
Multiple Environment Single System Quantum Mechanical/Molecular
Mechanical (MESS-QM/MM) Calculations. 1. Estimation of
Polarization Energies
Alexander J. Sodt,† Ye Mei,†,‡,§ Gerhard König,† Peng Tao,∥ Ryan P. Steele,⊥ Bernard R. Brooks,†

and Yihan Shao*,#

†Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, 5635 Fishers Lane,
T-900 Suite, Rockville, Maryland 20852, United States
‡Center for Laser and Computational Biophysics, State Key Laboratory of Precision Spectroscopy, Department of Physics and
Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
§NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
∥Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275, United States
⊥Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
#Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States

ABSTRACT: In combined quantum mechanical/molecular
mechanical (QM/MM) free energy calculations, it is often
advantageous to have a frozen geometry for the quantum
mechanical (QM) region. For such multiple-environment
single-system (MESS) cases, two schemes are proposed here
for estimating the polarization energy: the first scheme, termed
MESS-E, involves a Roothaan step extrapolation of the self-
consistent field (SCF) energy; whereas the other scheme,
termed MESS-H, employs a Newton−Raphson correction
using an approximate inverse electronic Hessian of the QM
region (which is constructed only once). Both schemes are
extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely
avoided at each configuration. They produce reasonably accurate QM/MM polarization energies: MESS-E can predict the
polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and
solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/
mol for these two cases and for the oxyluciferin−luciferase complex, if the approximate inverse electronic Hessians are
constructed with sufficient accuracy.

I. INTRODUCTION

In the last two decades, combined quantum mechanical
molecular mechanical (QM/MM) calculations have become
increasingly popular in the computational study of molecular
solvation, catalytic or enzymatic reactions,1−7 and ligand
binding.8,9 In these calculations, typically the solute, the
reactive region, or the active site is studied by quantum
mechanics (QM) methods, whereas the environment (solvent
molecules or the non-QM portion of the macromolecule) is
described with molecular mechanics (MM) force fields.
In pure QM calculations, it is often sufficient to locate a few

stationary points (local minima and saddle points) on the
potential energy surface.10,11 When it comes to QM/MM
potential energy surfaces, such stationary points can still
provide some useful insights into the reaction mechanisms or
into the chemical nature of ligand−receptor binding. But only a
small number of degrees of freedom (that are predominantly
associated with QM atoms) connect these stationary points to

each other. At a finite temperature, many other degrees of
freedom are also accessible and can thus have non-negligible
contributions to the free energy of interest, such as the
solvation free energy, reaction free energy, or binding free
energy. So it is essential to adequately sample all the relevant
degrees of freedom.
The sampling of these QM and MM degrees of freedom can

be achieved via QM/MM molecular dynamics simulations,
which in practice fall into at least two general categories. In the
first category, one performs conventional simulations using
QM/MM forces throughout the trajectory, meaning that the
QM/MM energy and gradient have to be computed at every
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geometry step. Though such QM/MM MD simulations have
proven to yield higher accuracy than classical MM simulations,
they are, unfortunately, also orders of magnitude more
expensive. For the three test cases in this work, for example,
a single QM/MM MD step (using the B3LYP/6-31+G* level
of theory for the QM region) would take 50 times longer than a
MM step for solvated methanol, 400 times longer for solvated
β-alanine, and 4500 times longer for oxyluciferin in its luciferase
complex. For many applications, where an even larger QM
region and/or a more sophisticated QM method are desired, a
conventional QM/MM MD simulation remains quite ex-
pensive, even after much recent and continuing work on
algorithmic developments to speed up QM calculations.12−15

In the second category, one performs “indirect” QM/MM
simulations.16−22 In these simulations, the conformational
space is sampled using a MM force field (and thus with a
higher computational speed). Then a subset of configurations
along the MM trajectory are subjected to QM/MM energy/
gradient evaluations, to account for the free energy differences
between QM/MM and MM surfaces. This strategy works best
if the QM/MM configurations are well represented by the MM
ensemble, which requires considerable “overlap” between the
QM/MM potential energy surface and the MM potential
energy surface. In cases where the overlap is insufficient, the
free energy can either fail to converge or converge to incorrect
values. To alleviate this problem, several groups have proposed
“freezing” some or all internal degrees of freedom within the
QM region16−18,23,24 during the MM simulations.
Such freezing of QM degrees of freedom has shown to

improve the convergence of free energy calculations, but it
might also lose accuracy due to the omission of any entropic
contributions in the QM region.25,26 This deficiency can
potentially be mitigated with the introduction of three separate
energy corrections: (a) an enthalpic correction which
corresponds to calculating the shift of the energy minimum
due to the constraints on the QM degrees of freedom; (b) a
vibrational entropic correction based on a subsystem Hessian27

(the same Hessian as in the enthalpic term); (c) a Jacobian
term. These energy corrections are discussed in detail in
separate publications.22,28 In addition, systems with multiple
rotational states can be addressed using the technique
developed by Straatsma and McCammon.29

In this work, we shall focus on “indirect” QM/MM
simulations where all internal degrees of freedom in the QM
region are frozen in the MM simulations. In other words, the
QM region simply becomes a rigid body. The subset of
configurations coming out of this MM trajectory share a single
QM geometry whereas the MM environment can be quite
different. The main task then is to compute the QM/MM
energy for such “multiple environment single system” (MESS)
configurations. We shall show in this work that, when the QM
method in use is Kohn−Sham density functional theory
(DFT),30−35 it is possible to estimate such MESS-QM/MM
energies with a small computational cost and a reasonably high
accuracy.
This article is structured as follows. In section 2, the

underlying theory is formulated. The MESS-QM/MM energy is
divided into three terms: (a) a gas-phase energy; (b) a first-
order term, which describes the interaction of the gas-phase
electron density and the MM electrostatic potential; (c) the
QM/MM polarization energy, which corresponds to the
second-order and higher terms. In the same section, two
different schemes will be proposed for estimating the QM/MM

polarization energy: MESS-E, which is based on a Roothaan
step extrapolation, and MESS-H, which is based on a Newton−
Raphson energy correction using an inverse electronic Hessian
in a subspace representation. In section III, technical details will
be provided about the implementation of these two schemes
for MESS-QM/MM polarization energy estimation and about
our test systems. In section IV, the results will be presented and
discussed. Concluding remarking are made in section V.

II. THEORY
A. QM/MM Polarization Energy. 1. Gas-Phase Electronic

Structure. Let us consider a QM system that consists of NQM
atoms and is subjected to an external potential v(r). Within the
Kohn−Sham density functional theory using pure, hybrid or
range-separated functionals, the total energy of such a system is
given by a functional of the one-particle density matrix

ρ= ′E E r r( ( , )) (1)

For pure functionals, this energy functional involves only the
diagonal part of the one particle density matrix, namely the
electron density ρ(r). Hybrid functionals and range-separated
functionals involve the off-diagonal elements as well through
the Hartree−Fock exchange energy contributions.
From a set of orthonormal Kohn−Sham molecular orbitals

(MO), ψp, which are often approximated as linear combinations
of atom-centered basis functions, ϕμ,

∑ψ ϕ=
μ

μ μCr r( ) ( )p p
(2)

one can write the one-particle density matrix as

∑ ∑ρ ψ ψ ϕ ϕ′ = ′ = ′
μν

μν
μ ν

∈

Pr r r r r r( , ) ( ) ( ) ( ) ( )
i

i i
occ (3)

Here Pμν is

∑=μν
μ ν

∈

P C C
i

i i
occ (4)

and is often also referred to as the density matrix.
In a DFT calculation, one optimizes the MOs in eq 2 via a

self-consistent field (SCF) iterative procedure to obtain the
lowest energy for the system in eq 1. Within each iteration,
from the current set of orthonormal MOs, one rotates the
orbitals

∑ψ ψ ψ→ + Θi i
a

ai a
(5)

∑ψ ψ ψ→ − Θa a
i

ai i
(6)

where the unoccupied MOs, ψa, are mixed into the occupied
ones, ψi. The actual free variables in the energy functional in eq
1 are thus the orbital rotations,

= ΘE E C( ,{ }) (7)

The iterative procedure continues until it reaches a set of
optimized MOs that make the energy stationary with respect to
the orbital rotations

∂
∂Θ

=E
0

ai (8)

In the gas phase, the external potential v(r) only includes the
nuclear attraction,
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which is summed over all nuclei, A, with charges ZA. This
potential can be represented in the atomic basis

∫ ϕ ϕ=μν μ νh vr r r r( ) ( ) ( ) d(0) (0)
(10)

The MO coefficients optimized under this gas phase external
electrostatic potential will be denoted by C(0), and the
corresponding gas-phase density matrix by

∑=μν
μ ν

∈

P C C
i

i i
,(0)

occ

(0) (0)

(11)

and the Fock matrix, Fμν = ∂E/∂Pμν, by F(0). The gas-phase
Kohn−Sham energy is

= Θ=E E C( ,{ 0})(0) (0) (12)

and the gas-phase electronic density is

∑ρ ϕ ϕ=
μν

μν
μ νPr r r( ) ( ) ( )(0) ,(0)

(13)

2. MM Perturbation. In QM/MM calculations, the external
potential includes both the nuclear attraction, v(0)(r) in eq 9,
and an additional electrostatic potential due to a set of NMM
MM atoms,

δ= +v v vr r r( ) ( ) ( )(0)
(14)

In the simplest cases (as in the examples in section IV), where
the MM atoms are represented by point charges, {qB, B = 1, ...,
NMM}, the additional potential is

∑δ =
| − |=

v
q

r
R r

( )
B

N
B

B1

MM

(15)

Its matrix representation is

∫δ ϕ δ ϕ=μν μ νh vr r r r( ) ( ) ( ) d
(16)

This external electrostatic potential from the MM atoms
perturbs the energy of the system from E(0), its gas-phase value:

δ δ= + + + ···E E E E(0) (1) (2) (17)

where the first-order change is a simple sum of electronic and
nuclear terms:

∫ ∑

∑ ∑

δ ρ δ δ

δ δ

= − +

= − +
μν

μν
μν

E v Z v

P h Z v

r r r A

A

( ) ( ) d ( )

( )

A
A

A
A

(1) (0)

,(0)

(18)

where the minus signs reflect the negative charge from
electrons. To compute this f irst-order energy change, the dominant
computational cost comes f rom the evaluation of δhμν in eq 16.
The second-order change, δE(2), plus all higher order terms is

the QM/MM polarization energy. It is directly caused by the
polarization of the Kohn−Sham orbitals (and therefore the
one-particle density matrix) by the MM electrostatic potential.
Essentially, the Kohn−Sham orbitals will relax within the
additional MM electrostatic potential in eq 15, stabilize the
system, and lower the energy. In the next two subsections, we
will describe two approximate schemes, MESS-E and MESS-H,

for estimating δE(2), the second-order term of the QM/MM
polarization energy.

B. Scheme MESS-E: Roothaan Step Extrapolation.
Similar to the dual-basis projection technique for DFT and
MP2 calculations,36−38 the three extrapolations in density
functional triple jumping,39 and the Roothaan step correction in
the absolutely localized molecule orbital (ALMO) based energy
decomposition analysis,40,41 one Roothaan step42 is taken in the
MESS-E scheme.
Here we write the perturbed Fock matrix as

δ= +F F h(1) (0) (19)

where F(0) is the gas-phase Fock matrix, and δh is the atomic
basis representation of the electrostatic potential due to MM
atoms (see eq 16). In a Roothaan step, the perturbed Fock
matrix is diagonalized

= ϵF C SC(1) (1) (1) (1) (20)

where S is the overlap matrix

∫ ϕ ϕ=μν μ νS r r r( ) ( ) d
(21)

From the eigenvectors, which are the new set of MO
coefficients, C(1), one constructs a new density matrix

∑=μν
μ ν

∈

P C C
i

i i
,(1)

occ

(1) (1)

(22)

Then one can approximate the QM/MM polarization energy
as a Roothaan step extrapolation

δ δ δ δ δ= · = · + ·‐E F P F P h PMESS E
(2) (1) (1) (0) (1) (1)

(23)

where δP(1) is the projected response in the density matrix

δ = −μν μνP P P(1) ,(1) ,(0) (24)

The leading contributions to the MESS-E energy, eq 23, are
clearly second-order: in the F(0)·δP(1) term, the gas-phase Fock
matrix, F(0), can only couple to the occupied−occupied (oo)
and virtual−virtual (vv) blocks of δP(1), both of which are
quadratic in orbital response and thus in δh. In the δh·δP(1)

term, δh couples to the occupied-virtual (ov) and virtual-
occupied (vo) blocks of δP(1), both of which are first order in
orbital response (and thus in δh).
With the F(0)·δP(1) term, one removes a fractional number of

electrons from occupied Kohn−Sham orbitals and puts them
into (higher-energy) virtual orbitals. As a result, this term is
always positive. To achieve a net stabilization of the QM system
within the MM potential, the δh·δP(1) term must be negative
and have a larger absolute value. In our test cases, δh·δP(1) was
found to be roughly twice as large as F(0)·δP(1) (with an
opposite sign).
It should be noted that, in the computation of this second-order

energy change for each MM environment, one avoids the expensive
Fock builds and only performs a diagonalization of the perturbed
Fock matrix (eq 20) and a few simple matrix operations (eqs 19,
22 and 23).

C. Scheme MESS-H: Newton−Raphson Correction
with an Approximate Hessian. As shown in eq 8, the
gradient of the gas-phase Kohn−Sham energy with respect to
orbital rotations vanishes at the set of optimized gas-phase
Kohn−Sham orbitals. When the MM electrostatic potential in
eq 15 is applied, the gradient is no longer zero:
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δ∂
∂Θ

=E
h

ai
ai

(25)

where δhai is the MO representation of the MM potential

∫ ∑δ ψ δ ψ δ= =
μν

μ μν νh v C h Cr r r r( ) ( ) ( ) dai a i a i
(0) (0) (0) (0)

(26)

If the electronic Hessian of the gas-phase energy, i.e., the set
of second derivatives with respect to orbital rotations, Hai,bj

(0) , is
readily available, one can use its inverse, Hai,bj

(0),−1, to approximate
the QM/MM polarization energy with a Newton−Raphson
energy correction

∑

δ δ δ

δ δ

= − · ·

= −

‐
−

−

E h H h

h H h

1
2
1
2

( )
ai bj

ai ai bj bj

MESS H
(2) (0), 1

,

(0), 1
,

(27)

which corresponds to a shift of the energy minimum with the
following orbital response due to the external MM potential,

∑δ δΘ = − −H h( )ai
bj

ai bj bj
(0), 1

,
(28)

Here one only needs to compute the gas-phase electronic Hessian
once and then store its inverse in memory or disk. In subsequent
MESS-H calculations, for each MM environment, one simply reads
in the inverse Hessian back f rom the storage and performs two
simple matrix operations (eqs 26 and 27). We note that the
inverse electronic Hessian is closely related to the linear
response kernel in DFT, (δ2E)/(δν(r) δν(r′)), which has been
studied analytically and numerically.43−54

One can and should avoid computing the exact gas-phase
electronic Hessian, H(0), for three practical considerations: (a)
it might be too expensive to compute the exact Hessian for
systems with a large number of QM atoms and/or a large basis
set, (b) it might be unnecessary to compute the exact value of
the second-order term whereas higher-order terms are
completely neglected, and most importantly, (c) the commonly
used stability analysis,55 which usually involves using Davidson’s
iterative subspace method56,57 to solve for the lowest eigenvalues of
the electronic Hessian, provides a practical way to approximate the
gas-phase electronic Hessian and therefore its inverse within a
subspace representation. Namely, if the Davidson procedure
yields the lowest m eigenvectors, HUm = Umλm, we can
approximate the inverse Hessian as ∑m(λm)

−1UmUm
T. Of course,

this is based on the positive definiteness of a gas-phase
electronic Hessian (assuming that the gas-phase Kohn−Sham
energy is indeed optimized to its minimum), implying smaller
and smaller contributions to the inverse Hessian from the
eigenvectors as their eigenvalues increase.

III. COMPUTATIONAL DETAILS
The two schemes for estimating MESS QM/MM polarization
energies, MESS-E and MESS-H, are implemented within the
Q-Chem/CHARMM interface,58 using version c38b2 of
CHARMM59 and a development version of Q-Chem 4.2.60,61

Three test cases employed in this work are shown in Figure
1:

• methanol solvated in a cubic box with 1000 water
molecules

• β-alanine solvated in a cubic box with 1000 water
molecules

• the oxyluciferin−luciferase complex62−64

For the first two test cases, the solute molecules (methanol or
β-alanine) are described with DFT methods (B3LYP,65−67

M06-2X,68 and ωB97X-D69 functionals with 6-31+G* and 6-
311++G** basis sets70,71) and water molecules with TIP3P
model.72 Constant-volume rigid body molecular dynamics
simulations are performed for both systems at 298 K for 100
ps for an initial equilibration, and then for 1 ns during which
configurations are collected at 1 ps intervals, leading to 1000
configurations for both systems.
For the oxyluciferin−luciferase complex, we started with the

2D1R protein data bank structure,62 which includes 540 protein
residues, the oxyluciferin substrate, and an AMP molecule also
in the binding pocket. 626 water molecules are included to
solvate the protein surface. The oxyluciferin substrate is also
described with DFT methods, whereas the protein residues and
AMP (10 307 atoms in total) are described with CHARMM
c22 protein force field and CGenFF force field.73 Constant-
volume rigid body molecular dynamics simulations are
performed for both systems at 298 K for 10 ps for an initial
equilibration, and then for 100 ps. With one configuration
collected every 1 ps, this leads to 100 configurations in total.
In all these calculations, the core region (methanol, β-alanine,

or oxyluciferin) is constrained as a rigid body through the
“CONS FIX” command in CHARMM, or can alternatively be
enforced through the “SHAPE” command.74 As a result, the
core region retains the same geometry for all 100 or 1000
configurations used in subsequent MESS-E or MESS-H
polarization energy estimations.
A “MESS” option is added to the Q-Chem interface in

CHARMM, where “NROOTS n” is used to specify how many
lowest eigenvalues/eigenvectors of the stability matrix (i.e.,
electronic Hessian) to be computed and used for constructing
its inverse. The inverse electronic Hessian is constructed only
once for the gas-phase density and saved to disk at the starting
of the MESS-QM/MM calculation. For each configuration, we
evaluate the MM potential for the QM atoms (eq 16), and then
compute MESS-E and MESS-H estimations (the latter uses the
inverse Hessian read in from disk) for the QM/MM
polarization energy. To assess the accuracy of MESS-E and
MESS-H energies, we also perform SCF calculations to fully
converge DFT energies for each configuration. This is done

Figure 1. Three test systems in this work: (a) methanol and (b) β-
alanine, both solvated in a cubic box of classical water molecules, and
(c) oxyluciferin in its complex with luciferase. In the luciferase binding
pocket, there is also an AMP molecule.
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only for the purpose of comparison, and it will be avoided in
actual MESS-QM/MM calculations.

IV. RESULTS AND DISCUSSION

A. Solvated Methanol. The results for the solvated
methanol systems are shown in Figure 2 and Table 1. The
QM/MM polarization energy are confirmed to be all negative
(i.e., stabilizing the system) and, with a range of −5 to 0 kcal/
mol, its contribution to the total energy are thus non-negligible.
With all three functionals (B3LYP, M06-2X, and ωB97X-D),

the QM/MM polarization energy estimated with the MESS-E
scheme, as shown in Figure 2, correlates very well with the
exact values, with R2 values greater than 0.996. The fitted slope
with the B3LYP calculations in Figure 2 is 1.216, suggesting

that MESS-E tends to overestimate the polarization energy by
roughly 20%, which corresponds to a 20.6% relative error
(REL) and a −0.386 kcal/mol mean signed error (MSE) in
Table 1. The maximum error (MAX) is 1.339 kcal/mol, which
is slightly above the desired chemical accuracy of 1 kcal/mol. In
contrast, the MESS-E scheme only overestimates the M06-2X
values by 3% (slope 1.030, REL 3.3%, MSE −0.047 kcal/mol)
and actually slightly overestimates the ωB97X-D values by 3−
4% (slope 0.977, REL 3.8%, MSE 0.048 kcal/mol). It is very
encouraging that, without performing even a single Fock build
at each configuration, MESS-E can reproduce the M06-2X and
ωB97X-D polarization energies with an average error less than
0.1 kcal/mol and a maximum error of 0.2−0.4 kcal/mol (0.358
kcal/mol with M06-2X and 0.209 kcal/mol with ωB97X-D).

Figure 2. Estimated MESS-QM/MM polarization energies (y-axis) versus the exact values (x-axis) for 1000 configurations of a single methanol
molecule solvated in a cubic box of 1000 water molecules. All energies are in kcal/mol. The MESS-H(15), MESS-H(30), and MESS-H(60)
estimations started by solving iteratively for 15, 30, or 60 eigenvalues/eigenvectors of the electronic Hessian. B3LYP results are shown in the left four
panels, M06-2X results in the middle, and ωB97X-D results in the right four panels. The gray lines correspond to a hypothetical perfect estimation.
The red lines are linear fits of the estimated energy values against the exact values, with R2 values and slopes listed at the corner of each panel.
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When applying the MESS-H scheme to the solvated
methanol, we first solved for 15, 30, or 60 eigenvectors of
the electronic Hessian of the gas-phase molecule. We will refer
to these calculations as MESS-H(15), MESS-H(30), and
MESS-H(60) in subsequent discussions. As shown in Figure
2, the estimated MESS-H energies all correlate well with the
exact values, with R2 values greater than 0.998. MESS-H(15)
slightly underestimates the polarization energy by 4−5%, with
MSE values of 0.066 kcal/mol (B3LYP), 0.090 kcal/mol (M06-
2X), and 0.067 kcal/mol (ωB97X-D). MESS-H(30) has a
higher initial cost, because it requests twice as many
eigenvectors for the gas-phase inverse Hessian construction,
and it also leads to more accurate energies. MESS-H(30)
energies are only 1% larger than the exact values, and the MSE
values are −0.016 kcal/mol (B3LYP), −0.014 kcal/mol (M06-
2X), and −0.010 kcal/mol (ωB97X-D). However, the results
do not improve further upon requesting even more
eigenvectors. As shown by the slopes in Figure 2 and the
error values in Table 1, MESS-H(60) actually leads to slightly
larger errors than MESS-H(30). Overall, all these MESS-H
models led to highly accurate energies with all three functionals,
with MSE errors smaller than 0.1 kcal/mol, and maximum
errors of 0.15−0.23 kcal/mol.
The MESS-E and MESS-H results with the larger 6-311+

+G** basis set are also listed in Table 1, which shows roughly
the same performance as the smaller 6-31+G* basis set. MESS-
E energies are quite accurate in M06-2X and ωB97X-D
calculations, with MSE errors of −0.078 kcal/mol (M06-2X)
and 0.048 kcal/mol (ωB97X-D) and maximum errors of 0.462
kcal/mol (M06-2X) and 0.223 kcal/mol (ωB97X-D). The
MESS-E errors are also much larger in B3LYP calculations. On
the other hand, MESS-H(15), MESS-H(30), and MESS-H(60)
all produce energies with MSE values of no more than 0.14
kcal/mol and maximum errors of no more than 0.36 kcal/mol.
With both basis sets, the best performance occurs with MESS-
H(30), where the number of requested eigenvectors is around
twice the number of electrons18 for methanol.
B. Solvated β-Alanine. The results for solvated β-alanine

are shown in Figure 3 and Table 2. The QM/MM polarization
energy is more significant for this system: −8 to −1 kcal/mol
with the three functionals.

MESS-E energies correlate well with the exact values, with R2

values of 0.989 (B3LYP) and 0.992 (M06-2X and ωB97X-D).
In B3LYP calculations, MESS-E again significantly over-
estimates the polarization energy (MSE −0.982 kcal/mol
with 6-31+G* basis and −1.041 kcal/mol with 6-311++G**
basis; REL 24.5% or 24.6% with the two basis sets). Even more
significant are the maximum errors, which are 3.046 kcal/mol
with 6-31+G* and 3.224 kcal/mol with 6-311++G**, and thus
these MESS-E values should not be used without rescaling. In
M06-2X calculations, MESS-E energies are again relatively
more accurate, with the MSE values with M06-2X functionals
being −0.194 and −0.241 kcal/mol, respectively. Nevertheless,
the maximum errors are still as large as 1.189 and 1.355 kcal/
mol. The MESS-E energies are much more accurate in ωB97X-
D calculations, with MSE values as small as 0.060 and 0.079
kcal/mol. But, with maximum errors of 0.601 and 0.612 kcal/
mol, the MESS-E energy values should be used with caution, if
not rescaled.
The MESS-H calculations all tend to underestimate the

polarization energy here, and they produce increasingly more
accurate results as more eigenvectors are requested. The MSE
values are 0.484−0.711 kcal/mol with MESS-H(30) and are
reduced to 0.162−0.336 kcal/mol with MESS-H(60), and
further down to 0.049−0.174 kcal/mol with MESS-H(90). At
the same time, the maximum errors are reduced from 1.088 to
1.418 kcal/mol with MESS-H(30) to 0.412−0.701 with MESS-
H(60) and finally to 0.206−0.421 kcal/mol with MESS-H(90).
The relative errors goes down from 12.8−17.4% and 4.4−8.4%
and finally to 1.6−4.4%. The best performance here is observed
with MESS-H(90), for which the number of requested
eigenvectors is again about twice the number of electrons
48 for β-alanine.

C. Oxyluciferin−Luciferase Complex. As shown in
Figure 4, the QM/MM polarization energies range from −5
to −2 kcal/mol with the three functionals and the 6-31+G*
basis set. With slopes of 1.858, 1.364, and 1.184 for three
functionals, the MESS-E scheme now even more significantly
overestimates the polarization energy, when compared to two
previous cases (methanol and β-alanine).
As show in Table 3, in B3LYP calculations, the MSE (over

100 configurations) is now as large as −2.731 kcal/mol (REL

Table 1. Errors in the Estimated QM/MM Polarization Energy for a Methanol Molecule Solvated in a Cubic Box of 1000 Water
Moleculesa

6-31+G* basis 6-311++G** basis

functional scheme MSE RMS MAX REL MSE RMS MAX REL

B3LYP MESS-E −0.386 0.432 1.339 20.6% −0.420 0.470 1.459 21.2%
MESS-H(15) 0.066 0.071 0.173 4.0% 0.101 0.107 0.234 5.7%
MESS-H(30) −0.016 0.033 0.176 1.0% 0.019 0.032 0.112 1.5%
MESS-H(60) −0.029 0.044 0.216 1.4% −0.030 0.048 0.241 1.5%

M06-2X MESS-E −0.047 0.084 0.358 3.3% −0.078 0.113 0.462 4.3%
MESS-H(15) 0.090 0.097 0.230 5.2% 0.140 0.150 0.356 7.7%
MESS-H(30) −0.014 0.032 0.170 1.0% 0.028 0.039 0.118 1.9%
MESS-H(60) −0.025 0.041 0.205 1.3% −0.026 0.043 0.218 1.3%

ωB97X-D MESS-E 0.048 0.071 0.209 3.8% 0.048 0.075 0.223 3.7%
MESS-H(15) 0.067 0.072 0.173 4.0% 0.095 0.103 0.247 5.4%
MESS-H(30) −0.010 0.030 0.151 1.0% 0.014 0.031 0.122 1.4%
MESS-H(60) −0.027 0.042 0.208 1.3% −0.028 0.046 0.229 1.4%

aMean signed errors (MSE), root mean square errors (RMS), maximum errors (MAX), all in kcal/mol, in the QM/MM polarization energies
estimated with MESS-E and MESS-H schemes are listed, together with the average of the relative unsigned error (REL). For the MESS-H
calculations, the number within the parentheses refers to the number of eigenvectors used in the construction of the inverse of the electronic
Hessian. Averaged over 1000 configurations from a 1 ns trajectory.
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82.7%), with a maximum error of 5.266 kcal/mol. This
improves in M06-2X calculations, where the MSE is −1.114
kcal/mol, REL is 35.2%, and the maximum error is 2.129 kcal/
mol. Even in ωB97X-D calcualtions, where MESS-E performs
the best out of the three functionals, the MSE is still as large as
−0.558 kcal/mol, and the maximum error is 1.219 kcal/mol,
and the relative error is 17.6%. So for all three functionals, the
MESS-E energy cannot be used without rescaling.
The MESS-H scheme has reliably led to more accurate

energies with an increasing number of requested eigenvalues for
the electronic Hessian. MESS-H(120) led to MSE values
around 0.2 kcal/mol (0.251 kcal/mol (B3LYP), 0.222 kcal/mol
(M06-2X), and 0.185 kcal/mol (ωB97X-D)) and maximum
errors around 0.3 kcal/mol (0.341 kcal/mol (B3LYP), 0.296
kcal/mol (M06-2X), and 0.258 kcal/mol (ωB97X-D)). These

errors are reduced roughly by one-third with MESS-H(180),
and by one-half with MESS-H(240). Indeed, MESS-H(240) led
to MSE values around 0.1 kcal/mol (0.136 kcal/mol (B3LYP),
0.104 kcal/mol (M06-2X), 0.077 kcal/mol (ωB97X-D)).
Meanwhile, the MESS-H(240) maximum errors are all below
0.2 kcal/mol (0.190 kcal/mol (B3LYP), 0.161 kcal/mol (M06-
2X), 0.129 kcal/mol (ωB97X-D)). Here, the number of
requested eigenvectors, 240, is again roughly twice that of the
number of electrons128 for oxyluciferin.

D. Further Analysis of the MESS-E Scheme. So far, we
have observed the following general trend for the errors in the
MESS-E energies: (i) ωB97X-D < M06-2X ≪ B3LYP and (ii)
methanol < β-alanine < oxyluciferin. On one end, MESS-E
performs very well for solvated methanol, with MSE values less
than 0.1 kcal/mol with M06-2X and ωB97X-D functionals. On

Figure 3. Estimated MESS-QM/MM polarization energies (y-axis) versus the exact values (x-axis) for 1000 configurations of a single β-alanine
molecule solvated in a cubic box of 1000 water molecules. All energies are in kcal/mol. The MESS-H(30), MESS-H(60), and MESS-H(90)
estimations started by solving iteratively for 30, 60, or 90 eigenvalues/eigenvectors of the electronic Hessian. B3LYP results are shown in the left four
panels, M06-2X results in the middle, and ωB97X-D results in the right four panels. The gray lines correspond to a hypothetical perfect estimation.
The red lines are linear fits of the estimated energy values against the exact values, with R2 values and slopes listed at the corner of each panel.
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the other end, it significantly overestimates the QM/MM
polarization energy for oxyluciferin in luciferase: with B3LYP,
the MSE is as large as −2.731 kcal/mol. Here we shall attempt
to unravel the underlying reason for this rather uneven
performance.
Because MESS-E almost always overestimates the polar-

ization energy, the exception being ωB97X-D calculations on
solvated methanol and β-alanine, let us introduce a tuning
parameter, λ, into eq 19, which then becomes

λδ= +λF F h( ) (0) (29)

By diagonalizing this Fock matrix,

= ϵλ λ λ λF C SC( ) ( ) ( ) ( ) (30)

we obtain a set of MO coefficients, C(λ), which change
continuously with parameter λ. From these MOs, we can
compute the corresponding density matrix, P(λ), electron
density, ρ(λ), and Kohn−Sham DFT energy,

λ = λE E C( ) ( )( )
(31)

Note that E(λ) provides an upperbound to E(full), the actual
DFT energy within a given MM potential, which corresponds
to full converged MOs, C(full), and its corresponding electron
density, ρ(full).
To assess the degree with which the occupied Kohn−Sham

orbitals and thus the electron density respond to the applied
MM potential, we computed the difference between ρ(λ) and
the full-converged SCF density ρ(full):

∫ ρ ρΔ = −λn r r r( ) ( ) d( ) (full)
(32)

and plotted them and E(λ) values against λ (ranging from 0 to
1.5) in Figure 5 for the first configuration of each test system
with all three functionals. There, in the panels with energy
curves, the energy values are relative to the full-converged DFT
energy, so that the values at λ = 0 are (the absolute value of)
the exact polarization energies.
It is clear in Figure 5 that, given a test system and a

functional, the Δn curve and the E(λ) curve reach minimum at
the same λ values. And in all cases, the minimum occurs where

λ is smaller than 1. This indicates that δP(1) always
overestimates the response in the density matrix.
In ωB97X-D calculations, the energy reaches a minimum of

0.325 kcal/mol at λ = 0.9 for solvated methanol, 0.919 kcal/mol
at λ = 0.8 for solvated β-alanine, and 0.497 kcal/mol at λ =
0.625 for the oxyluciferin−luciferase complex. In M06-2X
calculations, the minimums are 0.296 kcal/mol at λ = 0.875
(methanol), 0.873 kcal/mol at λ = 0.775 (β-alanine), and 0.482
kcal/mol at λ = 0.55 (oxyluciferin). In B3LYP calculations, the
minimums are 0.31 kcal/mol at λ = 0.725 (methanol), 1.004
kcal/mol at λ = 0.625 (β-alanine), and 0.613 kcal/mol at λ =
0.4 (oxyluciferin).
The total energy within the MESS-E scheme,

= + +‐ ‐E E E EMESS E
(0) (1)

MESS E
(2)

(33)

is a sum of gas-phase energy, E(0), the first-order energy change,
E(1) (eq 18), and the MESS-E approximation to the polarization
energy, EMESS‑E

(2) (eq 23). Compared to E(λ) at λ = 1 in Figure 5,
the MESS-E total energy does not include (i) 2-electron
integral contributions, δP(1)·II·δP(1), and (ii) their DFT
exchange−correlation counterparts. As a result, the MESS-E
energies are no longer upper bounds to the full-converged DFT
energy. Due to its dependence on δP(1), which overestimates
the response in the density matrix, the MESS-E formula in eq
23 understandably tends to overestimate the QM/MM
polarization energy. In Figure 6, the MSE in the MESS-E
energies from Tables 1−3 are plotted against the λ values
above. There is a clear trend: the smaller the λ value is at the
minimum, the larger errors we find in the MESS-E energies.

V. CONCLUSIONS
In this work, we proposed two schemes, MESS-E and MESS-H,
for a fast estimation of the MESS-QM/MM polarization
energies and applied them to three test systems: solvated
methanol, solvated β-alanine, and the luciferin−luciferase
complex. The main findings are as follows:

• The MESS-E scheme in general overestimates the
polarization energy, and the errors follow the trends
ωB97X-D < M06-2X ≪ B3LYP and methanol < β-
alanine < oxyluciferin. In the best cases, solvated

Table 2. Errors in the Estimated QM/MM Polarization Energy for the β-Alanine Molecule Solvated in a Cubic Box of 1000
Water Moleculesa

6-31+G* basis 6-311++G** basis

functional scheme MSE RMS MAX REL MSE RMS MAX REL

B3LYP MESS-E −0.982 1.067 3.046 24.6% −1.041 1.130 3.224 24.5%
MESS-H(30) 0.509 0.534 1.159 13.3% 0.711 0.739 1.418 17.4%
MESS-H(60) 0.199 0.210 0.425 5.3% 0.336 0.351 0.687 8.3%
MESS-H(90) 0.062 0.075 0.206 1.8% 0.174 0.186 0.405 4.4%

M06-2X MESS-E −0.194 0.270 1.189 5.2% −0.241 0.314 1.355 5.9%
MESS-H(30) 0.528 0.551 1.048 14.0% 0.669 0.696 1.272 16.7%
MESS-H(60) 0.206 0.218 0.462 5.5% 0.332 0.348 0.701 8.4%
MESS-H(90) 0.081 0.094 0.244 2.3% 0.165 0.176 0.421 4.2%

ωB97X-D MESS-E 0.060 0.161 0.601 3.6% 0.079 0.175 0.612 3.7%
MESS-H(30) 0.484 0.508 1.088 12.8% 0.623 0.649 1.316 15.5%
MESS-H(60) 0.162 0.174 0.412 4.4% 0.274 0.292 0.686 6.9%
MESS-H(90) 0.049 0.070 0.306 1.6% 0.127 0.142 0.372 3.3%

aMean signed errors (MSE), root mean square errors (RMS), maximum errors (MAX), all in kcal/mol, in the QM/MM polarization energies
estimated with MESS-E and MESS-H schemes are listed, together with the average of the relative unsigned error (REL). For the MESS-H
calculations, the number within the parentheses refers to the number of eigenvectors used in the construction of the inverse of the electronic
Hessian. Averaged over 1000 configurations from a 1 ns trajectory.
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methanol with the M06-2X or ωB97X-D functionals, for
example, the MSE is smaller than 0.1 kcal/mol. In the
worst cases, such as the luciferin−luciferase complex with
the B3LYP functional, the MSE is as large as −2.731
kcal/mol. This significant difference in its performance is
suggested to arise from the overestimation of the density
matrix response in the MESS-E scheme, and a λ
parameter was introduced to assess the degree of this
overestimation.

• The MESS-H scheme can reliably estimate the polar-
ization energy. The average errors can be around or even
below 0.2 kcal/mol, if the number of eigenvectors used
to construct the inverse electronic Hessian is at least
about twice the number of electrons in the QM region.

• MESS-E and MESS-H schemes only require the
evaluation of the MM electrostatic potential and
completely avoid the SCF iterations at each config-
uration, especially the expensive updating of Coulomb,
Hartree−Fock exchange, and DFT exchange−correlation
matrices, and thus they can be performed with only a tiny
fraction of the cost associated with standard QM/MM
calculations.

This work is limited in a number of ways:

• Although we have demonstrated the accuracy of the two
MESS schemes, especially MESS-H, for individual
configurations of our test systems, it remains to be
seen how much error these approximations cause to the
overall free energies;

Figure 4. Estimated MESS-QM/MM polarization energies (y-axis) versus the exact values (x-axis) for 100 configurations of an oxyluciferin molecule
embedded in luciferase. All energies are in kcal/mol. The MESS-H(120), MESS-H(180), and MESS-H(240) estimations started by solving
iteratively for 120, 180, or 240 eigenvalues/eigenvectors of the electronic Hessian. B3LYP results are shown in the left four panels, M06-2X results in
the middle, and ωB97X-D results in the right four panels. The gray lines correspond to a hypothetical perfect estimation. The red lines are linear fits
of the estimated energy values against the exact values, with R2 values and slopes listed at the corner of each panel.
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• Though a λ parameter has been introduced to assess the
overestimation of the density response in the MESS-E
scheme, the dependence of the optimal λ values on the
molecule, on the QM method and on the external MM
environment needs to be explored in more detail before
developing a MESS-E scheme with proper rescaling that
is universally applicable and the least arbitrary.
Specifically, there has been some clear indication that
the optimal λ values as shown in Figure 5 are correlated
with the HOMO−LUMO gaps. For example, B3LYP,

which has the smallest fraction for the Hartree−Fock
exact exchange (20%) out of the three functionals, leads
to the smallest HOMO−LUMO gaps and then the
smallest optimal λ values.

• In many cases, the gas-phase electron structure is not
necessarily the best reference for the MESS-E and MESS-
H calculations. Other references, a single configuration
with external MM potential or an average over multiple
configurations, should be tested.

• Although the QM/MM polarization energy can be
estimated within a reasonable accuracy, one might want
to estimate the QM/MM energy gradient as well, which
is required to compute the enthalpic correction to the
free energy due to the constraint force. It remains to be
seen whether the QM/MM gradient is more sensitive to
the error in Kohn−Sham orbitals than the energy.

• The MM electrostatic potential used in the solvated
methanol or β-alanine calculations comes only from MM
atoms in the central unit cell. Although their images in
PBC simulations are not expected to significantly add to
the polarization of the QM region, especially if a
significantly large unit cell is used (as the case with this
work), an extension of MESS-E and MESS-H schemes to
QM/MM calculations with a periodic boundary
condition75−77 might be desirable.

• For a macromolecular system with tens of thousands of
(if not more) MM atoms, as in our test case of the
oxyluciferin−luciferase complex, the cost of evaluating
the MM electrostatic potential in the QM region can be
high. For example, for each MM configuration in the
luciferase calculation with B3LYP/6-31+G* level of
theory, it still takes about 8 s to evaluate the MM
electrostatic potential on a single Intel Xeon E5420 2.5
GHz processor (whereas it would have required about
150 s to fully converge SCF within 7 cycles starting from

Table 3. Errors in the Estimated QM/MM Polarization
Energy for the Oxyluciferin−Luciferase Complexa

6-31+G* basis

functional scheme MSE RMS MAX REL

B3LYP MESS-E −2.731 2.874 5.266 82.7%
MESS-H(120) 0.251 0.254 0.341 7.9%
MESS-H(180) 0.174 0.176 0.237 5.5%
MESS-H(240) 0.136 0.137 0.190 4.3%

M06-2X MESS-E −1.114 1.169 2.129 35.2%
MESS-H(120) 0.222 0.224 0.296 7.3%
MESS-H(180) 0.149 0.150 0.208 4.9%
MESS-H(240) 0.104 0.105 0.161 3.4%

ωB97X-D MESS-E −0.558 0.605 1.219 17.6%
MESS-H(120) 0.185 0.187 0.258 6.1%
MESS-H(180) 0.113 0.115 0.176 3.7%
MESS-H(240) 0.077 0.079 0.129 2.5%

aThe oxyluciferin substrate is the QM region, and the luciferase is
described with the CHARMM force field. Mean signed errors (MSE),
root mean square errors (RMS), maximum errors (MAX), all in kcal/
mol, in the QM/MM polarization energies estimated with MESS-E
and MESS-H schemes are listed, together with the average of the
relative unsigned error (REL). Averaged over 100 configurations from
a 100 ps trajectory.

Figure 5. Deviation in the electron density and in DFT energies from the fully converged solutions versus the λ parameter. The deviation in the
electron density is measured with Δn, which is defined in eq 32. The energy values are relative to the fully converged DFT energy, so that the values
at λ = 0 are (the absolute value of) the exact polarization energies. The plotted energies contain extra 2-electron and exchange−correlation
contributions that are not included in the MESS-E energies. The left panels correspond to results for solvated methanol, the middle panels for
solvated β-alanine, and the right panels for the oxyluciferin−luciferase complex.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp5072296 | J. Phys. Chem. A 2015, 119, 1511−15231520



gas-phase molecular orbitals). Some techniques in the J-
engine78,79 and quantum Ewald mesh80 methods can
potentially be adapted to help speed up the evaluation of
MM potential.

• At this moment, the MESS-E and MESS-H schemes are
only applicable to Hartree−Fock, pure DFT, hybrid
DFT, and range-separated DFT. One has yet to extend it
to double-hybrid DFT or post-Hartree−Fock methods.

• We have limited our study to fixed point-charge force
fields on the MM atoms, and therefore we have
completely neglected the “back” polarization effects,
where the QM nuclei/electrons also polarize the MM
atoms.

Currently, we are actively pursuing work to address some of
these limitations.
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