feature named gabor3_glszm_SZHGE

equaled 21.8373. Case 2 corresponds to a patient who developed epilepsy within

6–12 months of surgery, the radiomics feature named gabor3_glszm_SZHGE

equaled 27.0216. The non-overlaid and ROI-overlaid source images of case 1

were shown in (A,C) separately. The non-overlaid and ROI-overlaid source images

of case 2 were shown in (B,D) separately.
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