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Abstract: The effect of Mg doping on the electrical and optical properties of the p-GaN/AlGaN
structures on a Si substrate grown by metal organic chemical vapor deposition was investigated.
The Hall measurement showed that the activation efficiency of the sample with a 450 sccm Cp2Mg
flow rate reached a maximum value of 2.22%. No reversion of the hole concentration was observed
due to the existence of stress in the designed sample structures. This is attributed to the higher
Mg-to-Ga incorporation rate resulting from the restriction of self-compensation under compressive
strain. In addition, by using an AlN interlayer (IL) at the interface of p-GaN/AlGaN, the activation
rate can be further improved after the doping concentration reaches saturation, and the diffusion of
Mg atoms can also be effectively suppressed. A high hole concentration of about 1.3 × 1018 cm−3

can be achieved in the p-GaN/AlN-IL/AlGaN structure.

Keywords: GaN material; Mg doping; MOCVD; Hall measurement; PL spectroscopy

1. Introduction

The AlGaN/GaN high-electron mobility transistor (HEMT) on Si has received tremen-
dous research attention in high-power device application due to its large breakdown
electric field, high electron saturation velocity, and good thermal conductivity [1]. In order
to guarantee a safe operation and simplify the circuit architecture, the AlGaN/GaN HEMT
is made in the enhanced mode (E-mode) configuration of normally-off operation [2]. The
most common and commercial E-mode HEMT is designed in the p-GaN/AlGaN/GaN
HEMT configuration. The p-GaN raises the GaN conduction band of the AlGaN/GaN
HEMT above the Fermi level, leading to the depletion of the two-dimensional electron gas
(2DEG) channel at zero gate bias [3]. Therefore, an E-mode p-HEMT with a higher and
stable threshold voltage (Vth) is expected by increasing the hole concentration. However,
Mg doping for higher hole concentrations encountered several challenges, including (1) the
compensation effect of the donor due to native defects (VN) and dislocations [4–6], (2) low
p-type activation of Mg-H into GaN [7,8], (3) self-compensation effect due to saturation
Mg doping-induced donor-type defects [9–11], (4) the formation of pyramidal defects from
Mg segregation on threading dislocation [12,13], and (5) Mg diffusion into the AlGaN
barrier layer and GaN channel layer [14,15]. Although, L. Sang et al. recently showed
that the hole concentration and activation efficiency of Mg-doped p-GaN grown on a free-
standing GaN substrate of a low dislocation density could be improved dramatically [6].
Yingda Chen et al. discovered that the growth technique of indium surfactant-assisted
delta doping could substantially enhance the hole concentration of a p-GaN/u-GaN homo-
structure grown on a 2-inch c-plane sapphire to 1.5 × 1018 cm−3 [16]. However, the issue
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of low activation efficiency for Mg-doped p-GaN/AlGaN hetero-structures on the more
economic Si substrates remains. As the Mg doping increases, the deep-level emission
dominates in the photoluminescence (PL) and cathodoluminescence (CL) spectra [17,18].
This implies the formation of deeper donors to compensate holes or the creation of deeper
Mg acceptor levels rather than shallow acceptor levels, further resulting in the difficulty to
activate holes from the deep Mg acceptors to the valence band and decrease the activation
efficiency. Therefore, it is essential to further investigate the effect of Mg doping on the
electronic and optical properties to discover the optimized growth condition for better
activation efficiency.

With the case of Mg diffusion into the AlGaN barrier layer and GaN channel layer,
Loizos Efthymiou et al. discovered that Vth shifts firmly with Mg diffusion [19]. CL mea-
surements revealed Mg diffusion along the dislocation [20]. Mg diffusion along the edge-
type and mixed-type dislocations was also evidenced by transmission electron microscopy
and atom probe tomography [21,22]. As a result, it is crucial to explore how to suppress
Mg diffusion for better device performance of Mg-doped p-GaN/AlGaN/GaN HEMTs.

In the current work, the flow rate of Cp2Mg was modulated to grow Mg-doped p-GaN
on AlGaN to study the effect of different Mg doping concentrations on the hole concentra-
tion and activation efficiency. The PL experiment was carried out to investigate the deep
emissions and self-compensation at various doped Mg levels. In addition, Hsien-Chin
Chiu et al. demonstrated that a thin AlN etch stop layer in the p-GaN/AlN/AlGaN/GaN
HEMT structure can effectively improve the device RON uniformity and reduce the leakage
current [23,24]. Thus, the influence of a thick GaN and thin AlN interlayer (IL) at the
interface of the Mg-doped p-GaN and AlGaN layer on the activation efficiency and Mg
diffusion was also investigated in this study.

2. Materials and Methods

The epitaxial structures of the Mg-doped GaN layers were grown by a metal organic
chemical vapor deposition (MOCVD) system (Veeco Instruments Inc, Plainview, NY, USA)
on 6-inch Si (1 1 1) substrates, as shown in Figure 1. The conventional source precursors
including trimethylaluminum (TMAl), trimethylgallium (TMGa), ammonia (NH3), and
bis(cyclopentadienyl) magnesium (Cp2Mg) were used to grow the AlN, AlGaN, GaN, and
Mg-doped p-GaN layers. To avoid Ga-Si melt-back etching, a 200 nm AlN nucleation layer
was first grown at 1030 ◦C on Si substrate. There are three types of samples, A, B, and C, as
shown in Figure 1. All samples applied the same step-graded AlGaN buffers, consisting of a
200 nm Al0.7Ga0.3N layer, a 300 nm Al0.5Ga0.5N layer, and a 300 nm Al0.3Ga0.7N layer grown
at 1020 ◦C to modulate stress for avoiding cracking. The sample structures were designed
for high Mg activation rates and suppressing Mg diffusion into the under-layers. For
sample A, the 1000 nm-thick Mg-doped p-GaN layers were grown at 990 ◦C with different
Cp2Mg flow rates of 0, 200, 450, 600, 750, and 900 sccm, labeled as A0, A200, A450, A600,
A750, and A900, respectively. For both samples B and C, the Cp2Mg flow rate was 900 sccm
for investigating the effect of undoped GaN (u-GaN) and AlN-IL on the Mg activation rate
and diffusion. The post-growth thermal activation of Mg-doped p-GaN was performed for
20 min at 720 ◦C under a nitrogen atmosphere. The secondary ion mass spectroscopy (SIMS)
measurement was carried out on all samples to determine the Mg concentration in the
p-GaN layer by the IMS-6f (CAMECA SAS, Gennevilliers, France). In order to investigate
the electrical properties of p-GaN, the standard Hall effect with the Van der Pauw method
was conducted at room temperature by the HMS-3000 (Ecopia Corporation, Anyang-City,
South Korea). The optical properties of all samples were studied using low-temperature
photoluminescence (PL) spectroscopy by the excitation of a HeCd laser at 325 nm. The
threading dislocation density (TDD) was evaluated from the full width at half maximum
(FWHM), scanned on GaN (002) and (102) planes by X-ray diffraction (XRD, X’Pert Pro
MRD, Malvern Panalytical, Almelo, The Netherlands). The characterization of structure
strain was performed by Raman scattering. The effect of the Mg doping concentration on
the surface morphology was carried out by scanning electron microscopy (SEM, JSM7001F,
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JEOL, Tokyo, Japan), optical microscopy (OM, AL100, Olympus Corporation, Tokyo, Japan),
and atomic force microscopy (AFM, NT-MDT Spectrum Instruments, Moscow, Russia).
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Figure 1. Schematic structures of p-GaN samples: (a) sample A with varying Cp2Mg flow rates (0,
200, 450, 600, 750, 900 sccm), (b) sample B with Cp2Mg 900 sccm and an additional 200 nm undoped
GaN interlayer, and (c) sample C with Cp2Mg 900 sccm and a 2nm AlN interlayer.

3. Results and Discussion

The hole carrier concentration and activation efficiency as a function of Mg doping
are revealed in Table 1 and Figure 2. As we can see, the hole concentration increases,
corresponding to decreased mobility with the increasing Mg doping. Meanwhile, the
resistivity decreases initially and then increases with the Mg doping. The activation
efficiency (Mg doping efficiency), which is defined as the ratio of the hole concentration
(obtained from Hall measurement) and Mg doping density (measured by SIMS), increases
initially and reaches a maximum value of 2.22% at Mg doping of 2.42 × 1019/cm3 (450 sccm),
and then it decreases with the Mg doping. This can be attributed to the Mg saturated
concentration of about 2 × 1019/cm3. Furthermore, the low Mg concentration behavior
presented in our samples is similar to that of other reported data [11,25] for a GaN:Mg
hetero-epitaxial layer on a sapphire substrate, as shown in Figure 2. However, they all
showed constant reversion of the hole concentration after Mg saturation, owing to the
self-compensation effect. Even A. Klump et al. applied UV illumination to reduce H
passivation and the self-compensation impact on the GaN:Mg films, which was just helpful
on the concentration below the Mg saturation. In our case, when the Mg doping is more
than the self-compensation onset of 2.42 × 1019/cm3 (450 sccm), it is worth noting that the
activated hole concentrations still rise without a hole concentration reversion. However,
the decrease in activation efficiency could be ascribed to the starting existence of high
Mg doping-induced defects, for example, the formation of Mg interstitials [9,17], nitrogen
vacancy VN [9,26], MgGa-VN complexes [11,27], and pyramidal inversion domain (PID)
defects [28,29]. Another scenario could be the building possibility of Mg-N-Mg clusters.
The rising formation probability of Mg-N-Mg double acceptors could split the acceptor
level and create deeper acceptor states and further decrease the density of a single Mg
shallow acceptor. The deeper acceptor states are not active in creating free holes, leading
to lower activation efficiency. For even higher Mg doping concentrations, the possibility
to generate Mg3N2 clusters increases [30,31]. The formation of Mg3N2 clusters decreases
the single Mg concentration, and the energy states of Mg3N2 clusters are deep levels
in the energy gap and do not contribute free holes. With a consistent result, we also
obtained precipitation of Mg-rich and pyramid-shaped defects on our SEM and optical
microscope images, respectively, after the flow rate of 450 sccm (not shown here). The
energy-dispersive X-ray spectroscopy (EDS) analysis also exhibited the Mg content of the
900 sccm sample, about 2.4% on the Mg-rich precipitates and around three times that of the
blank background (0.79%). In addition, AFM images show the root mean square (RMS) of
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the surface roughness increases from 0.49 to 1.75 nm in the 5 µm × 5 µm scan area, while
the Mg flow rate increases from 0 to 900 sccm.

Table 1. Dependence of activation efficiency and electrical properties on the Cp2Mg flow rates.

Structure Cp2Mg Source
(sccm)

Mg Doping
Concentration

(cm−3)

Hole
Concentration

(cm−3)

Mobility
(cm2/V-s)

Resistivity
(ohm-cm)

Activation
Efficiency

(%)

p-GaN/Al0.3Ga0.7N

200 1.20 × 1019 (1.25 ± 0.06) × 1017 27.54 ± 1.38 1.87 ± 0.09 1.04
450 2.42 × 1019 (5.38 ± 0.27) × 1017 7.69 ± 0.38 1.51 ± 0.08 2.22
600 3.75 × 1019 (7.49 ± 0.37) × 1017 5.63 ± 0.28 1.48 ± 0.07 2.00
750 4.87 × 1019 (7.95 ± 0.40) × 1017 4.51 ± 0.23 1.74 ± 0.09 1.63
900 6.05 × 1019 (8.71 ± 0.44) × 1017 3.54 ± 0.18 2.02 ± 0.10 1.44
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Figure 2. The hole concentration (red solid squares) and activation efficiency (open squares) of
p-GaN:Mg layer as a function of the Mg doping concentration. The results from references [11,25] are
also plotted for comparison, as shown by blue circles, green circles, and orange triangles.

The PL spectra of p-GaN films at 10 K with different Mg doping concentrations are
shown in Figure 3. The PL of the undoped GaN film shows a sharp near-band edge
emission (NBE) at 3.46 eV (358.4 nm), as shown in Figure 3a. The broad emissions below
3.2 eV are attributed to the defect emissions from the AlGaN layers. In addition, the
oscillation in the PL intensity below 3.2 eV is due to the Fabry–Perot interference of the
whole sample structure. By measuring the energy separation of the two nearest peaks
∆E, the total sample thickness could be evaluated by d = hc/(2n∆E) ≈ 2 µm, where h, c,
and n are the Planck constant, speed of light, and refraction index at the emission peak,
respectively. When the Mg doping is turned on at 200 sccm, the native donor (VN) [4] and
shallow Mg acceptor pair (DAP) emission dominates the PL spectrum, as it can be seen
in Figure 3b. The peak of DAP is around 3.1 eV. As the Mg doping is further increased
to 450 sccm, the peak energy of blue luminescence (BL) is near 2.8 to 3.0 eV (Figure 3c).
The emission peak near 2.8–3.0 eV was attributed to the deep donor-to-shallow acceptor
transition [32,33]. These deep donors could be created by the heavy Mg doping-induced
defects. The emission peak near 2.8–3.2 eV could also be ascribed to the recombination of a
native donor and heavy Mg doping-induced deep Mg acceptor. The PL spectra presented
in Figure 3d–f, for higher Mg doping samples, are basically the same as in Figure 3c.
The peak intensity of green luminescence (GL) and yellow luminescence (YL) becomes
more prominent with increased Mg doping, which means that structural defects related
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to VN begin to increase [26,34]. In general, the collected PL data corroborate the results
of electrical measurements mentioned above (Table 1 and Figure 2). As the Mg doping
exceeds 450 sccm, the more Mg atoms incorporated into the GaN crystal generate not only
more single Mg shallow acceptors but also more Mg-N-Mg deep acceptors, or donor-type
defects, leading to a drop-off in activation efficiency. If the BL emission at 2.8–3.0 eV of
Figure 3c is due to the donor-to-deep acceptor recombination, the deep acceptors are about
300 to 500 meV above the valence band compared with the activation energy of the shallow
acceptor of about 200 meV [35,36]. Therefore, the deep acceptors have lower efficiency to
be activated to offer free holes in the valence band for conducting. Similar competition
of two emissions was also discovered recently by Hanxiao Liu et al. for their low- and
high-Mg doping samples [18]. They attributed the two emissions at 3.25 eV and 2.9 eV to
the shallow donor-to-acceptor and deep donor-to-acceptor transitions, respectively. We
suggest that the BL near 2.9 eV can be caused by both the deep acceptors and deep donors.
The deep acceptors should result from the Mg-rich and Mg3N2 precipitates to decrease
the activation efficiency. The deep donors of donor-like defects from the VN and Mg-VN
complexes can decrease the hole concentration by the self-compensation effect.
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Figure 3. The low-temperature (10 K) PL spectra of p-GaN/AlGaN structures with varying Cp2Mg
flow rates.

In order to investigate the effect of Mg diffusion on the activation efficiency, the
electrical properties of samples B and C are discussed. Figure 4a shows the SIMS of samples
A900, B, and C. Mg diffusion is the strongest for sample B, the p-GaN homo-epitaxy of
the 200 nm GaN template. The difference in Mg diffusion for samples A900 and C is not
significant. However, the hole concentration and activation efficiency are very different for
three samples, as shown in Figure 4b. Suppose that the hole concentration evaluated by the
Hall measurement is majorly contributed by the top part of the p-GaN layers; the similar
Mg doping concentrations at the top of the p-GaN layers for all three samples imply that
the self-compensation effects are different. We would like to emphasize that the activation
efficiency was effectively increased by decreasing the self-compensation effect, while the
decrease in Mg diffusion was trivial, as extracted from the SIMS results. The p-GaN film
grown on AlN-IL (2 nm)/Al0.3Ga0.7N has the best activation efficiency of 2.2%. In the event
of p-GaN grown on Al0.3Ga0.7N and GaN, the activation efficiencies are 1.4% and 0.8%,
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respectively. This could be due to the strain between the layers to suppress the formation
of the Mg doping-induced donor-type defects. These results indicate that aluminum has
a smaller atomic radius than gallium, which can inhibit Mg diffusion and increase the
compressive stress on the GaN:Mg film [37]. It is expected that a high Al composition could
significantly suppress the self-compensation effect, reduce the Mg diffusion concentration,
and further increase the hole concentration and activation rate.
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Many research groups also investigated the role of stable and metastable Mg-H
complexes on the activation efficiency [7,8,25]. They discovered that the hole concentration
is proportional to the density of H atoms from the Mg-H complex measured by SIMS before
thermal annealing. The Mg atoms without the formation of the Mg-H complex could
occupy the interstitials, Mg-VN complexes, or lattice positions of nitrogen (MgN). They
are donor-type defects and play the role of self-compensation. As shown in Figure 5a, a
higher H concentration was observed before annealing in p-GaN/AlGaN and p-GaN/AlN-
IL structures than that in the p-GaN/GaN-IL structure. However, the p-GaN/AlN-IL
structure displayed a similar H concentration to p-GaN/AlGaN, which could not expound
the higher hole concentration and activation efficiency with AlN-IL. Therefore, these two
structures were measured by the HRXRD rocking curves for the FWHM of GaN (002)
and (102) planes to calculate the threading dislocation densities (TDDs) [38]. The GaN
(002)/(102) planes of 678/1024 arcsecs without AlN-IL, respectively, correspond to the
screw/edge-type TDDs of 9.24 × 108 and 3.13 × 109 cm−2. The screw/edge-type TDDs
of 7.98 × 108 and 3.51 × 109 cm−2 with the AlN-IL structure were calculated by the GaN
(002)/(102) planes of 630/1028 arcsecs. In contrast to the relationship, the total TDDs with
AlN-IL slightly increased from 4.05 × 109 to 4.30 × 109 cm−2, indicating that the TDDs do
not dominate the hole concentration in this case. We recommend excluding the effect of
Mg-H and TDDs on the increasing activation efficiency after the Mg doping concentration
reaches saturation. Furthermore, in Figure 5b, the PL spectra of p-GaN exhibit that the
photon intensities of BL, GL, and YL decreased dramatically with AlN-IL. The lower
concentration of self-compensation defects in the p-GaN on AlN-IL could be due to the
greater compressive strain in p-GaN. This is consistent with our Raman spectra, where
GaN E2 (High) and A1 (LO) shift from 563.46 to 563.74 cm−1 and 722.26 to 726.19 cm−1,
respectively. The Raman energy blue shift implies greater compressive stress in the p-GaN
epilayer with AlN-IL [39,40]. This effect is in agreement with the suppression of donor-
like defects under greater compressive strains from inserting an AlN interlayer into the
Mg-doped GaN/AlGaN superlattice by Hu et al. [41,42]. Herein, we would like to express
that the existence of the greater compressive stress of heavily Mg-doped GaN is crucial in
affecting the self-compensation effect because it can effectively extend the Fermi energy
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and consequently increase the formation energy of self-compensation defects [9]. This was
mentioned in other research [10,43,44] which found that a strain state from compressive
to tensile is accompanied by the BL emission due to large local lattice relaxations by the
generation of self-compensation defects. This study reveals that a high-Al composition
layer under the p-GaN layer can effectively enhance the hole concentration and significantly
reduce the self-compensation effect. Furthermore, no reversion of the hole concentration
could be observed after Mg saturation. This finding is precious for application in E-mode
GaN HEMTs.
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4. Conclusions

In this study, the flow rate of Cp2Mg was modulated to grow heavily Mg-doped
p-GaN on AlGaN for application in enhanced-mode HEMTs. A maximum activation rate
of 2.22% was accomplished with Mg doping of around 2.42 × 1019 cm−3. The further
increase in the hole concentration with the increasing Mg concentration reveals that the
hole reversion could be restrained, owing to the decreased compensation-type defects
resulting from the enhanced compressive strain. In addition, a high hole concentration of
1.3 × 1018 cm−3 with a high activation efficiency was also achieved by heavy Mg doping of
around 6.05 × 1019 cm−3 in the p-GaN/AlN-IL/AlGaN structure. The diffusion of Mg can
be effectively suppressed by inserting an AlN layer at the interface of Mg-GaN and AlGaN.
The current results provide important information for the growth of Mg-doped p-GaN of a
high hole concentration in E-mode HEMT application.
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