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Exercise is one of the most effective treatments for the diseases of aging. In

recent years, a growing number of researchers have used Drosophila

melanogaster to study the broad benefits of regular exercise in aging

individuals. With the widespread use of Drosophila exercise models and the

upgrading of theDrosophila exercise apparatus, we should carefully examine the

differential contribution of regular exercise in the aging process to facilitatemore

detailed quantitative measurements and assessment of the exercise phenotype.

In this paper, we review some of the resources available for Drosophila exercise

models. The focus is on the impact of regular exercise or exercise adaptation in

the aging process in Drosophila and highlights the great potential and current

challenges faced by this model in the field of anti-aging research.
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1 Introduction

Exercise is a serious challenge to systemic homeostasis and it causes a wide range of

effects in a variety of cells, tissues and organs (Hawley et al., 2014). Indeed, a single

exercise session is sufficient to produce acute changes at the transcriptional level

(Williams et al., 1996), (Pilegaard et al., 2003). Multiple repetitions of exercise can

produce exercise adaptation and more lasting effects on protein function (McGee and

Hargreaves, 2020). Planned regular exercise can delay the development of chronic

metabolic diseases, including cardiovascular diseases (CVDs), type 2 diabetes (T2D),

insulin resistance and obesity (Hawley and Krook, 2016), (Fiuza-Luces et al., 2018),

(Umpierre et al., 2011), (Goodyear and Kahn, 1998), (Castaño et al., 2020), (Houghton

et al., 2017).

Aging is a major risk factor for CVDs, T2D and neurodegenerative diseases (Paneni

et al., 2017), (Laiteerapong et al., 2019), (Hou et al., 2019). Epidemiological studies have

shown that the increase in human lifespan has led to a high incidence of aging-related

diseases, which places a huge burden on the world health care system (Partridge et al.,

2018). Therefore, healthy aging will become one of the most important goals to be

addressed today. Aging is determined by complex interactions between biology,

environment, and society, which are beyond the control of the individual (Myint and

Welch, 2012). But, lifestyle interventions can help to maintain health, such as increasing
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exercise as well as controlling diet (Partridge et al., 2018). It is

well known that lifespan has heritable properties and therefore

has a genetic basis. This was shown in studies in Drosophila,

where differences in lifespan can be almost twofold across genetic

backgrounds and these differences are heritable, supporting the

model of genetic determination of lifespan (Campisi et al., 2019).

Drosophila has powerful genetic tools and short lifespan

characteristics, which make it an ideal model organism for

studying lifespan and aging (Helfand and Rogina, 2003),

(Makarova et al., 2015). In addition, Drosophila models have

many notable achievements in age-related diseases, such as

CVDs, sarcopenia and neurodegenerative diseases (Diop and

Bodmer, 2015), (Hunt et al., 2021), (Feany and Bender, 2000),

(Lu and Vogel, 2009).

Although exercise is an economical and effective treatment

for age-related diseases (Li et al., 2020a), (Fiuza-Luces et al.,

2018), (Batsis and Villareal, 2018), there are still many limitations

in human and animal studies due to life cycle limitations (Blice-

Baum et al., 2019). In recent years, Drosophila exercise models

with short lifespan and mature genetic tools have become the

optimal choice for researchers (Li et al., 2020b), (Kim et al.,

2020), (Wen et al., 2016).

2 Development of a Drosophila
exercise model for cardiovascular
aging research

CVDs are the leading cause of death worldwide, with an

estimated 17.9 million deaths from CVDs in 2019, accounting for

32% of global deaths (WHO (World Health Organization), 2017).

Aging is a major risk factor for CVDs, including atherosclerosis,

hypertension, myocardial infarction, and stroke (Paneni et al.,

2017), (North and Sinclair, 2012). Exercise therapy is an

economical and effective therapy to reduce mortality and risk

of heart disease (Goenka and Lee, 2017). These studies are equally

applicable in flies. In aged Drosophila, exercise enhances cardiac

function and improves cardiomyocyte ultrastructure and heart

failure (Piazza et al., 2009), (Li et al., 2020b). Nicotinamide

adenine dinucleotide (NAD+) is a central metabolite

associated with atherosclerosis, ischemic, diabetic,

arrhythmogenic, hypertrophic or dilated cardiomyopathy, and

different forms of heart failure (Abdellatif et al., 2021). Recently,

several studies using Drosophila models have shown that NAD +

supplementation improves mitochondrial mass, delays

accelerated aging and extends lifespan through DCT-1 and

ULK-1 (Fang et al., 2019). Consistently, mice prolong lifespan

by supplementation with the NAD + precursor nicotinamide

riboside (NR) (Zhang et al., 2016). In addition, high expression of

NAD + synthase protein positively affected cardiac function in

aging flies, including increased cardiac output and reduced heart

failure (Wen et al., 2016). Similarly, NAD + precursor treatment

also improved cardiac function in aged MDX mice with

cardiomyopathy and improved mitochondrial and cardiac

function in a mouse model of iron deficiency heart failure

(Ryu et al., 2016), (Xu et al., 2015). During physical exercise,

cellular energy requirements change all the time, including NAD

+ and NADH concentrations (White and Schenk, 2012). In mice,

swimming increased NAD + levels in muscle (Cantó et al., 2010).

In rats, endurance exercise resulted in a sustained increase in

NAD + levels in the gastrocnemius muscle of young and aging

rats (Koltai et al., 2010). A recent study showed that exercise

increased cardiac NAD + levels and PGC-1α activity to improve

lipotoxic cardiomyopathy in aged flies, which was associated with

NAD+/dSIR2/PGC-1α pathway activation (Wen et al., 2019a).

Drosophila dSir2, a homolog of mammalian Sir2, encodes

deacetylase activity that prolongs flies lifespan (Rosenberg and

Parkhurst, 2002), (Griswold et al., 2008). In addition, exercise

activates the cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm

pathways and reduces the occurrence of diastolic dysfunction

as well as enhances cardiac contractility (Wen et al., 2019b).

Exercise not only improves CVDs in aging Drosophila, but also

resists the stress on the heart caused by a high-fat, high-sugar and

high-salt diet. For example, lipid levels in the heart are

significantly increased in dFatphet mutants, and exercise

rescues myocardial lipid content and cardiac function

(Sujkowski et al., 2012). Long-term exercise resists high salt-

induced premature cardiac failure by blocking CG2196 (salt)/

TOR/oxidative stress and activating dFOXO/PGC-1α (Wen et al.,

2021a). Electrical pacing produced a significantly increased rate of

heart failure when flies were exposed to a high sucrose diet

(Bazzell et al., 2013). Aging is an important cause of

arrhythmias (Chadda et al., 2018). In aged flies, early physical

exercise improves arrhythmias, mainly by reducing the incidence

of fibrillation and increasing the occurrence of bradycardia

(Zheng et al., 2017). These facts show a great similarity, and

humans compared to rats. For humans, exercise training is

important for the prevention and treatment of CVDs (Lavie

et al., 2015). For example, persistent regular exercise provides

benefits in a variety of diseases, including atherosclerosis, atrial

fibrillation, heart failure, and cardiac lipotoxic injury (Rognmo

et al., 2012), (Risom et al., 2017), (Cattadori et al., 2018),

(Schrauwen-Hinderling et al., 2010). In mice, the same

beneficial effects of exercise on the heart have been reported

(Fiuza-Luces et al., 2018), (Harris et al., 2020), (Vujic et al., 2018),

(Börzsei et al., 2021), (Cheedipudi et al., 2020). In conclusion, this

illustrates the significance of theDrosophila exercisemodel for the

study of cardiac function.

3 Development of Drosophila
exercise models in circadian rhythm
studies

Aging leads to a weakening of circadian rhythms, such as the

sleep/wake cycle. These rhythms are generated by biological
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clocks, which are based on cell-autonomous negative feedback

loops involving clock genes that display molecular oscillations in

approximately 24-h cycles. Clock genes are conserved from

Drosophila to humans, and their oscillatory activity

coordinates rhythms at the molecular, physiological and

behavioral levels (Rakshit et al., 2013). Drosophila exhibits a

sleep-like state that is regulated by both circadian rhythms and

homeostasis (Shaw et al., 2000). It has been reported that

knockdown of dATF-2 in pacemaker neurons decreases sleep

duration, while ectopic expression of dATF-2 increases sleep

duration (Shimizu et al., 2008). However, the degree of dATF-2

phosphorylation can be enhanced by forced exercise of the

dp38 pathway (Shimizu et al., 2008). This suggests that dATF-

2 is the regulator that links sleep to exercise. Furthermore, both

chronic hypoxia and exercise improved sleep quality and

climbing ability and extended maximum lifespan in aged flies,

but exercise was insensitive to improvements in circadian rest/

activity rhythms (Li et al., 2020b), (Zheng et al., 2017).

Neuropeptide F (NPF) positive clock neurons have been

reported to be critical for the control of nocturnal activity in

Drosophila (Hermann et al., 2012). Interestingly, Drosophila

exercise is similar to humans in maintaining and improving

circadian rhythms (Rakshit et al., 2013), (Gabriel and Zierath,

2019). However, in Drosophila, the link between regular exercise

and NPF remains poorly understood. Another study showed that

exercise increased the duration of nighttime sleep by decreasing

nocturnal activity, while also increasing the number of second

deep sleeps and the intensity of daytime activity (Li et al., 2020b).

Therefore, it will be interesting to study the effect of exercise and

NPF on circadian rhythms. In contrast, one study reported that

regular exercise did not improve circadian rhythms or lifespan in

wild-type flies, but the clock mutant per 01 significantly reduced

climbing ability with or without exercise, suggesting a role for

some specific clock genes in maintaining health as part of healthy

aging (Rakshit et al., 2013). The paradoxes that lead to the results

may be due to differences in model building, including exercise

devices, protocols and detection means. As an excellent model of

circadian biology and aging, Drosophila is well suited to be

combined with exercise to explore the molecular pathways

between exercise and circadian rhythms. However, we must

carefully consider the experimental errors caused by different

exercise devices and protocols, otherwise revealing the intrinsic

connection between exercise and circadian rhythms will become

difficult.

4 Development of Drosophila
exercise models in obesity-related
diseases

Obesity is a global epidemic that is associated with aging and

diet (Santos and Sinha, 2021). Obesity increases the risk of many

health problems, including T2D, metabolic syndrome, CVDs,

and cancer, and therefore leads to higher mortality (Aune et al.,

2016), (Global BMI Mortality Collaboration Di Angelantonio

et al., 2016). Physical exercise prevents obesity, reduces visceral

fat and maintains body weight (Oppert et al., 2021), (Swift et al.,

2018), (Villareal et al., 2017). Drosophila has become an excellent

model for metabolic and diet-related diseases due to its powerful

genetic tools and stable reproducible phenotype (Birse et al.,

2010), (Musselman and Kühnlein, 2018). Although exercise is

believed to mitigate the damage caused by obesity, it remains

controversial (Waters et al., 2013). Therefore, the Drosophila

exercise model serves as a bridge to reveal the intrinsic relation

between exercise and obesity. Drosophila need only be fed a diet

containing 30% coconut oil for 5 days to exhibit a phenotype

similar to that of the mammalian metabolic syndrome, including

increased glucose levels and decreased insulin-like peptide 2

(Dilp2) levels (Birse et al., 2010). The TOR pathway is

associated with nutrient-sensing signaling in flies (Luong

et al., 2006). Reducing the function of the TOR pathway may

accelerate lipolytic metabolism and may also reduce lipid

anabolism or storage (Birse et al., 2010). These results are

similar to those in humans and rodents in that elevated TG

levels induced by high-fat diets are associated with disruptions in

lipid and glucose homeostasis, and mitochondrial function,

which may lead to lipid accumulation and lipotoxic damage

(Ouwens et al., 2005), (Unger, 2003), (Schaffer, 2003). Recent

studies have found that regular exercise reduces aging-induced

increases in cardiac triglycerides, which may be associated with

activation of the cardiac dSir2 pathway (Wen et al., 2019b).

Regular exercise is also able to increase antioxidant defense and

control the production of RS required for cellular metabolic

regulation, improving adiposity and glycemia (Dahleh et al.,

2021). In addition, exercise may also reduce high-fat diet-

induced whole-body hypertriglyceride levels by decreasing the

expression of apoLpp (Ding et al., 2021). It is well known that

high-fat diet-induced obesity induces cardiac lipid accumulation

and leads to the development of lipotoxic cardiomyopathy. A

study showed that lipotoxic cardiomyopathy can be reversed by

exercise activation of the Nmnat/NAD+/SIR2 pathway (Wen

et al., 2021b). These results have similarities with some studies

in humans and mammals, such as exercise improving

dyslipidemia and insulin resistance by reducing

apolipoprotein B in patients with T2D (Alam et al., 2004),

and in aged rats, exercise training promoting SIRT1 activity and

improving antioxidant defenses in heart and adipose tissue

(Ferrara et al., 2008). Another recent study showed that exercise

and cold stimulation were able to alter the expression levels of

the brown fat and beige fat markers ucp1, serca2b, β3-
adrenergic receptor, prdm16, ampk, and camk, and reduce

lipid accumulation (Huang et al., 2022). Although the above

studies are not sufficient to prove whether exercise has an effect

on lipid browning in flies, they provide indirect evidence, which

suggests that exercise holds great potential in the regulation of

lipid metabolism in flies.
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5 Drosophila exercise model in
skeletal muscle aging

In humans, the mortality and pathogenesis of many age-

related diseases are related to the functional status, metabolic

demands and mass of skeletal muscle, suggesting that skeletal

muscle is a key regulator of whole-body aging (Anker et al., 1997)

(Metter et al., 2002) (Nair, 2005) (Ruiz et al., 2008). InDrosophila

melanogaster, the organization and metabolism of skeletal

muscle fibers is similar to that of mammals (Piccirillo et al.,

2014). But, muscles undergo more drastic age-related

degeneration, which may be due to the lack of satellite stem

cells and the limited muscle repair capacity of this organism

(Grotewiel et al., 2005). A major difference between Drosophila

and mammalian muscles is the lack of muscle stem cells. This

feature makes Drosophila muscle, excellent models for

identifying the mechanisms by which assembled sarcomeres

are maintained and repaired without the confounding

influence of regeneration as found in mammalian muscle

(Christian and Benian, 2020). In addition, Drosophila muscle

function can be analyzed by measuring their ability to fly and

climb (Gargano et al., 2005). Due to these properties, flies are

emerging as a useful model organism to study muscle aging

together with mammalian models.

Skeletal muscle aging is a risk factor for the development of

several age-related diseases, such as sarcopenia, metabolic

syndrome, cancer, Alzheimer’s disease, and Parkinson’s

disease (Christian and Benian, 2020), (Ruiz et al., 2011),

(Demontis et al., 2013a). Exercise and muscle function are

important predictors of age-related mortality in humans

(Anker et al., 1997), (Metter et al., 2002), (Demontis et al.,

2013b). For example, exercise protects transgenic mice with

Alzheimer’s disease and Parkinson’s disease from

neurodegeneration (Zigmond et al., 2009). Endurance exercise

rescues mitochondrial defects and premature aging in mice

defective in proofreading-exonuclease activity of

mitochondrial DNA polymerase γ (Safdar et al., 2011).

Another study showed that Sestrins are necessary and

sufficient for beneficial adaptations to muscle function and

metabolism in Drosophila and mice (Kim et al., 2020).

Knockdown of Sestrins reduced endurance and flight in

exercise-adapted flies (Sujkowski and Wessells, 2021).

Similarly, knockdown of Sestrins in exercise mice impeded

endurance and metabolic benefits (Sujkowski and Wessells,

2021). Drosophila muscle-specific dSesn expression replicates

similar improvements in aging mobility by exercise and

mediates changes in lysosomal activity in a variety of tissues,

and both adaptations are dependent on TORC2-Akt activity and

PGC1α (Sujkowski and Wessells, 2021). In addition, Drosophila

muscle can play an important role in delaying aging (Rai et al.,

2021). The first finding was that adult muscle-specific

overexpression of dFOXO prolongs lifespan in Drosophila

(Demontis and Perrimon, 2010). Although these findings

underscore the fundamental role of muscle in regulating

systemic aging, the molecular mechanisms involved in this

inter-tissue communication are largely unknown.

Exercise not only produces beneficial effects in one’s own

muscles but also has the potential to trigger beneficial effects in

other tissues. Examples include increased energy expenditure

and clearance of ectopic lipid stores (Hawley et al., 2014),

improved insulin sensitivity and lower circulating insulin

levels (Hawley et al., 2014), and increased secretion of

exercise-regulated myocytokines, including irisin (Whitham

et al., 2018) and extracellular vesicles (Arnold et al., 2011).

Myokines can act on distant tissues such as adipose tissue,

liver, pancreatic β-cells and endothelium (Pedersen and

Febbraio, 2012). Insulin-like growth factor-1 (IGF-1) is an

actin produced by muscles in response to exercise (Pedersen

and Febbraio, 2012), (Hede et al., 2012). In Drosophila, ImpL2 is

a member of the immunoglobulin superfamily, similar to

mammalian IGFBP7, which binds to Dilps and inhibits

insulin signaling and promotes mitochondrial autophagy

(Owusu-Ansah et al., 2013). Mild muscle mitochondrial

damage preserves mitochondrial function, inhibits age-

dependent degeneration of muscle function and structure, and

prolongs lifespan (Copeland et al., 2009), (Kirchman et al., 1999),

(Dillin et al., 2002), (Liu et al., 2005). Although muscle-derived

insulin-like growth factor binding protein is not detected in the

circulation, it induces muscle hypertrophy after exercise in an

autocrine/paracrine manner (Vinciguerra et al., 2010),

(Silverman et al., 1995). It is well known that physical exercise

counteracts the deleterious effects of secondary aging by

preventing the decline in mitochondrial respiration,

attenuating the loss of muscle mass associated with aging, and

enhancing insulin sensitivity (Cartee et al., 2016). Although the

Drosophila exercise model is not well studied in the field of

skeletal muscle aging, its evolutionarily conserved myokines and

short lifespan characteristics make it an excellent model for

studying the role in intertissue communication.

6 Different genetic backgrounds of
Drosophila exercise models

A growing number of studies have used Drosophila exercise to

mimic phenotypes similar to those of humans, including increased

endurance, improved age-related decreases in mobility and cardiac

function, improved lipid metabolism, and increased lifespan (Wen

et al., 2016), (Ding et al., 2021), (Lowman et al., 2018), (Piazza et al.,

2009). Drosophila exercise is a complex multifactorial response and

it has different exercise performance in different genetic

backgrounds, including climbing speed and endurance

(Damschroder et al., 2020). In addition, age, diet and gender are

also factors that influence exercise performance. For example,

climbing speed, endurance and flight performance decrease with

age (Damschroder et al., 2020), (Sujkowski et al., 2019). The effect of
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diet on endurance is dramatic and affects acute endurance and

adaptation to chronic exercise training, with diet composition

having a greater effect than calorie content (Bazzell et al., 2013).

In addition, the effect of gender on exercise is equally important;

when looking at the distribution of activity levels during the same 2-

h exercise session, there is a strong correlation between gender and

exercise, with females experiencing an early burst of activity and

males maintaining activity levels throughout the exercise session

(Sujkowski et al., 2020). The mechanisms that lead to genotypic

variation in exercise capacity are important to uncover the genetic

pathways of exercise, and we should take advantage of cross-species

genetics to better explore the interactions between exercise and

aging-related diseases.

7 Drosophila exercise device

More than 40 years ago, scientists discovered that Drosophila

exhibit an inherent behavior of crawling against gravity when at

the bottom of a vial, a behavior commonly referred to as negative

geotaxis (Miquel et al., 1976). Negative geotaxis in Drosophila

requires Johnston’s organ, a mechanosensory structure located in

the tentacles that also detects near-field sounds (Kamikouchi

et al., 2009), (Sun et al., 2009). To date, five Drosophila exercise

devices have been described. A decade ago, a first generation

locomotion device, the Power Tower, was developed based on the

negative tropism of Drosophila (Piazza et al., 2009). The Power

Tower device lifts up flies fixed to a platform by a motor and then

FIGURE 1
Different Drosophila exercise devices. (A) Power Tower. This is adapted from Piazza et al., 2009. (B) TreadWheel. This is adapted from Mendez
et al., 2016. (C) Swing Boat. This is adapted from Berlandi et al., 2017. (D) REQS. This is adapted from Watanabe and Riddle, 2018 (E) Flip Bottle.
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lets the platform fall freely with gravity, causing the flies to fall to

the bottom of the bottle (Figure 1A). Due to their negative

geostasis response, the flies crawl upward until the motor

makes them fall to the bottom of the bottle once again. The

TreadWheel device stimulates flies to crawl upward in a fully

rotating manner and avoids some physical shocks during

locomotion (Mendez et al., 2016), (Katzenberger et al., 2013)

(Figure 1B). The Swing Boat device allows the tube to be rotated

alternately 30° to each side and also allows the collection of data

during locomotion in combination with the Drosophila

Monitoring System (DAMSystem) (Berlandi et al., 2017)

(Figure 1C). REQS is an upgraded version of the TreadWheel,

similar to the Swing Boat, allowing the combination of a

DAMSystem to quantify the level of movement of flies

(Watanabe and Riddle, 2018) (Figure 1D). In addition, the

Key Laboratory of Physical and Exercise Rehabilitation of

Hunan Province also developed a Drosophila exercise device

in an experiment in which amotor was controlled to drive the flip

of the vial on the platform (Figure 1E). The difference is that each

rotation of the device is 180 and this stimulates the flies to

actively walk upwards inside the vial (Zheng et al., 2015). This

device is called “Flip Bottle” because it keeps turning the bottle

during its operation. All in all, the other four devices are mainly

rotational in design compared to the Power Tower device. The

“rotational” approach allows for greater avoidance of physical

damage during the exercise of flies. Although the upgrade of the

exercise device reduces the possibility of physical damage, there

are still some questions about the efficiency of flies’ exercise in the

vial and how to accurately determine the intensity of exercise.

Various research protocols currently use motor rotation speed

and time as key factors in determining exercise intensity

(Katzenberger et al., 2013), (Berlandi et al., 2017), (Watanabe

and Riddle, 2018). In short, Power Tower triggers Drosophila

exercise through mechanical vibration, while the other four

trigger exercise through rotation, including full rotation for

TreadWheel and REQS, alternating 30 per side for Swing

Boat, and alternating 180° per side for Flip Bottle. In addition,

Swing Boat and REQS incorporate the DAMSystem, which

makes them more objective in monitoring the intensity of

exercise. However, in previous studies it was found that flies

exhibited a passive tendency to climb after exercising for a period

of time (usually after 20–30 min) (Watanabe and Riddle, 2017).

This means that flies stay in a certain location in the vial and their

range of movement decreases dramatically, which makes it more

FIGURE 2
Overview of the function of Drosophila exercise in different organs. Currently, Drosophila exercise models have made some achievements in
cardiovascular, skeletal muscle, and fat body. Exercise activates the cardiomyocyte dSir2/FoxO/SOD and dSir2/FoxO/bmm pathways to delay
cardiac aging. In Sestrins, Sesn1 is mainly expressed in muscle, where it is involved in the metabolic response to exercise and is associated with
TORC2-Akt activity and PGC1α. In addition, skeletal muscle secretes myokines (ImpL2) that inhibit insulin signaling and promote mitochondrial
autophagy. Exercise though apoLpp to regulate abnormal lipid metabolism, it also activates Nmnat/NAD+/dSir2 to resist lipotoxicity. In exception to
the heart, fat body and skeletal muscles,Drosophila has other systems similar to those of humans, such as the central nervous system represented by
theDrosophila and human brain, the digestive system represented by theDrosophila and human intestine, the respiratory system represented by the
Drosophila thorax and human lungs, and the reproductive system represented by the Drosophila and human ovaries/testes. The effects of exercise
on aging individuals are complex, but the use of simple Drosophila exercise models will be exciting for exploring the role of exercise in different
biological processes, while facing various difficulties and challenges.
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difficult to determine the intensity of exercise. It is well known

that regular exercise can bring great benefits for healthy aging,

and the emergence of Drosophila exercise models will further

reveal the relationship between exercise and aging. Therefore,

precise quantification of exercise intensity and the development

of more advanced Drosophila exercise devices will become highly

relevant in the future.

8 Summary

Drosophila and other animal models are widely used to study

the relationship between exercise and aging, such as mice and

zebrafish (Murphy et al., 2021), (van Praag et al., 2005). But because

of the complexity of these systems, we need simpler model

organisms to overcome these challenges. Drosophila has the

obvious advantage of being a first-line model for testing

hundreds of potential longevity enhancers in multicellular

organisms and can be easily adapted to mammalian models.

Drosophila exercise produces physiological characteristics similar

to those of humans (Figure 2). As described in this review, the

Drosophila exercise model provides some new insights into cardiac

aging, abnormal lipid metabolism, circadian rhythm disorders, and

skeletal muscle aging. In addition to this, exercise regulates a variety

of neurological disorders, including neuroendocrine,

neurotransmitter, neuroinsulin signaling, antioxidant and anti-

inflammatory responses, and cell survival and death pathways

(Viru, 1992), (Meeusen and De Meirleir, 1995), (Lovatel et al.,

2013), (Monteiro-Junior et al., 2015), (Kurgan et al., 2019), (Serra

et al., 2019), (Kang et al., 2013). Surprisingly, however, Drosophila

exercise models have only been reported in studies of octopamine

and its receptors, a powerful neuromodulator that affects sensory

and cognitive functions in insects (Zheng et al., 2015), (Sujkowski

et al., 2017), (Farooqui, 2007). Many neuronal genes and neuronal

transcriptional regulators were reported in a recent study to be

affected by the exercise of the genus Drosophila (Watanabe and

Riddle, 2021). Therefore, in the future, more studies will apply

Drosophila exercise models to explore neurological disorders.

Drosophila exercise models have made remarkable

achievements in this decade or so, but there are still some

limitations awaiting the development of future methods and

tools. Specifically, Drosophila exercise models are currently

used primarily to study endurance exercise, but human

exercise types also include exercises to improve strength,

flexibility, and balance. In addition to increasing endurance,

human exercise needs often include improving muscle

strength or muscle tone, altering body composition, or

increasing flexibility. Therefore, new methods and tools are

needed to match Drosophila exercise to human exercise

models. Although the Drosophila model has a limited

redundancy of conserved pathways, it is still of great value for

such studies. Therefore, it is important to further investigate the

molecular mechanisms behind the physiological changes in

exercise and aging. Furthermore, elucidating the role of

TABLE 1 Exercise-related genes in Drosophila aging.

Gene Participation path Main findings Reference

spargel The PGC-1α Drosophila homolog spargel is required for adequate motor
capacity in Drosophila

Tinkerhess et al. (2012)

Sestrins TORC-1/TORC-2; AKT Sestrins are necessary and sufficient for beneficial adaptations of muscle
function and metabolism in Drosophila and mice

Kim et al., (2020), Sujkowski and
Wessells, (2021)

Pink1 Pink1-expression of the mitochondrial proteome in Drosophila generally
decreases in response to exercise

Ebanks et al. (2021)

γ-oryzanol Combined use of γ-oryzanol and exercise enhances exercise capacity and
viability in Drosophila without increasing cellular oxidative state

Kang et al. (2013)

Nmnat NAD+/dSir2/FOXO Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying
molecular mechanism by which endurance exercise and cardiac Nmnat
overexpression protect Drosophila from lipotoxic cardiomyopathy

Grotewiel et al. (2005)

salt salt/TOR/oxidative stress;
dFOXO/PGC-1α

Endurance exercise improved the climbing capacity and survival in salt-
overexpression Drosophila

Harris et al., (2020), Wen et al., (2020)

ATXN2 Q117 Endurance exercise has a significant positive effect on SCA2 (type of
spinocerebellar ataxia) in Drosophila

Sujkowski et al. (2022)

dSir2 dSir2/Foxo/SOD; dSir2/
Foxo/bmm

The activation of cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm pathways may
be two important molecular mechanisms through which exercise works against
heart aging in Drosophila

Cattadori et al. (2018)

CG9940 NAD (+) Both normal expression and overexpression of CG9940 positively affected
cardiac function, activity, and lifespan adaptation to exercise in aging
Drosophila

Wen et al., (2016), Lavie et al., (2015)

dFatp Endurance exercise can reverse increased lipid storage in the myocardium and
deleterious cardiac function conferred by dFatp mutations

Schrauwen-Hinderling et al. (2010)
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exercise-related genes in Drosophila aging would provide

evidence for a potential role of their human counterparts in

aging (eg Table 1). Drosophila exercise models could provide

therapeutic targets for exercise treatment of aging-related

diseases. Of course these exercise-related genes need to be

validated by extensive experiments before they hold promise

as new therapeutic approaches.
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