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Abstract

Chemical-genetics (C-G) experiments can be used to identify interactions between inhibi-

tory compounds and bacterial genes, potentially revealing the targets of drugs, or other

functionally interacting genes and pathways. C-G experiments involve constructing a library

of hypomorphic strains with essential genes that can be knocked-down, treating it with an

inhibitory compound, and using high-throughput sequencing to quantify changes in relative

abundance of individual mutants. The hypothesis is that, if the target of a drug or other

genes in the same pathway are present in the library, such genes will display an excessive

fitness defect due to the synergy between the dual stresses of protein depletion and antibi-

otic exposure. While assays at a single drug concentration are susceptible to noise and can

yield false-positive interactions, improved detection can be achieved by requiring that the

synergy between gene and drug be concentration-dependent. We present a novel statistical

method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The

approach is designed to capture the dependence of the abundance of each gene in the

hypomorph library on increasing concentrations of drug through slope coefficients. To deter-

mine which genes represent candidate interactions, CGA-LMM uses a conservative popula-

tion-based approach in which genes with negative slopes are considered significant only if

they are outliers with respect to the rest of the population (assuming that most genes in the

library do not interact with a given inhibitor). We applied the method to analyze 3 indepen-

dent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercu-

lar activity, and we identify known target genes or expected interactions for 7 out of 9 drugs

where relevant interacting genes are known.
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Introduction

Chemical-genetic interactions (CGIs) represent cases where the sensitivity of a bacterial organ-

ism to an inhibitory compound is affected by changes in the expression level (either knock-

down or over-expression) of a gene [1]. Such interactions could implicate the gene as a poten-

tial target of the inhibitor, or possibly that it is in the same pathway, or involved in a function-

ally interacting pathway. Hence, chemical-genetic experiments can be useful for antibiotic

drug discovery, such as by profiling whole-cell growth inhibitors in high-throughput screens

against a library of mutant strains (hypomorphs) with depletion of a subset of essential genes.

Hypomorph libraries can be generated by a variety of technologies, ranging from promoter

replacement (e.g. Tet-inducible promoters) [2], to ClpXP-mediated proteolytic degradation

system (tagging genes with C-terminal DAS peptides) [3, 4], to CRISPRi (transcriptional

blockade) [5]. Typically, a set of essential genes is selected, and each is knocked down individu-

ally in a separate clone, producing growth impairment (possibly to different extents). Then the

culture is treated with an inhibitor (typically at a sub-MIC level). By utilizing unique nucleo-

tide barcodes in the sequence constructs, the relative abundances of the mutants in the library

can be profiled efficiently using next-generation sequencing by PCR-amplification of the bar-

codes. While the library as a whole experiences growth impairment due to the presence of the

antibiotic, mutants with reduced levels of protein products of genes that interact with the com-

pound, such as the target of the drug, could exhibit excess depletion, and such gene-drug pairs

are identified as CGIs. This effect results from the synergy between the fitness effects due to

the drug pressure and depletion of an essential gene which happens to be involved in the

mechanism of action of the drug. For example, if the expression level of the target of a drug is

depleted, then that clone might become hyper-susceptible to exposure to that drug, relative to

the rest of the population. Depletion of other genes, such as those in the same pathway, or

genes involved in drug resistance can also exhibit synergies with antibiotic treatment.

Analysis of chemical-genetics (C-G) data is similar to–but distinct from–methods for quan-

tifying genetic (gene-gene) interactions (e.g. epistasis, super-additivity of fitness effects [6, 7])

and pharmacological (drug-drug) interactions (e.g. Chou-Tulaly Combination Index, [8]).

The statistical analysis of a C-G experiment is aimed at identifying the gene(s) in the library

that interact with a drug by looking for those with excess depletion (or enrichment) of barcode

counts compared to the rest of the population. Quantifying statistical significance is important,

because the genes can always be ranked by their apparent level of depletion, and there will

always be a "most-depleted" gene, but this does not necessarily mean it is genuine functional

interaction; they must be distinguished from random variations caused by spurious fluctua-

tions or errors in estimation of the gene abundances in the library. The challenge of analyzing

C-G data is that there are many sources of noise in the data (which takes the form of barcode

counts from sequencing). The original abundances in the library are only approximately

known, and the growth under different treatments and DNA extraction/preparation for

sequencing are stochastic, resulting in variability due to both biological reasons and sampling

error. Although each mutant might experience a certain level of growth impairment due to

depletion of an essential gene, as well as drug treatment, there is inevitably going to be some

experimental variance in apparent gene abundances between drug concentrations. Finally, not

all genes might be represented in the library at equivalent levels a priori, and genes that are

low-abundance to begin with (or as growth-impairment increases) become more difficult to

reliably estimate as counts approach zero.

In previous work, Johnson et al [9] described an approach to statistical analysis of C-G data

based on a generalized linear model (GLM), called ConCensusGLM (part of the PROSPECT

methodology). Specifically, they fit gene abundances (normalized barcode counts) to a linear
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model (using the Negative Binomial distribution with a log-link function as a likelihood), with

drugs (at different concentrations) as covariates. The GLM approach captures the dependence

of gene abundances on drug treatments through coefficients in the linear model. To determine

which interactions are statistically significant, the authors applied a Wald test, employing

strain-wise dispersion estimates (from growth in DMSO controls). A Wald test evaluates

whether a coefficient in the model is significantly different from zero [10]. However, the linear

model in the ConCensusGLM pipeline treats each concentration independently (equivalent

to single-point assays). The only dependence on drug concentration is between individual

concentrations and the no-drug control (effectively estimating log-fold-changes), and thus it

does not take advantage of the expected relationship between different doses, potentially mak-

ing it more susceptible to random fluctuations. Furthermore, treating each concentration sepa-

rately unnecessarily inflates the number of tests and therefore reduces the power of the

analysis.

In this paper, we propose a new approach, called CGA-LMM, in which drug concentration

is treated as a quantitative variable (covariate) in the linear model. The effects of drug concen-

tration on a gene’s abundance is captured by a single coefficient (a slope) that incorporates

information across multiple concentrations. Genes that interact with an inhibitor (directly or

indirectly) are expected to show a synergistic relationship between drug concentration and

protein depletion. At low drug concentrations, their abundance is expected to be similar to the

rest of the population. However, as the drug concentration increases, the abundance of these

mutants should begin to decrease, particularly at concentrations approaching the MIC. Our

approach to assessing interactions is to calculate a slope of each gene’s abundance with respect

to the drug concentration, integrating information across a range of concentrations and cap-

turing systematic changes in the counts. This approach is expected to be more robust because

it depends on trends observed over multiple conditions, and hence is less sensitive to random

fluctuations of gene abundance at any individual concentration. Because depletion of different

genes might cause different degrees of cellular growth impairment [4, 11], it is hard to predict

the concentration at which the depletion will occur, and not all genes follow a perfect inhibi-

tion curve that is typical of an ideal dose-response relationship. However, if the abundance

drops off at some point within the range of concentrations evaluated, the overall decrease in

abundance would still exhibit a negative slope, thus allowing this approach to identify such

cases.

Our CGA-LMM approach is implemented as a linear mixed model (LMM), where the

fixed effects represent the average trend in the population, and the slope of each gene is repre-

sented as a conditional random effect (conditioned on drug concentration), so each gene can

have its own unique slope. The aim of the approach is to identify genes that exhibit negative

slopes that are significantly different than the rest of the population. We do this by using out-

lier analysis to test for genes with slopes that are outliers relative to the distribution of slopes

over all genes in the library. This differs from testing whether a slope is statistically different

from zero. The rationale behind using an outlier analysis is that there are multiple sources of

noise in C-G experiments that are difficult to model explicitly, resulting in excess dispersion

in the distribution of slopes. Failing to account for these sources of dispersion is likely to pro-

duce many false positives. Instead, we take an empirical view that each individual gene might

have a slightly positive or negative slope. We determine this variance in the random effects

post-hoc and use it to identify genuine CGIs, which must stand out from the rest of the popu-

lation as outliers in the context of all the other genes. This is a more conservative approach

that produces a shorter list of candidate interactions, but as we show, enriches for known

interacting genes.
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Methods

Linear mixed model for chemical-genetic interactions

We use a linear mixed model (LMM) to capture the relationship between gene abundances

and drug concentrations (using log-transformations of both). Mixed-effect models (with fixed

and random effects) are useful when there are subgroups of data that might differ from a gen-

eral trend in an idiosyncratic way. In analysis of chemical-genetics data, we desire to use linear

regression to capture the (fixed) effect of how abundance of knock-down mutants in the

library is affected by increasing drug concentrations. However, depletion mutants for each

gene might respond in a different way to increasing concentrations of the drug, which is key to

distinguishing interactors vs. non-interactors. The random effects in the LMM capture the

gene-specific abundances (intercepts) and concentration-dependence (slopes), which are

themselves (as coefficients) assumed to be drawn from a Normal distribution of unknown var-

iance. The linear mixed model is expressed as:

Y ¼ XBþ ZU þ e

where, Y is the vector of the observed gene relative abundances (normalized barcode counts),

and the vector of errors e � Nð0; s2
errÞ are assumed to be normally-distributed with some vari-

ance s2
err . Given n observations, X is a n×2 design matrix, with a column encoding the log2 of

the concentration and a constant (1) representing the intercept. For control conditions (i.e.,

where no drug is used), a value two times lower than the minimum concentration is used, so

that it appears as the lowest concentration value in the regression. The coefficients B are the

fixed effects which will be fit in the model, representing an average slope and intercept for a

given drug treatment (independent of gene). The ZU term represents random effects for cap-

turing the gene-specific effects. Z is a n×2gmatrix of covariates with g binary columns that

encodes the information about which gene and concentration each observation represents. U
is a 2g×1 matrix of random effects, including a slope and intercept for each gene. The random

effects for each gene are assumed to be drawn from a higher-level multivariate Normal distri-

bution, U~MVN(0, S).

The unconditional variance for the fixed-effects part of the model, Y = XB (independent of

random effects), can be decomposed into the overall variance of the model (residuals, e = Y
−XB−ZU, conditioned on both fixed and random effects), plus the variance of the predicted

offsets due to the random effects (assuming they are uncorrelated):

d ¼ Y � XB ¼ eþ ZU

varðdÞ ¼ s2

d ¼ varðeÞ þ varðZUÞ ¼ s
2

err þ s
2

re

The term for the variance of the random effects for each observation can be related to the vari-

ance S in the multivariate Normal distribution for the random effects vector U as

s2

d ¼ s
2

err þ ZΣZ’

where the ZSZ’ term projects the variance of the relevant random effects onto the individual

observations based on their covariates. This can be rewritten as

s2

d ¼ s
2

errðIn þ ZDZ’Þ

whereD ¼ 1

s2
err
Σ is a scaled covariance matrix among the random effects.

Using these definitions, the model can thus be fit with respect to the fixed and random

effects by considering that E[Y] = XB and the varðY � XBÞ ¼ s2
errH whereH = In+ZDZ0. If
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the covariances of the gene-specific parameters S, and thusD andH, were known, the maxi-

mum likelihood estimates of B and U could be estimated as [12]:

B̂ ¼ ðX0H � 1XÞ� 1ðX0H� 1YÞ

Û ¼ DZ0H� 1ðY � XB̂Þ

Instead, we use restricted maximum likelihood (REML) to solve the system by an iterative pro-

cedure [13], as implemented in the lmer function in the lme4 package in R. The resulting

model then has estimates of the slope coefficients for each gene (random effects), along with

variances. In the formula used to specify the model to lmer, Y ~ 1+conc+(1|gene)+(0+conc|

gene), the fitting of the gene-dependent random effect parameters (intercepts and slopes) is

intentionally decoupled, because we expect that the gene-specific interaction of the gene with

the drug (slope) should be uncorrelated with the overall abundance of the gene in the library

(intercept) [14], and this decoupling has been shown to produce more reliable estimates of

random effect parameters when they are uncorrelated [15].

We are primarily interested in genes with negative slopes (i.e. genes whose depletion

mutants decrease in relative abundance with increasing concentrations of the drug), as this

synergy represents sensitization and hence potential interactions with the drug. However,

genes with positive slopes could be informative too (i.e. genes where depletion confers a

growth advantage, and hence selection, in the presence of the drug). To determine which

genes most likely to represent C-G interactions (positive or negative) for a given drug, we com-

pare it to the rest of the population to look for outliers. This differs from a Wald test [10],

which would identify genes whose slope is statistically different from zero. Due to the multiple

unaccounted-for sources of noise in C-G experiments, there are various reasons why the slopes

of some genes might be different from zero, resulting in dispersion in the distribution of

slopes. A robust model should account for such variability in order to avoid generating false

positives. To address this, we take an empirical view that the average gene (which is assumed

not to interact with the drug) might have a slightly positive or negative slope, and we deter-

mine this variance post-hoc. True interactors (CGIs) must stand out from the spread of the

population as outliers. Thus, our test for statistical significance takes advantage of the distribu-

tion of random effects to evaluate which genes have slopes that are outliers. In contrast to a test

which evaluates the significance of each coefficient in isolation, our method identifies genes as

significant only in the context of all the other genes.

Outlier slopes were determined using a robust version of Z-scores for the random effect

coefficients, called Zrobust, and look for outliers with respect to the population. Conceptually,

we want to model the population of slopes as a sample from a Normal distribution, with a cen-

tral tendency (mean) and dispersion (variance), and use Z-scores to determine which genes

have the most extreme values. However, outliers could throw off estimates of these sufficient

statistics. Zrobust (also called Modified-Z; [16]) is similar to a Z-score for samples from a Nor-

mal distribution, except it substitutes the median for the mean, and mean absolute deviation

(MAD) for the standard deviation, which are better estimates of the sufficient statistics that are

less sensitive to the influence of outliers. The Zrobust score for gene i is defined as:

Zrobusti ¼
0:6745 � ðsi � medðsÞÞ
medianðjsi � medðsÞjÞ

where si is the slope of the gene (concentration-dependent random effect) estimated by the lin-

ear mixed model, and med(s) is the median of the population of slopes over all genes in the

hypomorph library. The factor of 0.6745 is included to adjust med(s)±Zrobust to correspond
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approximately to the 25% and 75% quartiles (interquartile range). Iglewicz and Hoaglin sug-

gest using |Zrobust|>3.5 as a cutoff to define outliers, which we adopt to identify genes in a

hypomorph library that have the strongest evidence for C-G interactions with a given drug.

Hypomorph library preparation and sequencing. To evaluate our statistical method, we

generated a hypomorph library of ClpXP-mediated depletion mutants for 162 essential genes

inM. tuberculosisH37Rv by allelic replacement, where the native copy of each gene was

deleted, and a C-terminal DAS-tagged copy was integrated into the L5 phage attachment site

in the M. tuberculosis genome, as described in [17]. The sspB gene, needed for recognition of

DAS-tagged proteins and targeting for proteolytic degradation through the native caseinolytic

ClpXP protease, was also integrated at the L5 site and controlled by a “reverse” Tetracycline

repressor that represses expression in the presence of anhydrotetracycline (ATC) [18].

Removal of ATC, allowed expression of sspB, which lead to the degradation of target protein

through ClpXP. To achieve non-lethal doses of protein degradation, the levels of sspB expres-

sion were regulated through promotor variations [9, 17, 19, 20].

Single strain cultures were grown to mid-log phase for 7 days in Middlebrook 7H9 medium

supplemented with 10% ADN, 0.5% glycerol, 0.05% Tween80, 25μg/ml streptomycin and

500ng/ml ATC at 37C with 5% CO2. ATC was replenished on 4th day of preculture.

For drug-exposure experiments, equal amounts of strains were combined based on optical

density. The combined culture was washed twice with Middlebrook 7H9 medium supple-

mented with 10% ADN, 0.5% glycerol, 0.05% Tween80 to remove ATC and diluted to a start-

ing OD of 0.01 for inoculation of 48-well flower plates (M2P labs, catalog number MTP-

48-OFF) with 1ml culture volume per well. Wells were sealed with gas-permeable foil. The

mixed culture was exposed to drug for 14 days, incubated at 37˚C and 5% CO2. Concentra-

tions tested for each drug ranged from 0.125x to 1.0x MIC, following 2-fold dilutions, plus a

no drug control, with 6 replicates each. MICs for the six drugs were: levofloxacin = 0.18 μg/ml,

moxifloxacin = 0.14 μg/ml, isoniazid = 0.022 μg/ml, fidaxomycin = 0.29 μg/ml,

bedaquiline = 0.58 μl/ml, sulfamethoxazole = 6.0 μg/ml. Compounds were dispensed ran-

domly, and wells were normalized, so that each would contain 1% DMSO.

For DNA extraction 100μl of each well was heat inactivated at 80C for 2h. 300x resuspended

lysate was combined with equal volume of 25% DMSO. For barcode amplification Q5 hot start

polymerase (NEB) was used. Per 20μl PCR reaction 4ul Q5-buffer, 0.5μl dNTPs (10mM each),

0.1μl Q5 hot start polymerase, 2μl of per primer are combined with 8ul lysate. The primers

contain sequences for Illumina sequencing as well as additional barcodes to encode plate and

well. PCR reaction started with 2 min 98˚C, then 22 cycles of 98˚C for 10 sec, 50˚C for 20 sec,

72˚C for 20 sec, followed by final extension for 2 min at 72˚C.

10 μl PCR reaction were combined to a total volume of 2.2ml. To remove PCR reagents,

AMPureXP magnetic beads from Beckman Coulter were used following their protocol. To fur-

ther clean the amplicons, Pippin gel extraction technology (Sage science) was used to excise

DNA fragments with a length of 200bp. The PCR products were sequenced using Hiseq4000

with single read 50 with 20% PhiX, resulting in a median of 505,000 reads per individual sam-

ple (replicate), after demultiplexing. There were 6 replicates for each drug concentration.

Read-counts were determined by extracting barcodes from the sequencing reads and tabulat-

ing counts for each gene in each sample, according to the nucleotide barcode assignments

designed into the adapter sequences above. Plate id barcodes (8 bp) were extracted from nucle-

otides 1 through 8 of read 1 (allowing up to 1 mismatch), strain barcodes (10 bp) in nucleotides

25 through 35 of read 1. Well id barcodes (7 bp) were encoded in read 2, which was used to

demultiplex the samples in each lane.

Copper growth inhibition screen. A separate pooled hypomorph library with mutants of

339 essential genes was generated as described above. This hypomorph library was constructed
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with sspB expressed from a weakened Ptet promoter (P766) containing an inserted tetO4C5G

sequence between the -10 and -35 regions. As described above, the sspB gene integrated at the

L5 phage site in the H37Rv genome also carries the reverse TetR38 repressor, allowing for lim-

ited expression of sspB (and thus moderate levels of target degradation) in the absence of anhy-

drotetracycline (see [3], for a review). The sequence of the modified P766 promoter is available

upon request. The library was washed twice in PBS supplemented with 0.1% Tyloxapol and

resuspended in minimal medium supplemented with 0.1% Tyloxapol and 0.1% glycerol, 0.1%

acetate, or 0.1% cholesterol at OD600 of 0.05 for inoculation to 96-well plates. Minimal

medium was made as previously described but with ferric chloride (100 μM) replacing ferric

ammonium citrate [21]. 5 replicates were prepared for each condition. Copper sulfate solution

was added to the top row of wells at 1–8 μM in 2-fold serial dilutions below the MIC of 16 μM

we measured. A no-copper growth condition was also included for each carbon source. Librar-

ies were grown statically for 2 weeks at 37 degrees. Upon completion, 96-well plates were heat-

inactivated at 85 degrees for 2 hours. Barcodes were PCR amplified as described previously

[9]. Individual libraries were mixed with 1:1 20% DMSO and heated for 10 minutes at 98

degrees prior to multiplex PCR reaction. Amplified barcodes were purified using SPRI-based

purification methods and sequenced using an Illumina NextSeq 550 with single-ended reads

for 75 cycles and 1% PhiX as a control. Each replicate consisted of approximately 1 million

reads. Sequencing reads were processed using Bowtie software package, with index mismatch

set to 2 bases and barcode mismatch set to 1 base, and barcodes for each gene were tabulated.

Data pre-processing. After the sequencing data is obtained, the reads are de-multiplexed

and formatted into a matrix (spreadsheet) Cg,s containing counts for each gene of the hypo-

morph library in each sample. The metadata for each sample includes drug, concentration,

and possibly other data that could be used as covariates (number of days of incubation, carbon

source in medium, sspB promoter strength, etc.). Genes or samples with less than an average

of 100 barcode counts per observation were filtered out, as well as genes with>10% relative

abundance at any concentration. Finally, the counts are normalized to produce relative abun-

dances by dividing each the observed count for each individual barcode by the total counts for

that sample. This step is done to adjust for the different numbers of reads sequenced for each

sample, represented as another matrix Ag,s, where the values range between 0 and 1 (e.g. frac-

tions of the population). The matrix of abundances is melted into a column matrix of all rela-

tive abundances, Yn×1, (where n = g×s), along with drug treatment and log2-concentration for

each observation in a parallel matrix of covariates, Z, which is used in the statistical modeling.

Results

Analysis of chemical-genomic interactions in a previous screen of anM.

tuberculosis hypomorph library

We evaluated our CGA-LMM model on chemical-genetics analysis data previously published

by [9] (downloaded from www.chemicalgenomicsoftb.com). (A summary of all datasets ana-

lyzed in this paper is provided in S1 Table, with library source, number of genes, concentration

ranges for each drug, MICs, total barcode counts, etc.) This dataset includes the raw read

counts of a hypomorph library (library 1) consisting of 152 ClpXP-mediated knock-down

mutants of essential genes in Mtb treated with the following inhibitors over a range of concen-

trations–rifampin, trimethoprim, methotrexate, and BRD-4592. These anti-tubercular drugs

are known to inhibit the pathways of translation, folate synthesis (trimethoprim and metho-

trexate), and tryptophan synthesis, respectively. Johnson et. al [9] analyzed this dataset using a

generalized linear model approach called ConCensusGLM, which compared the mutant abun-

dances at each concentration independently to the no-drug control. They observed that
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relevant target genes were significantly depleted for each drug. However, ConCensusGLM

labeled almost all of the genes (�137 out of 152) in the hypomorph library as significant inter-

actions (Table 1). We applied our LMM-based approach to this dataset and found similar

results, yet our solution is more conservative in terms of identifying only the top 4 interacting

genes as outliers for each drug (see slopes and Zrobust scores for all genes and drugs in S2

Table). For comparison, we also performed simple linear regressions of the relative abundance

against log-concentration for each gene and tested the significance of the slope coefficient, in

the sense of being different from 0, based on the t-statistic. As shown in Table 1 (and in S2

Table), many genes (up to 64 out of 152) have significantly negative slopes in this sense for

each drug, but the outlier analysis focuses attention on only a small subset of genes with the

most extreme slopes that stand out from the population.

Trimethoprim (TMP) inhibits dfrA (dihydrofolate reductase, DHFR) in the folate synthesis

pathway. CGA-LMM analysis of this dataset identified 4 genes with outlier negative slopes that

potentially interact with TMP. In contrast, ConCensusGLM reported many more interacting

genes (137 out of 152). The top-ranked gene with most significant negative slope was lipA
(Table 2), whose relevance to trimethoprim sensitivity is unknown. Although dfrA did not

exhibit a negative slope in this experiment, the gene with the 2nd most negative slope (Zrobust

= -9.5) was trpG (Fig 1), consistent with its role at the branch-point of the folate pathway (see

Discussion). This interaction was also observed by Johnson et. al [9]. (Gene abundance plots

and slope histograms for all drugs analyzed in this paper are provided in S1 File.)

Methotrexate (MTX) also targets dfrA in the folate pathway. CGA-LMM analysis again

yielded a much smaller number of significant interactions for MTX compared to ConCen-

susGLM (4 genes out of 152 in the hypomorph library, versus 145 significant genes identified

by ConCensusGLM). trpG was ranked as the top gene with the most negative slope (Zrobust =

-6.0).

Rifampin (RMP) binds to and inhibits rpoB, the beta-subunit of the RNA polymerase.

CGA-LMM analysis identified 4 genes that met the significance cutoff for outliers with nega-

tive slopes (Zrobust<-3.5). In contrast, ConCensusGLM identified 148 genes out of 152 as sig-

nificantly interacting with RMP (Table 1). rpoB is tied with 49 genes with a P-value of 0.0,

which masks the significance among so many alternative possible interactions. (However, by

breaking ties based on mean log-fold-change, rpoB has the 3rd most negative LFC.) The gene

that shows the most significant depletion in our concentration-dependent analysis was dapF

Table 1. Summary of significantly interacting genes from the CGA-LMM model, simple linear regression, and the ConCensusGLM model (Johnson et al, 2019).

CGA-LMM Linear Regression ConCensus GLM

Drug Expected

target

Number of

significant genes

(Zrobust < -3.5)

Rank of expected

target (out of 152)

Number of genes with negative

slope significantly different than

0 † (out of 152)

Number

of significant genes�� (out

of 152)

Rank of expected

target (out of 152)

Trimethoprim trpG� 4 #2 30 138 #15

Methotrexate trpG� 4 #1 15 145 #3††

Rifampin rpoB 4 #14 64 148 #3†††

BRD-4592 trpA 4 (not in hypomorph

library)

37 152 ————

�TMP and MTX bind to and inhibit DHFR. However, the Johnson et al (2019) study showed that trpG has a chemical-genetic interaction with antifolate drugs.

† test of t-statistic, adjusted P-value<0.05 using Benjamini-Hochberg procedure for multiple test correction

��significance defined as minimum p-value < 1e-10 over same concentrations as analyzed for CGA-LMM, and mean log-fold-change<0

†† tied with 6 genes with Pvalue = 0; trpG is ranked 3rd based on mean log-fold-change

††† tied with 49 genes with Pvalue = 0; rpoB is ranked 3rd based on mean log-fold-change

https://doi.org/10.1371/journal.pone.0257911.t001
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(Zrobust = -6.4), which is involved in diaminopimelate synthesis (Table 2). While rpoB was

not categorized as an outlier (Zrobust = -1.7) in the CGA-LMM analysis of this dataset, it has a

negative slope that is statistically significant (in the sense of being different from 0 based on

the t-statistic of the regression coefficient in a linear model, adjusted p-value = 1.3e-20) and is

ranked the 14th most-depleted gene out of 152 genes in the library (Fig 2). Thus, although the

rpoBmutant shows depletion as RMP concentration increases, the effect was not as extreme as

for several other genes. Johnson et al. [9] also has a similar observation, in terms of rpoB being

depleted in presence of rifampin, but the depletion was muted compared to several other

genes.

The target of BRD-4592 is trpA, required for tryptophan biosynthesis [22]. However, this

gene was not present in the dataset available for the hypomorph library. The CGA-LMM

model yielded 4 significant interactions for this drug (with Zrobust<-3.5): desA1, ftsK,

Rv3267, and dapF (Table 2), though there is no known connection of any of these to exposure

to BRD-4592. In contrast, ConCensusGLM determined that all 152 genes had significant inter-

actions with BRD-4592 (Table 1). Among genes in the tryptophan synthesis pathway, only

trpG (which also has anthranilate synthase activity) is present in the hypomorph library, but it

did not have an outlying slope (Zrobust = -0.39).

CGA-LMM identifies expected interactions for anti-tubercular drugs with

known mechanisms

To evaluate our statistical method on additional antibiotics, we constructed a new hypomorph

library consisting of 162 essential genes inM. tuberculosisH37Rv and profiled it under expo-

sure to 6 anti-tubercular drugs with well-understood mechanisms of action–levofloxacin,

Table 2. Genes interacting with four drugs in the Johnson et al (2019) dataset (with outlier negative slope in CGA-LMM model and Zrobust<-3.5).

drug Significantly interacting genes (slope<0, Zrobust<-3.5) (rank # out of 152 genes in hypomorph library) Zrobust

trimethoprim #1: lipA—lipoyl transferase -9.6

#2: trpG—aminodeoxychroismate synthase -9.5

#3: desA1—fatty acid desaturase -4.4

#4: nusA–transcription termination/antiterm. protein -3.8

methotrexate #1: trpG—aminodeoxychroismate synthase -6.0

#2: gyrA—DNA gyrase -4.8

#3: ftsK—ATPase involved in cell division -4.2

#4: gca—GDP-mannose dehydratase -3.0

rifampin #1: dapF—diaminopimelate epimerase -6.4

#2: Rv3267 -6.1

#3: desA1—fatty acid desaturase -4.3

#4: acn—aconitase -3.9

. . . —

#14: rpoB—RNA polymerase beta subunit -1.7 (n.s)

BRD-4592 #1: desA1—fatty acid desaturase -5.0

#2: ftsK—ATPase involved in cell division -4.3

#3: Rv3267 -4.1

#4: dapF—diaminopimelate epimerase -3.9

Out of a library of 155 genes, there were 4 genes with outlier negative slopes for each drug. Genes relevant to the mechanism of resistance are bold-faced. Note that rpoB
was ranked highly for rifampin, though it did not exceed the Zrobust cutoff (n.s. = not significant). Also, the expected target of BRD-4592, trpA, was not represented in

the hypomorph library.

https://doi.org/10.1371/journal.pone.0257911.t002
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moxifloxacin, isoniazid, fidaxomicin, sulfamethoxazole, and bedaquiline–over a range of con-

centrations. The concentrations tested spanned a range of 0.125–1.0 times the MIC (minimum

inhibitory concentration) in 2-fold dilutions (MICs for the six drugs are listed in Methods).

Table 3 lists the outlier interactions (with Zrobust<-3.5) identified by CGA-LMM for the 6

Fig 1. Analysis of data for treatment of anM. tuberculosis hypomorph library with trimethoprim. (a) Plot of relative abundances of knock-down mutants

for all 162 genes in the library, with the known interacting gene trpG highlighted in red, showing depletion as concentration increases. The Y-axis represents

the change in percent abundance of each gene, which is calculated by subtracting the mean relative abundance for each gene at 0 μM, so they all fan out from 0

in the superposition. (b) Plot of regression lines for all the genes based on slopes as random-effect coefficients in the linear mixed-model, fit to the abundance

data in (a). (c) Plot of relative abundance data points and regression line fit specifically for trpG, as an illustration of the variability of the data among

concentrations and replicates. (d) Histogram of the slope coefficients for all genes in the library, with trpG highlighted as an outlier (most negative slope). The

dashed red lines indicate the outlier cutoffs defined by Zrobust = ±3.5.

https://doi.org/10.1371/journal.pone.0257911.g001
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drugs, and Table 4 summarizes the known targets and significant interactions for the six drugs

used in our experiment (with the hypomorph library containing knock-down mutants for 162

genes). Raw barcode counts are provided in S3 Table; CGA-LMM results (with estimated

slopes and robust Z scores) for all gene-drug interactions are provided in S4 Table.

For levofloxacin, 9 out of 162 genes are identified with outlier negative slopes using

CGA-LMM (even though 61 genes had negative slopes that were significantly different from

Fig 2. Analysis of data for treatment of anM. tuberculosis hypomorph library with rifampin. (a) Plot of relative abundances of knock-down mutants for all

162 genes in the library, with the known interacting gene rpoB highlighted in red, showing depletion. The Y-axis represents the change in percent abundance of

each gene, as in Fig 1. (b) Plot of regression lines for all the genes based on slopes as random-effect coefficients in the linear mixed-model. (c) Plot of relative

abundance data points and regression line fit specifically for rpoB. (d) Histogram of the slope coefficients for all genes in the library, with rpoB highlighted (with

negative slope, but not an outlier). The dashed red lines indicate the outlier cutoffs defined by Zrobust = ±3.5.

https://doi.org/10.1371/journal.pone.0257911.g002
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0). gyrA (DNA gyrase subunit A, the expected target of fluoroquinolones) is the 4th ranked

gene, with a Zrobust of -4.6. The depletion effect with increasing inhibitor concentration is

shown in Fig 3a, reflecting the chemical-genetic interaction between levofloxacin and gyrA.

Moxifloxacin, another fluoroquinolone, has gyrA ranked 8th among 10 genes with showing sig-

nificant depletion (out of 162), with a Zrobust of -5.5. The top-ranked gene showing the most

significant depletion for both levofloxacin and moxifloxacin was asnB (asparagine synthetase)

(Table 3), whose relationship to fluoroquinolone resistance is unknown.

Table 3. Interacting genes (with negative outlier slopes, Zrobust<-3.5) for six anti-tubercular drugs, out of a hypomorph library with 162 genes, ranked in order of

most negative slope at the top.

Levofloxacin Moxifloxacin Isoniazid Fidaxomycin Sulfameth-oxazole Bedaquiline

asnB
thyA
dapB
gyrA�
iscS
embC
kasB
dnaN
Rv1836c

asnB
thyA
Rv1836c
dapB
kasB
iscS
embC
gyrA�
dnaN
moxR1

ino1�
thyA
asnB
iscS
dapB
menH
kasB�
nusA
fadD30
mmpL2

thyA
asnB
dapB
kasB
Rv1836c
rpoB�
metA

fas
desA1
iscS
ino1
dapB
menH
thyA�
kasB
ilvC
mmpl2
Rv1836c
fadD30
rpoB
embC
aspB
Rv0260c
aspS
Rv0289
gyrA
nusA

Rv1836c
Rv3267
dnaN
pstP

# of candidate interactions (outliers) by CGA-LMM 9 10 9 7 20 4

# of genes with slope significantly <0 by t-test in linear model 61 22 9 43 33 76

Genes with slopes not significantly different from zero (Padj�0.05) have been removed. Genes related to the mechanism of action are marked with an asterisk.

https://doi.org/10.1371/journal.pone.0257911.t003

Table 4. Summary of interactions of relevant genes for various drugs in hypomorph library with 162 essential genes.

drug # genes with significant negative interactions (Zrobust<-3.5,

Padj<0.05)

known target of

drug

genes related to drug mechanism of action #rank

(Zrobust)

levofloxacin 9 gyrA #4: gyrA (-4.6)—DNA gyrase

moxifloxacin 10 gyrA #8: gyrA (-5.5)—DNA gyrase

isoniazid 9 (inhA)� #2: ino1 (-19.6)—inositol-3-phosphate synthase

#11: kasB (-4.4)—ketoacyl synthase

fidaxomicin 7 rpoB #9: rpoB (-5.0)—RNA polymerase beta subunit

sulfamethoxazole 20 (folP1)� #7: thyA (-11.1)–thymidylate synthase

bedaquiline 4 (atpE)� #9: atpB (-2.8†)—subunit of ATP synthase

#13: atpH (-2.2†)—subunit of ATP synthase

#23: atpF (-1.3†)—subunit of ATP synthase

#38: atpG (-0.8†)—subunit of ATP synthase

† does not exceed the outlier cutoff of Zrobust<-3.5, but still has a negative slope showing synergy with the drug

� gene not represented in hypomorph library

https://doi.org/10.1371/journal.pone.0257911.t004
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Isoniazid (INH) targets inhA (fatty acid enoyl-ACP reductase), which is in the FAS II path-

way for synthesis of long-chain fatty acids and ultimately mycolic acids [23]. INH is a pro-

drug that must first be activated to a radical by the KatG catalase, which then forms an adduct

with NADH, which binds to and inhibits inhA. Thus, one might expect that depletion of inhA
would be synergistic with INH treatment (causing barcode counts to decrease), and depletion

of katG would be antagonistic (causing barcode counts to increase, representing enhanced sur-

vival due to depletion of an activator). However, neither inhA nor katG is in the hypomorph

library. Using our CGA-LMM analysis, 9 genes are identified as interactions (Table 3), with

negative slopes that are outliers (Zrobust<-3.5) with respect to the rest of the population of

genes, after filtering out genes with slopes not significantly different from zero (Padj�0.05).

The most synergistic gene (rank #1) was ino1 (inositol-1-phosphate synthase) (Zrobust =

-31.4), which is involved in synthesis of mycothiol (see Discussion). Another interacting gene

is kasB (β-ketoacyl synthase), which is in the fatty-acid/mycolic-acid synthesis pathway (FAS

II cycle, like inhA), is ranked as #7 on the list of outliers.

Fidaxomicin binds to rpoB, the β subunit of the RNA polymerase, and inhibits transcription

initiation [24]. Using our CGA-LMM analysis, 7 genes with significant slopes met the outlier

cutoff (Zrobust<-3.5 and Padj<0.05). rpoB was ranked #6 on the list of significant interactions

Fig 3. Analysis of chemical-genetic interactions with levofloxacin (Levo), fidaxomicin (Fida), and sulfamethoxazole (Sulfa). Abundance plots for all genes in the

hypomorph library (a-c), and histograms of the distribution of slopes for each gene (d-f). gyrA, rpoB, and thyA clearly stand out as outliers for levofloxacin, fidaxomicin,

and sulfamethoxazole, respectively.

https://doi.org/10.1371/journal.pone.0257911.g003
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(Zrobust = -5.0). Fig 3B shows the concentration-dependence of rpoBmutants and the distri-

bution of the slopes of all the other genes in the library when treated with fidaxomicin.

The target of sulfamethoxazole is dihydropteroate synthase (DHPS, folP1) in the folate

pathway. folP1 which was not present in the hypomorph library. CGA-LMM analysis identi-

fied 20 genes with interactions (negative slopes that are outliers; Table 3). The two top-ranked

genes were fas (fatty-acid synthase) and desA1 (fatty-acid desaturase), but the link between

fatty-acid synthesis and sulfamethoxazole has not been established. thyA (thymidylate

synthase) is ranked #7 on the list of outliers (Zrobust = -11.1), highlighted in Fig 3C. The only

other genes of the folate pathway that are represented in the hypomorph library are trpG and

folB, which are ranked highly (#26 and #32 out of 162), but did not exhibit enough depletion

to meet the cutoff for outliers (Zrobust scores of -1.8 and -1.2). Although most of the focus of

our CGA-LMM analysis has been on negative interactions; positive interactions can sometime

also be informative. We note that, for SMX, the gene with the 2nd most positive slope was efpA
(Zrobust = +9.5), an essential efflux pump (see Discussion).

Bedaquiline (BDQ) targets genes of the ATP synthase complex (4 out of 8 subunits are in

the hypomorph library: atpB, atpF, atpG, and atpH). Specifically, BDQ binds to subunit C of

the membrane complex [25] (which is annotated as atpE in the Mtb genome). Only 4 genes

meet the significant cutoff for outliers with negative slopes. Although none of the 4 ATP

synthase genes is an outlier on its own, they all have significant negative slopes (in the sense of

being significantly different from 0, based on a t-test of coefficients in a linear regression,

adjusted p-value<0.05, except for atpF which has Padj = 0.0504; S4 Table) and are ranked

highly–#9, #13, #23, and #38 (out of 162 genes in the library) (Table 4)–indicating that knock-

down mutants of these genes are all depleted in the library as BDQ concentration increases.

This is evident from Fig 4, which shows a negative trend for these four atp genes as a group.

Fig 4. Analysis of chemical-genetic interactions with bedaquiline (BDQ). a) abundance plot for all genes in the hypomorph library, and b) histogram of the

distribution of slopes for each gene. For bedaquiline, none of the 4 ATP synthase subunits in the library was detected as an outlier, but collectively, they all exhibited

negative slopes, indicating depletion with increasing drug concentration.

https://doi.org/10.1371/journal.pone.0257911.g004
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Pathway analysis can be used to show that this systematic depletion with increasing drug con-

centration across all four ATP synthase genes is statistically unlikely. We used Gene Set

Enrichment Analysis (GSEA, [26]) to analyze the 79 functional categories of genes in the anno-

tation of the H37Rv genome (see Table 1 in [27]). Using GSEA (with algorithm parameter p
set to 0), ATP Proton-Motive Force (I.B.8) is the only significantly enriched category of genes,

with an adjusted p-value of 0.046.

Chemical-genetic interactions with copper

Copper is known to be bactericidal at high concentrations for many bacteria, and is believed to

interfere with cell-wall maintenance [28, 29], as well causing other problems, including oxida-

tive damage and mismetallation of various metalloenzymes [30]. To probe the genes inM.

tuberculosis that interact with copper, we constructed a new hypomorph library with 339

essential genes (barcode counts are provided in S5 Table). We selected the library in the pres-

ence of varying concentrations of copper sulfate (1 to 8 μM, just below the MIC of 16 μM) on

media with 3 different carbon sources–glycerol, acetate, and cholesterol. Analysis of the chemi-

cal-genetics data showed an average of 6–18 genes that interacted negatively with copper in

each of the 3 conditions (carbon sources) (S6 Table). TrxB2 (thioredoxin reductase) was the

top-ranked gene with most negative slope on all 3 carbon sources. In addition, pathway analy-

sis yielded another insight: genes in the peptidoglycan (PG) pathway are frequently enriched.

Analysis with GSEA shows that Murein Sacculus and Peptidoglycan is the only significantly

enriched pathway among all the 79 functional categories [27], with an adjusted p-value of

0.028. In particular, 6 of the 7 genes in the PG pathway that are represented in the hypomorph

library are involved in muramic acid synthesis murA,murC,murD,murE,murF, andmurX
(also known asmraY). The most striking case of the enrichment ofmur genes as negative outli-

ers is when cholesterol is used as a carbon source. In this case, CGA-LMM identified 14 genes

out of 339 that had outlier negative slopes (decreasing abundance with increasing Cu concen-

tration), including 3mur genes:murE (ranked #4),murA (#12), andmurF (#14) (Table 5). In

addition, even though they were not categorized as outliers (Zrobust scores not below the out-

lier cutoff of -3.5),murD,murC, andmurX also had negative slopes (ranked #39, #64, #71 out

of 339) that were statistically significant, in the sense of being significantly less than 0 (via a test

Table 5. Analysis of C-G interactions for copper exposure.

cholesterol acetate glycerol

# of genes evaluated in hypomorph library 339 339 339

# of genes with outlier negative slopes (Zrobust<-3.5) 14 6 18

# of Mur pathway genes with outlier negative slopes 3 0 1

rank of Mur genes #4murE #9 murA #8 murE
#12murA #10 murF #28 murA
#14murF #17 murE #47 murD
#39 murD #21 murD #53 murF
#64 murC #65 murC #135 murX
#71 murX #91 murX #175 murC

mean rank of 6 Mur genes (murACDEFX) 34.0 35.5 74.3

Adjusted P-value of Murein Sacculus and Peptidoglycan pathway by GSEA 0.020� 0.065 0.244

A hypomorph library of 339 essential genes in M. tuberculosis H37Rv was grown on 3 different carbon sources and exposed to increasing concentrations of copper. The

6 Mur genes are ranked most highly for cholesterol, including 3 genes ranked among the 14 with outlier negative slopes, and the enrichment for Mur genes when grown

on cholesterol is statistically significant based on GSEA. Genes that are bold-faced have negative slopes that are outliers (Zrobust<-3.5).

https://doi.org/10.1371/journal.pone.0257911.t005
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of the t-statistic of coefficients in a linear regression, adjusted p-value<0.05, see S6 Table),

indicating all 6mur genes show depletion. While somemur genes were ranked highly for

growth on the other two carbon source (acetate and glycerol), the effect was less pronounced

and was not significant (by GSEA analysis). Fig 5 shows the plot of the change in relative abun-

dances of the genes in the hypomorph library when treated with copper in cholesterol, with

mur genes highlighted.

Discussion

In this paper, we have shown how linear mixed models can be used in the analysis of chemi-

cal-genetic interaction data to account for concentration-dependence. The concentration-

dependence is represented by gene-specific slope coefficients (as random effects) that capture

the change in relative abundance of each mutant in the library as drug concentration increases.

Although the relative abundance for most knock-down mutants in the hypomorph library

would be expected to be unaffected by increasing concentration of drug, the premise of the

C-G experiment is that artificial depletion of essential genes that interact with a drug, would be

expected to exhibit a negative synergy with the drug, analogous to drug-drug interactions [8],

where those mutants are sensitized, leading to excess depletion relative to the rest of the popu-

lation in a dose-dependent fashion. As demonstrated for several drugs with known targets

(discussed below), the analysis enriches for known interactions, by requiring a decreasing (or

increasing) trend over multiple concentrations, which deprioritizes mutants that reach signifi-

cant depletion only at a single concentration (e.g. log-fold-change compared to no-drug treat-

ment) which is not reinforced at other concentrations. In the approach implemented in

CGA-LMM, candidate interactions are determined by genes with outlier negative slopes,

which more stringent than asking which slopes are significantly different from zero. This

approach was chosen to acknowledge that there are multiple sources of noise in these

Fig 5. Abundance plot and slope histogram for genes in anM. tuberculosis hypomorph library treated with copper. Six genes of the muramic acid

pathway, which is required for peptidoglycan synthesis, are highlighted in red, indicating increased sensitivity of this pathway with increasing concentrations of

copper.

https://doi.org/10.1371/journal.pone.0257911.g005
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experiments that could cause arbitrary genes to have slopes differing from zero (slight

increases or decreases). While the magnitude of these variances is unknown a priori, it will be

evident in the empirical dispersion of the population of slopes post hoc. We used a robust

Zscore (Zrobust) to identify candidate interactors as outliers that exhibit concentration-depen-

dent depletion outside the typical range represented by the rest of the genes. As shown in

Tables 1 and 3, for most drugs, there were many genes that had negative slopes significantly

different from zero (as many as 76 out of 162 in one library), but only a small subset of these

gene qualified as outliers, which provides a more focused list of candidate interactions.

Importantly, this method can potentially identify not only the direct biochemical target of

an inhibitor (i.e. to which it physically binds and inhibits), but also genes in the same pathway,

depletion of which can also be sensitized by the drug. In addition, synergies can be observed

with other functionally interacting genes and pathways. There are various reasons that other

genes in the library might also display sensitivity to the drug when depleted, such as general

stress response pathways, efflux or detoxification mechanisms, or genes that can induce shifts

in the metabolic network or redox state to relieve or bypass or compensate for the drug stress

[31, 32]. If multiple genes in a relevant pathway are represented in the library, it might be pos-

sible to detect the interaction through pathway analysis, even if the member genes are only

weakly depleted individually. Even though none of the pathway members might represent out-

liers on their own, there might be a systematic effect where each of the pathway genes exhibits

partial depletion (negative slopes that are still significantly different from 0). As a group, this

could be detected as statistically significant, indicating synergy between the drug and the path-

way. We observed this effect for exposure to both bedaquiline (ATP synthase genes) and cop-

per (muramic-acid pathway). In the case of bedaquiline, pathway analysis with GSEA shows

that sensitivity of detecting drug targets that are members of a complex can be enhanced

because other members of the complex can collectively show depletion effects. In the case of

copper, pathway analysis led to the insight that copper might be interacting, directly or indi-

rectly, with peptidoglycan synthesis, as nearly all of the genes in the muramic acid pathway

were sensitized to depletion in the presence of copper. GSEA effectively aggregates hits with

similar functions that are ranked near the top by the CGA-LMM model (with most negative

slopes, hence greatest fitness defect). The advantage of GSEA is that it takes the full ranking of

genes into account, not just those selected as significant by a hard cutoff (such as Zrobust<-

3.5).

For 7 out of 9 drugs where there is a known target gene or expected interaction in the

library, the CGA-LMM analysis identified the expected target gene among the list of outliers:

trimethoprim (trpG), methotrexate (trpG), levofloxacin (gyrA), moxifloxacin (gyrA), fidaxomi-

cin (rpoB), sulfamethoxazole (thyA), and isoniazid (ino1, kasB). Expected target genes were

ranked highly (with negative slopes) but not enough to be counted as outliers for rifampin

(rpoB) and bedaquiline (ATP synthase genes). The results for all drugs evaluated are discussed

in more detail below.

In the re-analysis of the 4 drugs in the dataset from [9], the CGA-LMM analysis identified 4

genes that potentially interacted with each drug. In the case of TMP and MTX, though the

expected target (dfrA) was not present in the library, trpG was among the genes with outlying

negative slopes (strongly depleted with increasing drug concentration), indicating synergy

with both drugs. InM. tuberculosis, trpG is a bifunctional enzyme with glutamine aminotrans-

ferase activity to multiple substrates that feeds into both the tryptophan synthesis pathway and

folate pathway [33, 34]. For the tryptophan pathway, trpG (as anthranilate synthase, in com-

plex with trpE) synthesizes anthranilate from chorismate. For the folate pathway, trpG (as

deoxychorismate synthase, in complex with pabB) synthesizes 4-amino-4-deoxychorismate

(ADC), which is subsequently converted into folate, which is then utilized as a substrate by
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dfrA [35]. Hence the negative interactions observed between trpG depletion and the dfrA
inhibitors (TMP and MTX) could be explained by the increased sensitivity to metabolic flux

into the folate pathway at the entry point. Johnson et al. (2019) validated this interaction by

making the knock-down mutant of trpG and showing that it is more sensitive to antifolate

drugs.

For RMP, the expected target, rpoB, was ranked #14 out of 152 genes by the CGA-LMM

analysis. While the slope was not negative enough to be labeled as an outlier, it is ranked more

highly than in the analysis by ConCensusGLM, for which rpoB was tied with 49 out of 152

genes with a p-value of 0. The fact that rpoB was not the most significantly depleted gene could

be due to the fact thatM. tuberculosis is especially sensitive to depletion of rpoB, making the

read-count data noisy especially at higher concentrations causing more severe growth

impairment leading to lower culture densities. Supporting this, rpoB is ranked as the 231st

most vulnerable gene to depletion out of 4052 genes in the Mtb genome [11]. It is intriguing

that dapF was also identified as a potential C-G interaction with RMP. dapF is in the pathway

for synthesizing diaminopimelate, which ultimately gets incorporated into peptidoglycan in

the cell wall. Although not a direct target of RMP, the DAP pathway has recently been shown

to interact with rifampicin treatment in a separate C-G experiment (Koh et al, in review, bioR-

xiv pre-print, https://doi.org/10.1101/2021.04.08.439092).

The analysis of BRD-4592 in this dataset is challenging because the expected target, trpA,

was not present in hypomorph. Although 4 genes with outlying slopes were identified for

BRD-4592, they do not bear any interpretable relationship to the known mechanisms of

action. It is possible that BRD-4592 might have functional interactions with other genes (in

addition to trpA) that are not represented in the hypomorph library, since the hypomorph

library contains only about one-quarter of the essential genes (152 out of 625) in the H37Rv

genome [36].

In the analysis of the data we collected from a hypomorph library with 162 essential genes,

we observed that gyrA gave a strong signal of depletion and was among the top 2 interactions

for both fluoroquinolones, levofloxacin and moxifloxacin. Although there were several other

genes with outlier negative slopes, such as asnB, their relevance to fluoroquinolone resistance

remains to be investigated. Interestingly, a transposon-insertion mutant of asnB inM. smeg-
matis was found to exhibit increased sensitivity to several drugs, though not to norfloxacin

[37].

For INH, the expected target, inhA, was not in the library. However, we observed kasB in

the fatty-acid synthesis pathway that had a negative interaction, which is consistent with the

mechanism of action of INH. Both kasB and inhA are in FAS II cycle, which is utilized for gen-

erating long-chain lipids (by extending the length of short-chain lipids produced by fatty-acid

synthase) for incorporation into mycolic acids. It is plausible that other genes in the fatty-acid

pathway besides the target inhA would become sensitized by exposure to an inhibitor of myco-

lic acid synthesis and hence show excessive depletion of knock-down mutants in the presence

of INH. Interestingly, we also observed ino1 to have the most outlying slope (ranked #1),

which is in the mycothiol synthesis pathway. The Ino1 enzyme (inositol-3-phosphate synthase)

catalyzes generates the inositol precursor as an early step in mycothiol synthesis. Mycothiol

plays an important role in redox homeostasis, and INH activity has been shown to be sensitive

to mycothiol levels and intracellular redox state [38].

For sulfamethoxazole (SMX), the expected target, DHPS (folP1), which is in the folate path-

way, was not represented as a mutant in the hypomorph library. However, thyA (thymidylate

synthase), utilizes folate as a co-factor, was observed as an outlier (rank #7). thyA is required

for nucleotide synthesis, and it could become more sensitive to depletion when folate produc-

tion is reduced, explaining the synergy (negative interaction) between SMX exposure and thyA
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depletion. We also observed that efpA had the second highest (positive) slope for SMX (Zro-

bust = +9.5). This implies that the efpA knock-down mutant increased in abundance with

increasing drug concentration. This effect was unique for sulfamethoxazole. efpA is an essen-

tial efflux pump in the cell membrane [9]. Although the substrate(s) of efpA are unknown, this

selection for the efpA knock-down mutant by sulfamethoxazole would be consistent with

either efpA facilitating uptake of SMX, or pumping a metabolite out of the cell whose synthesis

is interfered with by SMX, resulting in tolerance.

The treatment with BDQ led to interactions with ATP synthase genes (4 of the 8 subunits

were in the hypomorph library: atpB, atpF, atpG, atpH). Although none of them had an outlier

slope on their own, they all showed a consistent negative trend with increasing drug concen-

tration, and pathway analysis with GSEA showed that this was statistically significant. This

shows that multiple members of a complex (like the ATP synthase) can exhibit a sensitivity to

a drug (like BDQ) similar to the subunit to which it directly binds (atpE), thus enhancing the

detection of a C-G interaction signal.

We also used CGA-LMM to analyze data from a hypomorph library to determine chemi-

cal-genetic interactions with copper. Copper is known to be bactericidal at high concentrations

for many bacteria, and copper toxicity is relevant to pathogenesis forM. tuberculosis, as macro-

phages have been shown to secrete copper into phagosomes as one of several defense mecha-

nisms to destroy infecting TB bacilli [39, 40]. Excess copper can cause a variety of problems in

cells, including general oxidative damage, as well as displacement of cognate metal ions in

metal-binding proteins [30, 41]. Although the precise mechanism of copper toxicity in Mtb is

not known, studies in other organisms have implicated interference with cell-wall mainte-

nance as a potential mechanism of action [28, 29]. To evaluate genes and pathways interacting

with copper inM. tuberculosis, we treated an Mtb hypomorph library with copper and used

CGA-LMM to look for synergistic behavior. The library was grown on three different carbon

sources–glycerol, acetate, and cholesterol–in recognition of the distinct changes in metabolism

induced by each [42], with the latter 2 representing lipid sources thought to be utilized in vivo

[43–45]. The top interacting gene with copper observed in all 3 carbon sources was TrxB2,

which is a thioredoxin reductase. It is plausible that knock-down mutants of TrxB2 might be

more sensitive to copper exposure, since high copper concentrations increase intracellular

redox potential (through generation of oxygen radicals, etc) [46], and thioredoxin reductases

help maintain redox homeostasis [20] and could thus help mitigate some of the consequential

oxidative damage [30]. However, this interaction with TrxB2 has yet to be validated

experimentally.

Pathway analysis of the CGA-LMM results for copper pointed to an enrichment of genes in

the peptidoglycan pathway, which was the most enriched functional category. In particular, 6

of the 7 genes in the hypomorph library associated with this category were in the muramic-

acid synthesis pathway–murACDEFX–which all exhibited sensitivity (excess depletion) with

increasing copper concentrations. Muramic acid is a constituent of lipid I, to which cytoplas-

mically-assembled pentapeptides are attached and transported across the lipid membrane to

the mycobacterial periplasmic space and incorporated into peptidoglycan. Studies in other

organisms have also found that copper interferes with peptidoglycan synthesis. In E. coli,
knock-outs of Ldt genes, L,D-transpeptidases that cross-link peptidoglycan, were shown to be

more sensitive to copper, as well as affecting other measures of cell-wall integrity, and E. coli
strains that specifically rely on Ldt’s for β-lactam resistance were shown to have increased β-

lactam sensitivity in the presence of CuCl2 [28]. Similarly, the interaction we observed (i.e. syn-

ergy between depletion ofmur genes and increasing copper concentration) suggests that cop-

per either interferes directly with muramic-acid synthesis, or it could be indirectly interfering

more broadly with peptidoglycan synthesis, resulting in increased sensitivity to synthesis of
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this critical component on which it relies (muramic acid, in lipid I). Unfortunately, none of

the 5 Ldt genes in the Mtb genome was represented in the hypomorph library. The library also

did not contain any of the genes of the ricR or csoR operons (e.g. ctpV,mymT,mmcO. . .),

which have been shown to provide tolerance of copper at moderate levels in mycobacteria

[47], and which we might have predicted would have also exhibited negative interactions.

While themur genes did not have as extreme of a negative slope as TrxB2 (and only 3 of 6mur
genes exceeded the cutoff for outliers), they all showed a negative trend of abundance with

increasing copper concentration (slope) that was significant, and the high ranking (by Zro-

bust) of these 6 genes as a group was statistically significant by pathway analysis (GSEA). Inter-

estingly, this enrichment appeared to be specific to growth on cholesterol as a carbon source,

as the enrichment of the mur pathway was not significant when the library was grown on ace-

tate or glycerol and treated with copper. It is possible that this is a consequence of metabolic

changes that are known to occur when cholesterol is catabolized (especially odd-chain-length

lipids) [21]. While the mechanism underlying this observation is not clear, it is notable that

both cholesterol catabolism and copper toxicity are relevant during infection, making this

interaction a potentially important determinant of pathogenesis.

Sometimes relevant genes that were expected to interact with a drug failed to make the cut-

off (Zrobust<-3.5) and were thus not identified as outliers, as in the case of rpoB for rifampin,

and the ATP synthase genes for bedaquiline (even though were generally ranked highly, and

had negative slopes that were significantly different than zero, indicating depletion). There are

several reasons why an expected target gene might not exhibit an outlier negative interaction.

First, the concentrations evaluated in the experiment might not span the best range to observe

the drop-off in abundance (discussed further below). Second, the strength of depletion of a tar-

get protein might not be optimized. In a ClpXP knock-down library, the amount of depletion

depends on the level of expression of the sspB protein (which depends on the promoter

strength used), and some proteins are more sensitive to depletion than others [4, 11]. A strong

signal for synergy depends on both of these parameters together–drug concentration range

and level of protein depletion. There might be additional experimental parameters that also

influence the effectiveness of detecting synergy, such as the amount of time allowed for pre-

depletion of proteins levels (which is a function of protein stability and degradation rate).

Thus, it seems prudent to use Zrobust<-3.5 as a guide but not a strict cutoff for identifying

interactions. Still, the ranking of genes by slope (i.e. concentration-dependent depletion of

mutant abundance) provides as meaningful way to prioritize genes in a hypomorph library for

follow-up studies. We also note that some genes appear on the list of outliers for multiple

drugs. Some of these might represent target-independent mechanisms of drug-tolerance [48].

An example of this might be asnB (asparagine synthetase), which appears on the list of candi-

date interactions for four drugs in 3 different classes in Table 3 (levofloxacin, moxifloxacin,

isoniazid, and fidaxomycin), as it has been implicated in resistance to multiple drugs [37].

The ideal number of concentrations to use in a chemical-genetics experiment is an impor-

tant logistical question. Typically, concentrations are chosen in a range just below the MIC of

the compound, since concentrations above the MIC inhibit growth of the entire culture. Con-

centrations just below the MIC are needed so that there is some biological pressure applied by

the drug, to enable an opportunity to observe the synergy with protein depletion mentioned

above. (Above the MIC, the culture will likely experience too much growth impairment, result-

ing in low OD (optical density), making read-out of DNA barcodes noisy or infeasible) On the

one hand, the more concentrations evaluated, the better, allowing better fits in the regression

model, and a survey of a greater range of concentrations to increase the probability of identify-

ing concentration-depending depletion effects. On the other hand, evaluating more concentra-

tions increases the cost of the experiment drastically. While two concentrations would be the
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minimum for fitting a line, it is probably advisable to use 3–5 concentrations, in order to better

detect trends. In fact, over a wider range of concentrations (say 8 to 10 2-fold dilutions), there

might exist a "sweet spot" for observing the interaction between a drug and target gene, where

there is little depletion of mutant abundance at lowest concentrations, then a transition, con-

verging to full depletion at higher concentrations, although the exact concentration at which

this transition occurs might be difficult to predict ahead of time. While a regression-based

approach could still capture such trends, the sensitivity of the detection might be increased by

applying the LMM over just sub-ranges of concentrations, for example in a sliding window of

3–5 concentrations at a time, which might be able to detect the interaction with higher signifi-

cance when focused on the range containing the transition. A sensitivity analysis for detection

of target genes for trimethoprim and rifampin is provided in S1 File, which shows that, while

similar results are obtained even when using different subsets of concentrations in the regres-

sion analysis (though doses above the MIC are not as informative for the model as lower

doses), it likely going to be difficult to anticipate in an agnostic way the optimal concentration

range where synergy will be observed for a given drug-gene interaction.

In summary, the CGA-LMM method can be used to analyze data from hypomorph libraries

(sequencing barcode counts that represent abundance of each knock-down mutant), and takes

advantage of dose-dependent depletion to look for genes that synergize with a drug to improve

the identification of genuine chemical-genetic interactions. A linear-mixed model (LMM) is

used to quantify the concentration dependence of gene mutant abundance as random-effect

coefficients (slopes), and we showed that employing outlier analysis of distribution of slopes

produces a shorter, more focused list of candidate genes, among which we found known inter-

actions for multiple antibiotics.
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