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Abstract: Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population.
Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an
increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma.
In vivo studies using several animal models have provided crucial evidence for understanding the
pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian
gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates,
are being widely used due to their persistent association in causing gastric complications. However,
finding suitable animal models for in vivo experimentation to understand the pathophysiology of
gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most
appropriate and latest information in the scientific literature to understand the role and importance
of H. pylori infection animal models.
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1. Introduction

Helicobacter pylori infections are most often observed during childhood. Bacteria mainly
colonize the gastric mucosa, and if they remain untreated, the infection persists throughout
life. Although geographical variations in the current infection rate range from 80 to 90% to
as low as 2.5%, at least 50% of the world’s population is infected with this bacterium [1,2].
Epidemiological data suggest that infection transmission occurs via oral, fecal–oral, or
iatrogenic routes. Furthermore, water can be a potential source of infection transmission [3].
H. pylori infection is associated with the development of gastric complications, such as
gastritis and gastric and duodenal ulcers, and infection increases the risk of developing
gastric cancer. According to a 2018 report, approximately 13% of all global cancer cases
are caused by carcinogenic infections. H. pylori-associated gastric cancer accounts for the
largest proportion of cancer cases owing to carcinogenic infections [4,5]. It has also been
suggested that over 77% of new gastric cancer cases and over 89% of new non-cardiac
gastric cancer cases are associated with H. pylori infection [4].

In Correa’s cascade of gastric cancer development, a multistep intestinal-type process
including the sequential development of chronic gastritis (CG), atrophic gastritis (AG),
intestinal metaplasia (IM), dysplasia (DP), and finally gastric cancer [6,7], individuals
with AG exhibit the highest risk (3.5-fold) for developing gastric cancer [8]. However,
eradicating the H. pylori infection and the surgical resection of precancerous lesions helps
prevent cancer development [9]. Although rapid progress in research on the pathogenesis
of H. pylori infection has become possible owing to the use of animal models in recent years,
it is still unknown which stage of H. pylori infection is involved in carcinogenesis, whether
it is at an early stage, during later stages, or throughout the infection [10–15]. Furthermore,
despite great efforts, it is difficult to design and establish a suitable animal model because of
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the complications involved in developing chronic gastric colonization in laboratory animals
with H. pylori.

2. Animal Models

H. pylori is well adapted for colonizing the human stomach, but the natural history of
infection in animals is unknown, and it does not easily infect the gastric mucosa of animals.
This is because of the complex interaction of H. pylori with the human gastric epithelium,
which takes decades to develop into gastric cancer. It is difficult to determine the pathogen-
esis of H. pylori infection and the immune response generated by this pathogen. Therefore,
considerable efforts are being made to identify suitable animal models to understand the
natural history of H. pylori infection and its immune response. It has been suggested that
animals, including dogs, cats, pigs, monkeys, mice, Mongolian gerbils, and guinea pigs,
could be potential habitats for H. pylori [16,17]. H. pylori does not easily infect the gastric
mucosa of other animals, and in the search for more suitable animal models, experimental
infection studies have been widely conducted in Mongolian gerbils, mice, guinea pigs, and
rhesus monkeys.

In the human stomach, H. pylori mostly colonize the antrum, a pyloric part of the
stomach found throughout the gastric mucosa from the pylorus to the cardia [18]. The
gastric topological locations of most animal models are also preferentially colonized by
H. pylori [19–22], emphasizing their widespread use for understanding the role of several
bacterial virulence factors, host constituents, and environmental factors involved in H.
pylori-mediated gastric pathogenicity.

Mongolian gerbils are small rodents that develop similar infection symptoms, such
as appetite and weight loss, and recapitulate many features of H. pylori-induced gastric
colonization, inflammation, ulceration, and carcinogenesis, as seen in humans [23–27].
Several other studies demonstrated the development of H. pylori-induced gastric ulcers,
duodenal ulcers, and IM following an experimental bacterial challenge in Mongolian
gerbils [28–32]. Therefore, Mongolian gerbils work as a suitable animal model and are the
most commonly used animal model for establishing H. pylori infection. They also represent
an efficient and cost-effective rodent model. Colonization of the gastric mucosa by H. pylori
produces a similar mixed inflammatory infiltrate in the lamina propria as elicited in human
diseases consisting of neutrophils and mononuclear leukocytes [33,34]. Over time, severe
inflammation in gerbils causes the loss of parietal and chief cells, usually accompanied by
the hyperplasia of mucous neck cells, sometimes referred to as mucous metaplasia, and the
base of fundic glands may show features of spasmolytic polypeptide-expressing metaplasia
(SPEM), also referred to as pseudopyloric metaplasia [33].

A mouse model infected with the H. pylori Sydney strain (HpSS1) displayed CG
and gastric atrophy [35]. However, wild-type mouse models, such as C57BL/6 [36],
BALB/c [37], and C3H [38], infected with H. pylori commonly develop mild gastritis or slow
progressing diseases and provide less information about H. pylori pathogenicity [39–41].
Infecting mice models with H. pylori and H. felis resulted in lymphocytic gastritis without
progression to severe pathologies, such as peptic ulcers or gastric cancer [22,42,43]. More-
over, the architecture of the murine stomach differs from that of the human stomach and
lacks the components necessary for the development of severe gastric pathologies. Further-
more, the murine stomach may contain other bacteria that may influence the outcome of
H. pylori infection [22,42,43]. These disadvantages limit the use of wild-type mouse models
for experimental H. pylori infections. Therefore, several knockout or transgenic mouse
models, such as insulin-gastrin (INS-GAS) [44], interferon gamma (IFN-γ), tumor necrosis
factor alpha (TNF-α) knockout [45], interleukin (IL)-1 beta (IL-1β) transgenic [46], IL-10
knockout [47], Fas antigen transgenic [48], p27-deficient [49], and cytotoxin-associated
gene A (CagA)-transgenic mice [50], are prone to develop gastric cancer when given a
high-salt diet or chemical carcinogens of H. pylori infection [43,51]. Rodent animal models
have been extensively used as in vivo models for studying the virulence characteristics of
H. pylori [52,53].
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H. pylori strains have been found to infect nonhuman primates [54–58], and macaques
have been used as experimental models for H. pylori infection. However, it is unclear
whether macaques carry H. pylori as a natural reservoir in wildlife or whether they are
transmitted from humans to macaques after capture. Rhesus macaques are a suitable
alternative for animal models that have several advantages over conventional small animal
models, such as anatomical and physiological similarities with humans, while socially
housed rhesus macaques are naturally infected with H. pylori [55,56]. Moreover, all in-
fected macaques develop CG, and some may develop gastric atrophy [57], the histological
precursor of gastric adenocarcinoma [59]. However, studies on non-human primates are
time-consuming, tedious, labor-intensive, and extremely expensive, making it difficult
to evaluate the degree of H. pylori virulence. Although H. pylori naturally infects the hu-
man gastric mucosa, observations indicate that some macaques reared in captivity were
naturally infected with this bacterium [53–55].

The guinea pig model of H. pylori infection was first described in the late 1990s [20,60].
The guinea pig is a small laboratory animal with a stomach structure similar to that of
humans, prone to developing an inflammatory response due to IL-8 secretion by gastric
epithelial cells. Similar to the mouse model, the guinea pig models exhibit the ease of
husbandry owing to the small animal size. In addition, the guinea pig stomach possesses
several features in common with the human stomach, such as the presence of a cylindrical
epithelium, maintenance of sterile conditions, the ability to produce IL-8, and the lack of a
non-glandular region [61–63]. However, the studies are from 2001 to 2003, and there was no
openness to metagenomics studies that show the opposite in humans, and I would suppose
that in other models as well. Furthermore, like humans, guinea pigs require vitamin C [64].

These animals are considered an optimal model because they possess several similari-
ties with human hormonal and immunologic responses, innate immunity and complement
systems, and thymus, bone marrow, and pulmonary physiology. They also demonstrate a
delayed type of hypersensitivity, major histocompatibility complex similarity, and possess
numerous homologs of human group 1 cluster of differentiation (CD) 1 proteins and IFN-γ
expression similarity [65–71]. These animals are not naturally infected with different He-
licobacter spp., making them advantageous as an infection animal model to evaluate the
role of several virulence factors in pathogenicity [72].

3. Animal Models in Evaluating H. pylori-Mediated Gastric Pathogenicity

H. pylori infection in the gastric mucosa of Mongolian gerbils exhibits a significant level
of gastric inflammation after multiple inoculations with a high concentration of bacterial
challenge, contributing to increased infection rates [73]. In one study, Mongolian gerbils
developed moderate atrophy after 12 months of infection with H. pylori 26695, whereas
no metaplasia was observed until 12 months, and light metaplasia was observed after
18 months [74]. Mongolian gerbils exhibit a similar stepwise progression of intestinal-type
gastric cancer as developed in the human stomach through a cascade of well-defined
pathological stages from the normal gastric mucosa to superficial non-atrophic gastritis to
premalignant lesions (including AG, SPEM, IM, and dysplasia (DP)), and finally gastric
adenocarcinoma [26,75–77]. Several studies have reported the development of gastric
cancer in gerbil models infected with H. pylori TN2GF4, TN2, and 7.13 strains [27,77–79].
In our study conducted in 2007, the H. pylori TN2GF4 strain did not induce gastric cancer
in gerbils 18 months post-infection. However, 9 and 18 months post-infection, 20% and
44% of gerbils had macroscopic gastric ulcers, respectively [79]. H. pylori infection activates
the transcription factors nuclear factor-κB (NF-κB), interferon-sensitive response element
(ISRE), activator protein 1 (AP-1), and cAMP response element-binding protein (CREB) in
the gastric mucosa of gerbils [79]. A study of H. pylori-mediated pathogenicity utilized
guinea pig models to find a suitable model for establishing gastric pathogenicity. The colo-
nization levels 7 and 28 days post-infection were grade 1 and grade 2, respectively. All the
animals that showed bacterial growth on the culture of gastric biopsies displayed gastritis 7
and 28 days post-infection, with an inflammatory cell response involving granulocytes and
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lymphocytes infiltrating the whole mucosa. Granulocyte and lymphocyte infiltration in
gastric tissue 7 days post-infection was grade 1, whereas, after 28 days of the final challenge,
granulocyte infiltration was still at grade 1, but lymphocyte infiltration increased to grade 2.
Guinea pigs infected with H. pylori strains showed a significant increase in the number
of epithelial cells when stained with an anti-Ki67 antibody compared with non-infected
animals [80]. The results of this study provide evidence of H. pylori-induced epithelial cell
proliferation.

3.1. Animal Models Disclosing the Role of Outer Membrane Protein Involvement

Mongolian gerbil models have provided crucial evidence on in vivo bacterial adapta-
tion, which is important for gastric pathogenicity colonization and development (Table 1). A
previous study also demonstrated changes in genetic material due to loss or acquisition via
genetic recombination events [81]. The genetic changes observed in the bacterial genome
due to infection of the gastric mucosa in animal models suggest a process of adaptation
potentially related to the slight increase in genetic changes throughout the infection pro-
cess. A study of persistent colonization conducted in the Mongolian gerbil model showed
that the expression of blood group antigen-binding adhesin (BabA), an outer-membrane
protein involved in adhering bacteria to the gastric mucosa, was initially increased after the
infection. However, over time, expression reduced, and after 6 months, it was completely
lost. Moreover, infection with oipA or babA mutant strains resulted in significantly reduced
expression of cytokine levels, and the alpAB mutant strain did not infect the gerbils at
all [82]. Another study provided evidence that in vivo bacterial adaptation can increase the
virulence potential of H. pylori in a Mongolian gerbil model. In this study, a single gerbil
was infected with human H. pylori strain B128, and 3 weeks post-challenge, the gerbil was
sacrificed. A single colony (strain 7.13) isolated from the sacrificed gerbil’s stomach caused
similar levels of inflammation to those caused by the B128 strain. However, gastric DP and
adenocarcinoma developed in the gerbils infected by the 7.13 strain only, indicating that
in vivo adaptation can increase the virulence potential of the strain [79]. In murine mod-
els compared to the wild-type strain, several mutations were identified in several genes,
including babA, tlpB, and gltS, which are associated with colonization adaptation, in the
post-inoculation strains. Other identified mutations were associated with chemoreceptors,
pH regulators, and other outer membrane proteins involved in adaptation [83]. A study
reported the adaptability of the strains in a mouse model of experimental infection with
H. pylori [84]. The genetically adapted strains prevent the bacteria from eliciting damage
to the gastric mucosa. The genetic modifications acquired for this adaptation significantly
reduced inflammatory process levels in the gastric mucosa. H. pylori strains have also been
found to switch their Lewis antigen phenotype during long-term colonization in rhesus
macaques. The selection of bacterial phenotype switching helps bacteria adapt to their
hosts [85]. Using macaques as an animal model, Hansen et al. suggested that both the loss
of BabA expression and the overexpression of BabB can occur due to selective pressure.
Evidence of BabA loss implicates OMP diversity in persistent H. pylori infection [86].

The involvement of H. pylori outer inflammatory protein A (OipA) in gastric injury
was evaluated using a gerbil model. In a study conducted by Akanuma et al., the oipA
mutant strain of H. pylori TN2 failed to colonize the gerbil gastric mucosa [88]. However,
the oipA mutant strain of the H. pylori 7.13 strain successfully colonized the gerbil gastric
mucosa [76]. In response to these conflicting results, we conducted a preliminary study and
infected gerbil models with H. pylori TN2GF4 and 7.13 strains and their oipA mutant strains.
The results showed that the oipA mutant strain of TN2GF4 did not colonize the gerbil
gastric mucosa, whereas the oipA mutant of the 7.13 strain caused significantly lower levels
of neutrophil infiltration than its parental strain and colonized successfully. Furthermore,
the parental H. pylori 7.13 strain exhibited significantly higher inflammation scores and
gerbil-specific keratinocyte chemoattractant (KC) mRNA levels than the 7.13 oipA mutant.
Another recent study conducted by Du et al. utilizing a mouse infection model also showed
that OipA, upregulating the expression of miRNA-30b and cysteine-glutamate transporter
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activity, could cause gastric mucosal injury in C57BL/6 male mice [89]. Using mouse
infection models, the crucial role of outer membrane proteins in the colonization of the
gastric mucosa was elucidated. In the study, “on” to “off” switching of outer-membrane
proteins OipA, H. pylori outer-membrane protein (Hop)Z, HopO, and HopP influenced
H. pylori bacterial density and colonization ability in mice. The strains with “off” switching
status in two or more genes rendered a marked reduction in colonization rates compared
with the strains with the “on” status. Interestingly, oipA-knockout mutant strains caused
reduced inflammation and decreased IL-6 and KC mRNA levels [87].

Table 1. Role of H. pylori and outer-membrane proteins in gastric pathogenicity in animal models.

Animal Models Evidence Found References

Mongolian gerbils

Shows light metaplasia after H. pylori infection [74]

Develops gastric cancer when infected with TN2GF4, TN2, and 7.13 strains [27,77–79]

Nine months and 18 months post-infection, 20% and 44% of gerbils
displayed macroscopic gastric ulcers, respectively. [79]

Loss or acquisition of genetic material via genetic recombination [81]

Loss of outer membrane protein blood group antigen-binding adhesin
(BabA) after six months of infection [82]

alpAB mutant did not infect the gerbil experimental models [82]

In vivo bacterial adaptation causes an increase in virulence potential [79]

Mouse model

In vivo bacterial adaptation causes mutations in babA, tlpB, and gltS [83]

In vivo bacterial adaptation occurs after infection of the animal stomach [84]

“On” to “Off” switching of outer inflammatory protein (Oip)A, HopZ,
HopO, and HopP occurs [87]

oipA knockout strains renders lower inflammation than its wild-type strain [87]

Rhesus macaques “On” to “Off” switching of BabA occurs [85]

Guinea pigs Shows significant increase in epithelial cells after H. pylori infection [80]

3.2. Animal Models Disclosing the Pathogenic Role of the Cag Pathogenicity Island (cagPAI)

Different experimental animal models have provided evidence regarding adaptation-mediated
genetic changes in cagPAI genes and their crucial involvement in gastric pathogenicity
(Table 2). The Mongolian gerbil model challenged with cag-positive strains exhibited signif-
icantly more severe gastritis than those challenged with cag-negative strains [25,88,90–92],
indicating the role of intact cagPAI in H. pylori-mediated pathogenicity. cagPAI encodes a
bacterial T4SS, one of the widely studied H. pylori virulence factors, allowing the effector
protein CagA to be delivered into the gastric epithelium [93,94]. CagA-positive H. pylori
strains efficiently colonize Mongolian gerbils and maintain an intact and functional Cag
T4SS, allowing us to study the role of virulence factors that induce the inflammatory re-
sponse and carcinogenesis pathogenicity [95]. Several other studies using gerbil models
have also emphasized cagPAI’s importance in inducing gastric inflammation and its clinical
outcome [92,96]. In 2005, we found that cagG mutant strains could not infect the gerbil
gastric mucosa [90]. Currently, several laboratories utilize the in vivo adapted HpSS1 strain,
which possesses a non-functional cagPAI [97–99]. The original HpSS1 strain possessed
a functional cagPAI prior to the in vivo adaptation of mice. Most H. pylori strains fail to
elicit severe gastritis in a mouse model. However, it is worth comparing the host response
generated in mouse models and humans, which might be critical to understanding H. pylori
pathogenicity. Recent studies found that the HpSS1 parental strain possessing a functional
T4SS could induce severe gastritis and an increased host response [97–99]. The results
suggested that strains with functional T4SS can employ the same virulence mechanisms to
induce pro-inflammatory cytokines and successfully translocate CagA into host cells, where
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it undergoes phosphorylation, which the human host utilizes. This mouse model study
demonstrated that CD4 T cells and IFN-γ-dependent immune pressure select mismatch
repair (MRR) variants of cagY, rendering the T4SS non-functional [100]. They are expressed,
but many probably fail to bind the β1-integrins [101].

In a study utilizing 534 H. pylori strains in mouse models, 271 (51%) strains showed
evidence of recombination in the cagY gene together with insertions/deletions or non-
synonymous changes in 13 cagPAI essential genes implicated in functional T4SS, most
commonly in cag5, cag10, and cagA genes [102]. Recombination in cagY is the most com-
mon mechanism for the downregulation of T4SS function during chronic infection in
mouse models. T4SS loss of function was also associated with changes in other essential
cagPAI genes [102]. This phenomenon of T4SS loss of function in the chronic infection of a
wild-type mouse model limits its utilization to study cagA-related pathogenicity. However,
transgenic mouse models provide critical information and are currently the most widely
used models. Toll-like receptor (TLR) 5 (TLR5) recognizes the conserved domain, termed
D1 and found in the flagellins of several pathogenic bacteria, for its activation but not in
H. pylori. A study utilizing Tlr5 knockout and wild-type mice demonstrated that one of
the H. pylori T4SS components, CagL, which contains a D1-like motif, mediates binding
with TLR5+ epithelial cells. It can act as a flagellin-independent potent activator of TLR5
for downstream signaling. These results indicate that TLR5 is necessary for the efficient
control of the H. pylori infection, and CagL-activating TLR5 may modulate the immune
response [103].

H. pylori infection in transgenic mouse models that cause CagA overexpression result
in hyperproliferation of gastric epithelial cells and gastric adenocarcinoma, suggesting that
this protein is an oncoprotein [50]. Experimental infections conducted in macaques have
frequently shown a loss of functional T4SS due to frameshift mutations in cagY [53]. The
loss of functional T4SS in cagY, occurring during the acute phase of experimental infection,
is likely due to a mutation burst that facilitates H. pylori adapting in new hosts [104,105].
H. pylori strains isolated from natural infections of macaques show a functional T4SS capa-
ble of delivering CagA into host epithelial cells [106]. The retention of T4SS from naturally
infected macaques indicates that H. pylori infection acquired at an early age does not pro-
voke a strong inflammatory response that triggers a mutation burst and a non-functional
H. pylori genomic sequence [107]. Moreover, a recent study isolated the Hp_TH2099
strain from a macaque infection and corroborated the idea that natural infection does
not cause a mutation burst as the T4SS retains its functional status [58]. Whole-genome
sequencing of Hp_TH2099 revealed that this strain belonged to hpAsia2, which possesses
ABC-type Western CagA and currently contains unreported variations in EPIYA-C and
CagA-multimerization (CM) sequences. The variations found in the CM regions almost
abolished partitioning-defective 1b (PAR1b) binding of CagA. Thus, H. pylori strains iso-
lated from macaques show low virulence owing to attenuated CagA activity [58]. Skoog
et al. found that H. pylori strains that naturally infect socially housed monkeys retained
functional T4SS capable of translocating CagA. The strains also induced IL-8 expression
and were highly related to human cagPAI, suggesting that H. pylori can use similar virulence
mechanisms in monkeys and humans to exhibit gastric pathogenicity, supporting their
potential relevance as a model for studying H. pylori-related pathogenicity [106].

A Mongolian gerbil model study further evaluated the topographic location of inflam-
mation in the stomach developed by wild-type H. pylori and isogenic cagA mutants. The
resulting inflammation was primarily restricted to the gastric antrum region when infected
with cagA-mutant strains, where inflammation was not significantly involved in the acid-
secreting corpus region [96]. These results suggest that functional cagPAI is necessary to
induce corpus-predominant gastritis, which is considered the precursor in intestinal-type
gastric cancer progression. Furthermore, mouse gastric epithelial cell lines have been
utilized for in vitro studies to evaluate the role of intracellular CagA phosphorylation in
gastric pathogenicity, as it may provide more valuable information than human AGS cell
lines. The GSM06 mouse gastric epithelial cell line was developed from transgenic mice that
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possessed the temperature-sensitive SV40 large T-antigen gene for an in vitro investigation
into the physiological and pharmacological responses that H. pylori infection elicits [108]. A
study utilizing the GSM06 and human AGS cell lines compared the early events of H. pylori
infection. The results showed that similar to the events produced in human AGS cells,
CagA was translocated in GSM06 cells, where it underwent phosphorylation [109].

According to the hit-and-run model of infectious carcinogenesis, an infectious agent
triggers carcinogenesis during the initial stages of infection, and the infectious agent does
not need to be present continuously for cancer to develop [110–112]. However, relatively
less effort has been made to test the hit-and-run carcinogenesis model in H. pylori infections
due to CagA or Cag T4SS at specific time points. A recent study utilized the tetracycline
repressor (tetR)/tetracycline operator (tetO) system to derepress the H. pylori cagUT operon
in a Mongolian gerbil model. It showed that derepressing Cag T4SS activity during the
initial stages of H. pylori infection could initiate a cascade of cellular alterations, leading to
gastric inflammation at later time points, along with gastric cancer development in a small
proportion of animals when Cag T4SS was no longer active [113]. However, another study
used Mist1-KRAS mice to examine the importance of H. pylori involvement in the later
stages of disease progression. The results showed that sustained H. pylori infection, together
with active Kirsten rat sarcoma virus (K-Ras) expression led to a gastric lesion with severe
inflammation, altered metaplasia marker expression, and increased cell proliferation and
DP compared to the lesion seen in H. pylori non-infected active K-Ras expressing mice [114].
Overall, the results suggest that the progression of carcinogenic lesions with metaplasia,
DP, and cell proliferation depends on the sustained presence of H. pylori infection during
the later stages of disease progression. Furthermore, a recent study using a mouse model
was able to find that the persistent association of H. pylori bacteria in the proximity of the
epithelial lining is necessary to induce the urokinase-type plasminogen activator receptor
(uPAR), which is important for gastric pathogenicity development [115]. The study found
that H. pylori infection induced uPAR expression in foveolar epithelial cells of the mouse
gastric mucosa during the early course of infection.

Table 2. The role of Cag pathogenicity islands (PAI) in gastric pathogenicity evidenced by animal models.

Animal Models Evidence Found References

Mongolian gerbils

Intact cagPAI strains exhibit more severe gastritis compared to cag-negative strains [25,88,90–92]

CagA-positive strains efficiently colonize and render carcinogenicity [95]

CagG is important for successful colonization [90]

Functional cagPAIs are necessary to induce the corpus-predominant gastritis [96]

cagA-mutant strains cause antrum-region restricted inflammation without involving
the acid-secreting corpus region [96]

Mouse model

Functional T4SS is important for CagA-mediated virulence potential [100]

Chronic infection causes the recombination in CagY leading to T4SS loss of function [102]

CagA overexpression results in hyperproliferation of epithelial cells and
gastric adenocarcinoma [50]

Rhesus macaques
Experimental infection causes a frameshift mutation in cagY rendering

T4SS non-functional [53]

Natural infection does not lead to the mutation burst and shows functional T4SS [58,106]

H. felis, a close relative of the human gastric pathogen H. pylori, has been found to
elicit high-grade dysplastic lesions in C57BL/6 mice, similar to H. pylori-induced gastric
carcinogenesis in humans [116–119]. Myeloid differentiation primary response gene 88
(MyD88) regulates helicobacter-induced gastric cancer progression. A study utilizing
MyD88 deficient (MyD88−/−) mice found that mice challenged with H. felis developed
significant severe lesions that rapidly progressed to gastric cancer in situ compared to
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wild-type mice. It was suggested that MyD88−/−mice could be a better rodent animal
model for Helicobacter pathogenicity, where gastric adenocarcinoma can develop within
6 months of Helicobacter infection [116].

In a similar study on the role of the gastric microbiome in gastric cancer development,
the microbiome composition from MyD88−/−mice was compared to that of wild-type,
Trif Lps2, and double knockout (DKO) mice. The differences in Helicobacter genotypes
could influence the gastric microbiome, making it more susceptible to the development
of Helicobacter infection-induced gastric cancer [120]. The results potentiated the role of
the microbiome’s composition in the stomach, eliciting severe gastric complications, such
as gastric cancer. In a recent study of a gerbil model for gastric cancer, H. pylori strains
expressing high levels of Thioredoxin-1 (Trx1) caused worse tubular adenocarcinoma in
a significantly higher percentage of gerbils compared with H. pylori expressing low Trx1
levels [121]. The findings indicate that the Mongolian gerbil model could be considered an
appropriate animal model to study H. pylori gastric pathogenicity.

Hyperproliferative antral tumors associated with inflammation were developed by
utilizing a “knock-in” mouse model of gastric cancer (gp130757F/F mouse) [122]. A ho-
mozygous mutation of the tyrosine phosphatase 2 (SHP2)/suppressor of cytokine signaling
3 (SOCS3)-binding site on the IL-6 family co-receptor gp130 could prevent SHP2 binding
and block signal transduction via the rat sarcoma virus (RAS)/extracellular signal-related
kinase (ERK)/AP-1-signaling cascade. Inhibiting this signaling pathway prevents AP-1
transcription factors activating target genes and augments signaling reciprocally by utiliz-
ing IL-6. The overall cascade leads to the rapid development of gastric carcinogenesis [122].
Furthermore, gp130757F/F mice are sensitized to the rapid development of distal stomach
cancer, causing a loss of SHP2/ERK/AP-1 transcriptional regulation [123]. Our preliminary
study utilized mice models lacking the SHP2 binding site on gp130 (gp130F759 knock-in
mice) with orogastric H. pylori CPY2052 strain and H. felis infections. Two CPY2052-infected
mice developed hyperplastic mucosa throughout the stomach 6 months post-infection, and
one mouse developed hyperplastic tumors in the corpus. In that study, phospho-ERK was
undetectable in uninfected gp130F759 knock-in mice, but was markedly increased in H. py-
lori-infected mice. Furthermore, phospho-signal transducer and activator of transcription
3 (STAT3) levels were noticeably higher in uninfected gp130F759 knock-in mice than in
uninfected wild-type mice, and H. pylori infection further increased phosphorylated STAT3
levels compared to H. felis. These data indicate that maximal gastric injury due to H. pylori
infection leads to the combined activation of STATs and ERK→AP-1. Activation of AP-1
due to c-Fos expression has been found to play a role in inducing cyclooxygenase-2 (COX2)
and nitric oxide synthase (iNOS) in gastric epithelial cell inflammation [124].

4. Animal Models to Evaluate the Role of Host Factors in Pathogenicity

In addition to providing evidence of bacterial virulence factors in pathogenicity, an-
imal models have evidenced the role of host constituents in H. pylori-associated gastric
cancer pathogenicity (Table 3). The crucial role of IL-1β in gastric cancer pathogenicity
was first described in a Mongolian gerbil model. IL-1β is a T helper (Th) type 1 (Th1)
cytokine that is increased within the gastric mucosa of H. pylori-infected individuals [125].
In H. pylori-infected individuals, increased IL-1β expression due to polymorphisms in
IL-1β significantly increases the risk of hypochlorhydria, gastric atrophy, and gastric ade-
nocarcinoma [126–128]. In one study, H. pylori-infected gerbils exhibited elevated IL-1β
levels, accompanied by decreased gastric acidity, compared to uninfected gerbils. More-
over, treating H. pylori-infected gerbils with an IL-1β antagonist abolished the loss of acid
secretion, indicating IL-1β’s role in achlorhydria development in the stomach of H. py-
lori-infected gerbils [129]. In addition to chemokines and cytokines, experiments using
Mongolian gerbils have provided evidence of altered expression of other inflammatory
mediators, such as iNOS and COX2, following H. pylori infection [130,131]. Evidence of
the role of NF-κB activation in H. pylori-induced inflammation was assessed using a gerbil
model [132]. Furthermore, a recent study using the Mongolian gerbil model found that
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CD44 genes are crucial in the proliferation of epithelial cells and gastric cancer development
in response to H. pylori infection [133]. CD44 is a transmembrane receptor that is crucial in
epithelial cell proliferation. Changes in the gerbil gastric proteome in response to H. pylori
infection were recently evaluated using the Mongolian gerbil model and applying novel
proteomic approaches and pathway analyses. Quantitative proteomic analysis of biological
samples recovered from the gerbil model showed that the quantity of several proteins
was significantly altered by H. pylori infection [134]. Other studies using a gerbil infection
model also showed that an increase in serum gastrin levels is directly related to gastric
epithelial cell proliferation [95,135].

A study utilizing a mouse model found that gastric dendritic cells (DCs) in gastritis pro-
tect the gastric mucosa from H. pylori-induced inflammation. However, it allows persistent
H. pylori infection. The immune-modulatory function of gastric classical DCs (cDCs), possi-
bly via the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)
pathway, protects the gastric mucosa against lymphocytic inflammation and precancerous
mucosal changes. The results showed that gastric cDCs are key cells that fine-tune the
inflammatory processes elicited by H. pylori infection and bacterial colonization in the
H. pylori-infected gastric mucosa [136]. Transgenic knockout mice deficient in regulatory cy-
tokines or regulatory T cell (Treg) activity are required to induce severe gastritis. However,
this causes a complicated interpretation of the results [137–140]. miRNAs are critical in
immune system regulation and carcinogenesis [141,142]. In d3Tx mice stomachs, miR-21a
overexpression was found, and its expression level was correlated with inflammation
and lymphoid infiltrate histological scores [143]. In a recent study utilizing d3Tx mice,
miR021a, miR-21b, miR-142a, miR-150, and miR-155 expression increased gradually with
inflammation and lymphomagenesis (mucosa-associated lymphoid tissue (MALT) devel-
opment) [144]. These miRNAs can act synergistically on common or redundant targets
and signaling pathways to promote cell survival and lymphocyte proliferation [144]. In a
recent study utilizing the six-week-old female C57BL/6J mice, Ruan et. al. demonstrated
that CD4+ CD8αα+ double-positive intraepithelial T lymphocytes (DP T cells) play an
immunosuppressive role in H. felis-induced gastritis, mediating chronic inflammation
and possibly affecting disease prognosis [145]. Furthermore, a recent study has impli-
cated the role of APRIL (a proliferation inducing ligand) in the development of gastric
MALT lymphoma [146]. Utilizing a C57BL/6J mice model, APRIL was found to promote
B-cell infiltration in H. pylori and H. felis infected mice causing the recruitment of helper
T-lymphocytes in H. felis-infected mice. In another study of mouse model of gastric cancer,
Kim et al., depicted the role of programmed cell death 1 (PD1) and its ligand (PDL1) in
H. felis-induced tumorigenesis [147]. In the study, the overexpression of PDL1 in gastric
epithelial cells was found to promote the inflammation induced gastric tumorigenesis by
suppressing tumor-infiltrating CD8+ T-cells.

Table 3. Animal models showing the role of host factors in H. pylori-associated gastric pathogenicity.

Animal Models Evidence Found References

Mongolian gerbils

Role of IL-1β in H. pylori-associated gastric pathogenicity [125]

H. pylori infection leads to nuclear factor-κB (NF-κB) activation in H. pylori-associated inflammation [132]

Cluster of differentiation 44 (CD44) is crucial in H. pylori-associated epithelial cell proliferation leading to
gastric cancer development [133]

Mouse model

Gastric dendritic cells (DCs) protect the gastric mucosa from H. pylori-induced inflammation [136]

Gastric DCs allows H. pylori infection to persist [136]

miRNAs synergistically act to promote cell survival and lymphocyte proliferation [144]

DP T-cells play an immunosuppressive role in H. felis-induced gastritis [145]

The APRIL (a proliferation inducing ligand) promotes B-cell infiltration and development of gastric
MALT lymphoma [146]

PD1 and the over expression of its ligand (PDL1) promote H. felis-induced tumorigenesis [147]
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5. Animal Models to Evaluate the Role of Environmental (Dietary) Factors
in Pathogenicity

It is well established that not only are bacterial virulence factors and host constituents
solely responsible for the development of gastric pathogenicity in humans and animals
but environmental factors in the gastric lumen, including several constituents of the diet
(Table 4), are important pathogenicity risk factors [148]. Among the dietary constituents, the
relationship between high salt consumption and the risk of gastric cancer pathogenicity has
been widely studied in a gerbil model of H. pylori-induced gastric carcinogenesis. A study
reported that high salt consumption and H. pylori infection could independently induce
gastric atrophy and IM, the precancerous lesions in Mongolian gerbils [149]. In another
study by Gaddy et al., Mongolian gerbils were maintained on high-salt and normal-salt
diets and challenged with H. pylori to investigate the direct effect of high salt consumption
in H. pylori-induced carcinogenesis in a gerbil model. As a result, H. pylori-infected gerbils
maintained on a high-salt diet significantly developed gastric carcinoma compared to
H. pylori-infected gerbils on a normal-salt diet [150]. Other studies have also demonstrated
the direct effect of H. pylori infection and high salt consumption on gastric carcinogenesis
in the presence of the chemical carcinogens N-methyl-N-nitrosourea (MNU) and N-methyl-
N-nitro-N-nitrosoguanidine (MNNG) [151–155].

Table 4. Animal models to evaluate the role of dietary factors in gastric pathogenicity.

Animal Models Evidence Found References

Mongolian gerbils

High salt consumption in association with H. pylori infection induces gastric atrophy and
intestinal metaplasia (IM) development [149]

H. pylori-infected animals maintained on a high-salt diet develop gastric cancer compared to
H. pylori-infected animals maintained on a normal-salt diet [150]

H. pylori-infected animals maintained on a low-iron diet develop more severe complications
than H. pylori-infected animals maintained on normal-iron diet [26]

Mouse model Copper poverty leads to mild gastric damage and decreases the ability of H. felis to colonize
the epithelium compared to the mice with normal copper [156]

Another dietary factor, iron, has also been shown to increase the risk of gastric car-
cinogenicity [157]. In a study by Noto et al., gerbils were maintained on iron-replete and
iron-depleted diets and subsequently infected with H. pylori [26]. Infected gerbils main-
tained on an iron-depleted diet developed more severe gastritis, had increased DP incidence
and frequency, and increased gastric carcinoma observations compared to H. pylori-infected
gerbils maintained on iron-replete diets [26]. The data demonstrate that a high-salt and
low-iron diet can significantly increase the severity and frequency of H. pylori-induced
gastric pathogenicity in gerbil models [26].

Among several gastric environmental factors, the role of copper was evaluated using
an H. felis-infected C57BL/6 mouse model [156]. This study used the copper chelator
tetrathiomolybdate to create copper deprivation conditions. The result showed that H. felis
infection could significantly reduce the copper concentration in the mouse stomach without
affecting circulatory copper levels. However, H. felis could not efficiently colonize the
epithelium in copper-deprived mice, showing mild gastric damage compared to the infected
mice with normal copper [156].

6. Animal Models to Evaluate Therapeutics against H. pylori Infection and
Cancer Progression

In the 1990s, the standard triple-therapy (STT), which consists of protein pump in-
hibitors (PPI), amoxicillin, clarithromycin, or metronidazole, was developed. Owing to
its substantially higher eradication rate, STT is recommended as the first-line eradication
therapy for H. pylori [158,159]. It has been found that eradication therapy for H. pylori
combined with endoscopic resection of early gastric cancer significantly reduces the de-
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velopment of metachronous gastric cancer [9]. However, in recent times, STT’s efficacy
has been decreasing due to the increasing development of antimicrobial resistance, mainly
to clarithromycin. Therefore, the increased demand for safe and effective non-antibiotic
compounds capable of eliminating H. pylori has become a public concern [160–162]. Several
studies have been conducted using animal models to evaluate the eradication efficacy of nu-
merous compounds (Table 5). A study utilizing H. pylori infection mouse models evaluated
the potent antimicrobial efficacy of H-002119-00-001, a β-caryophyllene. H-002119-00-001
showed potent efficacy in eradicating the bacteria in H. pylori-infected animals compared
with the animals treated with antimicrobials [163].

Table 5. Animal models in evaluating therapeutics.

Animal Models Evidence Found References

Mongolian gerbils
Hydrogen peroxide eliminates H. pylori and prevents H. pylori infection recurrence [23]

5-ethyl-2-hydroxybenzylamine (EtHOBA) prevents gastric cancer development [164]

Mouse model

H-002119-00-001, a β-caryophyllene, shows a potent efficacy in bacterial eradication [163]

The graphitic nanozyme PtCo@Graphene (PtCo@G) exerts antibacterial activity against
H. pylori [165]

A mucoadhesive system (Mucolast®) loaded with amoxicillin and clarithromycin improves
antibacterial efficacy against H. pylori

[166]

The gentamicin-intercalated smectite hybrid (S-GM) proves to be an effective therapeutic
agent against H. pylori [167]

Blockage of the Toll-like receptor 4 (TLR4) signaling pathway could play a role in controlling
the H. pylori infection [168]

Tilapia piscidin 4 (TP4), a peptide, inhibits the growth of antibiotic-resistant and sensitive
H. pylori [169]

Similarly, a study evaluated the role of hydrogen peroxide in eradicating H. pylori
using a Mongolian gerbil model. The animal models were orally administered the H. pylori
ATCC 43504 strain to successfully establish the infection. Hydrogen peroxide doses of
1 mg/mL, 2 mg/mL, and 4 mg/mL were administered after 14 days, and H. pylori counts
were determined. There was no significant difference in the bacterial count between the
control and hydrogen peroxide groups, indicating that hydrogen peroxide had eliminated
the bacteria. Moreover, the bacterial counts of H. pylori in the triple-drug group were
higher than those in the hydrogen peroxide group and lower than those in the H. pylori-
infected control group. Overall, the results of this study indicated a higher efficacy of
hydrogen peroxide in eliminating and preventing the recurrence of H. pylori than that of
triple-drug therapy [23]. Moreover, the study found no toxicity or damage due to hydrogen
peroxide in the gastric mucosa. Hydrogen peroxide can disrupt bacterial cell membranes,
and the oxygen-enriched environment provided by hydrogen peroxide eradicates and
prevents H. pylori recurrence, thus providing an attractive candidate for treating H. pylori
infection [23].

A study utilizing transgenic FVB/N INS-GAS mice and Mongolian gerbils evalu-
ated the role of 5-ethyl-2-hydroxybenzylamine (EtHOBA) against H. pylori-induced gastric
cancer development [164]. EtHOBA, a potent scavenger of all dicarbonyl electrophiles
that react with amines, prevents cancer development in these animal models. Similarly,
a mouse model developed an in vivo activatable pH-responsive graphitic nanozyme,
PtCo@Graphene (PtCo@G), to selectively treat H. pylori. The results showed high an-
tibacterial activity against H. pylori and negligible side effects on normal tissues and other
symbiotic bacteria [165]. Several other studies have also attempted to potentiate the efficacy
of existing antibiotics by combining them with other compounds, as the current treatment
usually requires high doses and frequent administration to succeed. A similar study pro-
posed that an innovative mucoadhesive system (Mucolast®) loaded with amoxicillin and
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clarithromycin could improve the efficacy of treatment against H. pylori [166]. Treatment
of H. pylori-infected C57BL/6 mice with Mucolast® loaded with antibiotics showed su-
perior efficacy than treatment with antibiotics only, as evidenced by the bacterial count
in stomach tissues and histopathological evaluations. Similarly, another study analyzing
the fecal microbiome composition in H. pylori-infected mice evaluated the efficacy of a
gentamicin-intercalated smectite hybrid (S-GM)-based treatment [167]. The results showed
that a H. pylori polymerase chain reaction (PCR) of the gastric mucosa was significantly
lower in the STT and S-GM-based treatment group than in the non-treatment group. The re-
sults also showed that S-GM-based therapy could reduce IL-8 levels and atrophic changes in
the gastric mucosa. Stool microbiome analysis revealed that mice treated with S-GM-based
therapy showed microbiome diversity and abundant microorganisms at the phylum level
compared to STT-treated mice. Overall, these results suggested that S-GM-based treatment
may be a promising and effective therapeutic agent against H. pylori infection [167].

Other studies have used animal models to evaluate immunological events in the
control of H. pylori infections. A study using a mouse model suggested that blocking the
TLR4 signaling pathway could downregulate MyD88 expression; reduce NF-κB activation;
increase CD4+, IL-2 receptor alpha chain (CD25+), forkhead box protein 3 (FOXP3+),
and Treg numbers [168]; and consequently depress the Th1 and Th17 immune response,
exacerbate H. pylori colonization density, and reduce the degree of inflammation in the
gastric mucosa infected with H. pylori. As a result, the interaction between the TLR signaling
pathway and Tregs might be an important factor in reducing H. pylori colonization and
suppressing the inflammatory response. This mechanism was suggested to provide a new
strategy for designing effective preventive and therapeutic treatment regimens against
H. pylori colonization [168]. The antibacterial therapeutic potential of peptides, such as
tilapia piscidin 4 (TP4), against multidrug-resistant H. pylori was evaluated in vivo in
murine models (mice and rabbits). In this study, TP4 was found to inhibit the growth of
antibiotic-sensitive and antibiotic-resistant H. pylori by causing membrane depolarization
and the extravasation of cellular constituents. TP4 treatment suppresses the Treg subset
population of pro- and anti-inflammatory cytokines. H. pylori maintains a high Treg
subset and a low Th17/Treg ratio during gastric epithelium colonization, resulting in the
expression of both pro- and anti-inflammatory cytokines [169].

7. Conclusions

Animal models have provided crucial information about bacterial infections and
virulence factors in establishing persistent infections. Animal models have also evidenced
the role of environmental and host factors in severe gastric complication development.
These models are widely used to evaluate therapeutics and prevent H. pylori infection and
gastric cancer development. However, the most suitable model to provide crucial evidence
for understanding the pathophysiology of gastric cancer and gastric MALT lymphoma
needs to be established.
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