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7INSERM, IAME, UMR 1137, Paris, France; 8Université Paris Diderot, Sorbonne Paris Cité, Paris, France; 9AP-HP, Hôpital Bichat-Claude
Bernard, Laboratoire de Virologie, Paris, France; 10Université Paris Descartes, Sorbonne Paris Cité, Paris, France
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Objectives: The predictive efficacy of integrase (IN) strand transfer inhibitors (INSTIs) was investigated in HIV-
infected children born to HIV-infected mothers in Africa.

Methods: Plasma was collected at the Complexe Pédiatrique of Bangui, Central African Republic, from INSTI-naive
children (n"8) and adolescents (n"10) in virological failure (viral load .1000 copies/mL) after 5 years of first- and/
or second-line combination ART (cART). IN, reverse transcriptase (RT) and protease (P) genes were genotyped and
drug resistance mutations (DRMs) to INSTIs, NRTIs, NNRTIs and PIs were interpreted using the Stanford algorithm.

Results: Successful IN, RT and P genotypes were obtained for 18, 13 and 15 children (median age 11 years, range
5–18; 8 were female), respectively. Two (2/18; 11.1%) viruses from children treated with a first-line regimen had
INSTI DRMs at codon 138 (E138K and E138T), which is known to harbour major resistance mutations, and also
had the accessory mutations L74I, G140K, G140R and G163R. The majority (16/18; 88.9%) of HIV-1 IN sequences
demonstrated full susceptibility to all major INSTIs with a high frequency of natural polymorphic mutations. Most
(12/15; 80%) genotyped viruses harboured at least one major DRM conferring resistance to at least one of the
WHO-recommended antiretroviral drugs (NNRTIs, NRTIs and PIs) prescribed in first- and second-line regimens.

Conclusions: INSTIs could be proposed in first-line regimens in the majority of African children or adolescents
and may constitute relevant therapeutic alternatives as second- and third-line cART regimens in HIV-infected
children and adolescents living in sub-Saharan Africa.

Introduction

Despite the encouraging enhancement in paediatric HIV care in
sub-Saharan Africa, the widespread use of combination ART (cART)
in the prevention of mother-to-child transmission (PTMCT) of HIV
as well as in the care of HIV-infected children has unfortunately
allowed the emergence of HIV strains highly resistant to the main
antiretroviral (ARV) drugs, leading to high rates of virological fail-
ure.1–3 Most studies that have evaluated the impact of HIV drug

resistance mutations (DRMs) in HIV-1-infected children living in
sub-Saharan Africa depict an alarming situation with high rates of
accumulated pretreatment DRMs in infants born to HIV-infected
mothers failing PTMCT and those born to untreated HIV-infected
mothers.3–8 Furthermore, the vast majority of HIV-infected African
children failing NRTI, NNRTI and PI-based first- or second-line regi-
mens show very worrying rates (up to 97%) of virological failure
associated with MDR HIV strains accumulating high rates of
DRMs.6,9–18 As a consequence, the increasing number of DRMs to
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the main ARV drugs prescribed in sub-Saharan Africa has consider-
ably reduced the effectiveness of current paediatric regimens.1,4,16

Thus, the paediatric therapeutic regimens currently recommended
by the WHO may become no longer suitable in African settings,
leading to a decrease in convenient therapeutic options in many
sub-Saharan African countries.15,16,18

According to the 2016 revised WHO consolidated guidelines on
the use of ARV, HIV-infected children failing PI-based first-line regi-
mens could be switched to a second-line regimen containing an
integrase strand transfer inhibitor (INSTI), and those failing a se-
cond-line regimen could be switched to a third-line regimen
including new drugs with minimal risk of cross-resistance to previ-
ously used regimens, such as INSTIs.19 INSTIs constitute a new
class of ARV drugs, which may be used in both treatment-naive
and treatment-experienced patients.20 Three major INSTIs have
been approved by the US FDA: the first-generation INSTIs raltegra-
vir and elvitegravir, and the second-generation INSTI dolutegra-
vir.20 Globally, INSTIs achieve rapid and durable control of viral
replication with minimal toxicity and have been shown to greatly
improve paediatric outcomes in salvage regimens for children failing
NRTI-, NNRTI- and PI-based first- and second-line regimens.21–25

More recently, the new WHO interim guidelines updated in
December 2018 recommend a dolutegravir-based regimen as the
preferred first-line regimen in ART initiation for adolescents, and
also for infants and children with approved dolutegravir dosing. In
addition, a raltegravir-based regimen is now recommended as the
preferred first-line regimen in ART initiation for neonates and as an
alternative first-line regimen for infants and children for whom
approved dolutegravir dosing is not available.26 However, attention
must be paid for adolescents and young adults as a recent analysis
in childbearing-aged women in Botswana reported a possible as-
sociation between exposures to dolutegravir at the time of concep-
tion and neural tube defects among infants.27

In the Central African Republic, HIV-1-infected children born to
HIV-infected mothers attending the Complexe Pédiatrique of Bangui
for care and treatment have a remarkably high prevalence of viro-
logical failure (around 60%) associated with very high rates of thera-
peutic failure and high rates of DRMs to NRTIs or NNRTIs (45%) and
PIs (24%).11,16,28–30 Overall, 55% of children receiving first-line therapy
were eligible for a second-line regimen and 64% of children under a
second-line regimen urgently needed third-line therapeutic options.16

Finally, the aim of the study was to investigate the frequency of
DRMs and the prevalence of natural polymorphisms of the inte-
grase gene (IN) in cART failure-experienced, INSTI-naive HIV-
infected children living in Bangui, in order to estimate the predictive
efficacy of INSTI-based paediatric regimens prior to their introduc-
tion in the country, as currently recommended for adolescents by
the 2016 consolidated WHO guidelines for paediatric AIDS care in
sub-Saharan Africa,19,26 with further possible extension among
children as young as 4 weeks old, including children receiving TB
co-treatment.26,31,32

Patients and methods

Study design

The paediatric cohort of Bangui, Central African Republic, is an observational
and prospective cohort of HIV-infected children who initiated cART

between 2007 and 2009 and who were followed up at the Complexe
Pédiatrique of Bangui for the treatment of paediatric AIDS, as previously
described extensively.11,16,28,30 Children attending the paediatric complex
are mainly born to HIV-infected mothers who failed PTMCT.

For the present study, a random selection of one out of seven (14%) chil-
dren from the cohort in virological failure according to the 2016 revised
WHO threshold [viral load (VL)�3 log copies/mL or�1000 copies/mL]19 was
carried out for IN sequencing. All selected children had been taking a first- or
second-line WHO-recommended cART regimen for at least 6 months before
inclusion.19 None of the study children had ever received INSTIs.

Virological analysis
Plasma samples from selected children were obtained from the Complexe
Pédiatrique, Bangui and brought in an ice pack to the virology laboratory of
the Hôpital Européen Georges Pompidou, Paris, France. Genes for IN, re-
verse transcriptase (RT) and protease (P) were sequenced using the ViroSeq
HIV-1 genotyping system (Celara Diagnostics, Alameda, CA, USA) with 1 mL
of plasma sample and according to the manufacturer’s instructions, as
described previously.11,16

Genetic analysis and drug resistance
Mutations associated with resistance to NRTIs, NNRTIs, PIs and INSTIs were
identified and interpreted using the Stanford University genotypic resist-
ance interpretation algorithm, the HIV Drug Resistance Database (https://
hivdb.stanford.edu/). The HIV-1 IN, RT and P sequences obtained from this
study were uploaded to European Nucleotide Archive database with the ac-
cession number PRJEB29763. HIV-1 subtyping was established with IN
sequences using the online genotyping tool of the NIH (https://www.ncbi.
nlm.nih.gov/projects/genotyping/formpage.cgi). Phylogenetic analysis was
carried out using MEGA 7 software (https://www.megasoftware.net).

Ethics statements
The study was formally approved by the Scientific Committee of Faculté
des Sciences de la Santé of Bangui, which constitutes the national ethics
committee in Central African Republic (reference #2UB/FACSS/CSVPR/09).
Informed written consent was obtained from the mothers on behalf of the
children participating in the study. The collected data were anonymized be-
fore the analyses.

Statistical analyses
Characteristics of the studied children and the results of this analysis were
entered into a Microsoft Excel data sheet. Means are shown with the stand-
ard deviation (SD) and medians with the IQR.

Results

Study population

Eighteen [median age, 11 years; range, 5–18 years; 8 (44.4%) fe-
male; 10 adolescents (10–19 years of age) and 8 children (3 to
,10 years, according to WHO classification19)] of the 129 children
and adolescents in virological failure from the Complexe
Pédiatrique cohort were randomly selected. Socio-demographic
and biological characteristics of the study children are summarized
in Table 1. Most of the children (n"17, 94.4%) were on a first-line
regimen for a mean duration of 6.2 years (range, 3.8–7.3 years).
Fourteen of them received a combination of zidovudine
(ZDV)! stavudine (d4T)!nevirapine (NVP), two children received
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ZDV! lamivudine (3TC)! efavirenz (EFV) and one child received a
PI-based combination composed of d4T!3TC! lopinavir boosted
by ritonavir (LPV/r). Only one study child was under a second-line
regimen consisting of d4T/3TC/LPV/r for a duration of 3.3 years
after having received a first-line combination of ZDV/d4T/NVP for
1.3 years. Finally, at the time of sampling, the mean lymphocyte
CD4 count was 674 cells/mm3 (range, 55–2467) and the mean VL
was 4.3 log10 copies/mL (range, 3.2–6.3).

IN genotyping and HIV-1 subtyping

Successful genotypes of the IN gene were obtained for all children.
All the HIV-1 strains isolated in these children belonged to non-B
subtypes, with a majority of CRF11_cpx (38.8%), subtype A
(22.2%), CRF01_AE (16.6%), CRF25_cpx (11.2%) and subtype H
and CRF02_AG (5.5%) (Figure 1).

Genotypic resistance in IN gene

The nucleotide sequence of the IN gene was available for 18
plasma samples and the distribution of detected mutations,
including DRMs and polymorphisms, is depicted in Figure 2a.

Two (2/18; 11.1%) viruses from children under a first-line regi-
men had INSTI DRMs at codon 138, known to harbour major resist-
ance mutations (Table 2). One HIV-1 strain showed the DRM
E138K and the other showed E138T, which are both associated
with potential low-level resistance (mutation score, 10) to dolute-
gravir and low-level resistance (mutation score, 15) to raltegravir

and elvitegravir according to the Stanford University algorithm
(Table 2). In addition, the HIV-1 strain harbouring the E138K DRM
also displayed accessory mutations G140K, G163R (Table 2) and
APOBEC-related mutations not associated with resistance, includ-
ing G82E, E85K, G106K, D116N, D167N and E170K. Another HIV-1
strain displayed the accessory mutations G140R and L74I, and
three APOBEC-related mutations: G70R, G149R and G247R. The fol-
lowing unusual mutations were also found in an HIV-1 strain:
L234P, P238G, K240E, G247E, A248G and D256G. Finally, the un-
usual polymorphic mutation T112E was found in the HIV-1 strain
harbouring the E138T DRM.

Polymorphic mutations in the IN gene were frequently
observed: L101I/M, TT124A/G/N and T125A/P/V (100%) were the
most represented, followed by G134D/N/S and L234I/P/V (94.4%);
T112A/E/I/T/V (83.3%), D167E/N (77.7%), K136R/Q/T (66.7%),
I72V (50.0%), S255D/G/N (38.9%), N222K/T, T206S and T218I/L/S
(33.3%); and I135V, I208L and S119P (27.7%). Other polymorphic
mutations were represented at ,20% (Figure 2a).

When comparing the occurrence of polymorphic mutations by
HIV-1 strain according to circulating recombinant forms (CRFs) or
HIV-1 subtypes, CRF01_AE (mean number of mutations per geno-
type 19, range 13–24) and CRF25_cpx (mean number of mutations
per genotype 19, range 14–24) were the most polymorphic sub-
types, followed by subtype A (mean number of mutations per
genotype 17.2, range 12–25), CRF02_AG (15 mutations in a unique
genotype studied), CRF11_cpx (mean number of mutations per
genotype 12.3, range 8–16) and finally the strain identified as a
subtype H (12 polymorphic mutations).

Table 1. Characteristics of ARV drug-experienced, INSTI-naive HIV-1-infected study children in virological failure followed up at the Complexe
Pédiatrique of Bangui who were prospectively and randomly selected

Characteristic Study children (n"18)

Age, years, median (range) 11 (5–19)

Sex, n (%)

male 10 (55.6)

female 8 (44.4)

Therapeutic line, n (%)

first-line 17 (94.4)

second-line 1 (5.6)

Treatment duration, years, mean+SD (range) 6.2+1.5 (3.8–7.3)

CD4 T cell count, cells/mm3, mean+SD (range) 674+162.6 (55–2467)

Viral load, log10 copies/mL, mean+SD (range) 4.3+0.93 (3.2–6.3)

Resistance to ARV drugsa

Total number of genotypes resistant to WHO-recommended drugs, n (%)b 12/15 (80)

DRMs to PI, n (%) 12/15 (80)

DRMs to NRTI, n (%) 11/13 (84.6)

DRMs to NNRTI, n (%) 12/13 (92.3)

DRMs to INSTI, n (%) 2/18 (11.1)

DRMs to NRTI and NNRTI, n (%) 11/13 (84.6)

DRMs to NRTI or NNRTI and PI, n (%) 9/15 (60.0)

DRMs to NRTI or NNRTI and INSTI, n (%) 2/18 (11.1)

aARV resistance genotyping was carried out in 18 plasma samples from children with detectable plasma HIV-1 RNA VL; successful IN, RT and P geno-
types were obtained for 18, 14 and 15 children, respectively.
bn, number of drug-resistance genotypes conferring resistance to one or more WHO-recommended drugs; the percentage indicates the ratio of the
number of drug-resistance genotypes conferring resistance to one or more WHO-recommended drugs out of the total number of successful geno-
types for the P, RT or IN gene.

Mboumba Bouassa et al.

2032



Taken together, the majority (16/18; 88.9%) of HIV-1 IN
sequences demonstrated full susceptibility to all three major
INSTIs with a large frequency of natural polymorphic mutations.

Genotypic resistance in RT and P genes

A total of 13 and 15 of the 18 selected plasma samples were suc-
cessfully genotyped for RT and P genes, respectively. Most (12/15;
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80%) genotyped viruses harboured at least one major DRM con-
ferring resistance to at least one of the WHO-recommended anti-
retroviral drugs prescribed in first- and second-line regimens
(Table 1). The distribution of DRMs and the polymorphism in RT
and P genes are depicted in the Figure 2. DRMs to PIs corre-
sponded mainly to natural polymorphism in the P gene while
only the major DRMs V82A/F (n"3; 20%) and L33F (n"1, 6.7%)
could be found. The majority of genotyped viruses harboured at
least one mutation associated with NNRTI resistance (85.7%) or
with NRTI resistance (78.5%). The genotypic predictive efficacy of
NRTI and NNRTI drugs showed possible therapeutic options for
study children (Table 3). At least one PI drug could be used for
switching in all study children, at least one major NRTI could be
used in all but one (92.8%) child, and at least one NNRTI could be
used in the majority (78.6%) of children. Interestingly, concerning
the best possible association with dolutegravir, all (100%) HIV-1
strains remained susceptible to darunavir, most (11/13; 84.6%)
viruses to tenofovir and a minority to lamivudine (3/13; 23.1%).

Discussion

We herein report for the first time DRMs and polymorphism in
the IN gene of HIV-1 strains from cART-experienced INSTI-naive
HIV-1-infected children and adolescents living in Bangui. Nearly
90% of HIV-1 strains showed predicted full susceptibility to the
three current major INSTI drugs, in association with a large pro-
portion of natural polymorphic mutations. Only two (11.1%) chil-
dren harboured INSTI DRMs at codon 138 (E138K/T), known to
usually display primary major INSTI-selected resistance muta-
tions. Taken together, these observations demonstrated the high
predicted efficacy of INSTIs as alternative ARV options that could
optimize current paediatric regimens in sub-Saharan African
settings.

Currently, INSTIs are still not available for the treatment of
HIV-infected children in sub-Saharan Africa, while the effective-
ness of the current first- and second-line WHO-recommended
paediatric regimens appears to be rapidly waning.15,16,18 Data on
the efficacy of INSTIs in African children are scarce. Almost 90%
(88.9%) of HIV-1 strains from our study children never treated
with INSTIs remain fully susceptible to all three current INSTIs,
with a large proportion of natural polymorphic mutations. Two
(11.1%) children harboured INSTI DRMs at codon 138 (E138K/T),
known to usually display primary major INSTI-selected resist-
ance mutations according to the Stanford University algorithm.33

These findings are in keeping with previous reports indicating
that major INSTI-selected DRMs are uncommon in INSTI-naive
adult patients living in sub-Saharan Africa.20,34–37 However, al-
though these mutational events remain rare, they can nonethe-
less occur in INSTI-naive patients, as observed in our series.
Similar rates of INSTI DRMs have also been reported in previous
studies in INSTI-naive adult patients from other Central African
countries harbouring, as in our study, a large proportion of HIV-1
non-B subtypes.38,39

In this study, one child exhibited the DRM E138K, conferring
potential low-level resistance to dolutegravir and intermediate
resistance to raltegravir and elvitegravir according to the
Stanford University algorithm. Usually, E138K is a non-
polymorphic mutation selected in the case of virological failure
in patients receiving raltegravir, elvitegravir or dolutegravir.40
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But this DRM has also been described as part of the natural poly-
morphism of the IN gene.41 According to the Stanford University
genotypic resistance interpretation algorithm, this mutation alone
does not significantly reduce INSTI susceptibility, but when it occurs
in combination with other primary major INSTI-selected DRMs it is
associated with high-level resistance to raltegravir and elvitegravir
and intermediate reductions in dolutegravir susceptibility.33 The
other mutation at codon 138 observed in our study was E138T,
conferring potential low-level resistance to dolutegravir and low-
level resistance to raltegravir and elvitegravir according to the
Stanford University algorithm. Contrary to our observations, E138T
has been previously described as a rare non-polymorphic INSTI-
selected mutation.42 Our findings suggest that amino acid vari-
ation at the major resistance position 138 could also occur by other
mutational pathways, such as natural polymorphism during viral
replication or selective immune pressure, and not only by the se-
lective drug pressure exerted by the INSTI-based treatment.
Indeed, in our study we analysed HIV-1 strains isolated from
INSTI-naive children, thus excluding the effect of INSTI drugs on
the selection process of these mutations. Furthermore, previous
studies evaluating the variability of the IN gene revealed that
amino acid variations at codon 138 (E138A/D/K/T) could arise from
G-to-A hypermutation resulting from APOBEC-mediated RNA edit-
ing,42 and also from natural polymorphism during viral replica-
tion.41,43 Further in vivo and in vitro studies are thus needed to

better understand the clinical significance of these naturally occur-
ring unusual DRMs in INSTI-naive children.

Along with the DRMs displayed at codon 138, the polymorphic
accessory mutations G140K, G140R, G163R and L74I (5.5% for
each) in the IN gene were also observed in our study. Although
L74I and G163R are usually selected by INSTI drugs,42,44 they have
also been reported in INSTI-naive patients at rates similar to those
reported in the present study;39,40,42,44,45 alone, they do not ap-
pear to be associated with reduced INSTI susceptibility.42–44

Concerning the variation at codon 140, the mutations G140K and
G140R appear to be unusual mutations associated with poly-
morphism. Indeed, at position 140, the usual INSTI-selected
accessory mutations are G140A/C/S, which are associated with a
3- to 5-fold reduction in susceptibility to elvitegravir when they
occur alone.46 In combination with primary major DRMs, they are
associated with .100-fold reduction in susceptibility to elvitegravir
and raltegravir and up to 10-fold reduction in susceptibility to dolu-
tegravir.47,48 However, polymorphism at position 140, similar to
that observed in our study (G140K/R), has been described as lead-
ing to a higher genetic barrier for non-B subtypes to acquire the
usual accessory INSTI-selected DRMs G140A/C/S at this pos-
ition.39,49 Consequently, the HIV-1 strains carrying these unusual
polymorphic mutations (G140K/R) would develop less cross-
resistance to different classes of INSTI drugs compared with HIV-1
strains that do not harbour these polymorphic mutations.
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Figure 2. DRMs expressed as percentage observed in 14, 15 and 18 successful genotypes in HIV-1 RT, P and IN genes, respectively, obtained from 18
children in virological failure (HIV-1 RNA load .1000 copies/mL) followed up at the Complexe Pédiatrique of Bangui. (a) DRMs to INSTIs; (b) DRMs to
PIs; (c) DRMs to NRTIs; and (d) DRMs to NNRTIs. The asterisk indicates polymorphic mutations occurring at ,20% in the integrase gene [E96D, I203M,
N254K and V260I (16.6%), A265V, D232N, D270H, G106A/K, K219N, R269K and V165I (11.1%), A23V, D116N, D229E, D253H, D279N, E85K, E157K,
E170K, E198D/E, E212L, F181L, G70R, G82E, G136R, G149R, G247E, I60M, I200L, I220L, I268I/L, K14R, K111T, K173R, K186R, K188R, K236Q, K240E,
M154I, P238G, Q221S/T, R107K, R166K, R224Q, S195T, S283G, V31I, V110I and Y227F (5.5%)].
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In order to improve therapeutic care of children who failed the
traditional first- and second-line cART regimens, a good alternative
could be the combination of NRTI, NNRTI and PI drugs remaining
active for these children, associated with an INSTI molecule with a
high genetic barrier such as dolutegravir.25,32,50,51 Indeed, second-
generation dolutegravir has been demonstrated to have a high
genetic barrier, thus minimizing the emergence of cross-resistance
with the first-generation INSTIs and the other classes of ARV, mak-
ing this drug the best option for a third-line salvage regimen for
MDR HIV variants.20–22,24,25,52,53

A recent report from the WHO emphasized the introduction of a
fixed-dose combination (FDC) of tenofovir, lamivudine and dolute-
gravir as a suitable optimized cART regimen in low- and middle-
income countries.32 In our study, more than three-quarters of the
children (11/13; 84.6%) were resistant to lamivudine and the first-
generation NNRTIs efavirenz and nevirapine (12/13; 92.3%), mak-
ing these ARV drugs no longer suitable for a possible association as
an FDC with dolutegravir. However, tenofovir remained fully effi-
cient for most of the children (11/13; 84.6%), agreeing with the
WHO report for its use in association with dolutegravir in an FDC-
based regimen. Otherwise, in our study we found that a large pro-
portion (9/13; 69.2%) of the HIV-1 strains remained susceptible to
second-generation rilpivirine, which has also been described as a
good candidate for an optimized dolutegravir-based treat-
ment,50,51 although the presence of the K103N mutation could

limit the efficiency of rilpivirine.54 Finally, PI drugs could also consti-
tute an efficient option for these children and adolescents, as most
of these ARV drugs, especially darunavir, remained fully efficient
(15/15; 100%). Indeed, the use of dolutegravir in combination with
darunavir in cART-experienced HIV-infected patients has been
demonstrated to be convenient in switch therapy.55,56 However,
the cobicistat-boosted darunavir (darunavir/c) formulation should
be preferred to ritonavir-boosted darunavir (darunavir/r), as daru-
navir/r reduces the plasma concentrations of dolutegravir when
prescribed in combination,57 unlike darunavir/c, which has very
minimal impact on dolutegravir plasma concentrations.58

Our study has some limitations. The small sample size of included
children may have introduced a selection bias. In addition, HIV-
infected children living in Bangui frequently have a past history of
sustained stavudine use in their ARV treatment, although this mol-
ecule has not been recommended in ART regimens since 2013.59

In conclusion, our observations demonstrate that INSTI drugs
could be proposed in first-line regimens in the majority of children
and adolescents, especially dolutegravir, which is currently recom-
mended by WHO for adults, adolescents and children with approved
dolutegravir dosing.19,26 In addition, INSTIs may also constitute rele-
vant therapeutic alternatives in HIV-infected African children and
adolescents in therapeutic failure for first- or second-line WHO-rec-
ommended cART regimens. RT, P and IN genotypic backgrounds ap-
pear critical for selecting the most effective NRTI, NNRTI and PI drugs

Table 3. Antiretroviral drug susceptibility in NRTIs, NNRTIs and PIs among ARV drug-experienced, INSTI-naive HIV-1-infected study children in viro-
logical failure followed up at the Complexe Pédiatrique of Bangui and prospectively included

Specimen

PIa NRTI
NNRTI first
generation

NNRTI second
generation

Drugs remaining efficientDRV ATV SQV TPV 3TC ABC ZDV d4T ddI FTC TDF EFV NVP ETV RPV

BA7 S S R S R S R R S R S R R S S DRV, ATV, TPV, ABC, ddI, TDF, ETV, RPV

BA11 S S S S R S R S S R S R R I S DRV, ATV, SQV, TPV, ABC, d4T, ddI, TDF, RPV

BA22 S S S R R S I I S R S R R R R DRV, ATV, SQV, ABC, ddI, TDF

BA41 S S S S R S S S S R S R R S S DRV, ATV, SQV, TPV, ABC, ZDV, d4T, ddI, TDF, ETV, RPV

BA106 S S S R R S S S S R S R R S S DRV, ATV, SQV, ABC, ZDV, d4T, ddI, TDF, ETV, RPV

BA110 S S S R S S S S S S S S S S S DRV, ATV, SQV, 3TC ABC, ZDV, d4T, ddI,

FTC, TDF, EFV, NVP, ETV, RPV

BA116 S S S R R S S S S R S R R S S DRV, ATV, SQV, ABC, ZDV, d4T, ddI, TDF, ETV, RPV

BA149 S S S S R S S S S R S R R S S DRV, ATV, SQV, TPV, ABC, ZDV, d4T, ddI, TDF, ETV, RPV

BA246 S S S R R R R R S R I R R R R DRV, ATV, SQV, ddI

BA247 S S S R R S R R S R S R R S R DRV, ATV, SQV, ABC, ddI, TDF, ETV

BA248 S S S R – – – – – – – – – – – DRV, ATV, SQV

BA249 S S S R R R R R R R R R R R R DRV, ATV, SQV

BA250 S R S R S S S S S S S S R S S DRV, SQV, 3TC ABC, ZDV, d4T,

ddI, FTC, TDF, EFV, ETV, RPV

BA252 S S S R – – – – – – – – – – – DRV, ATV, SQV

BA253 S R S R S S S S S S S S S S S DRV, SQV, 3TC ABC, ZDV, d4T, ddI,

FTC, TDF, EFV, NVP, ETV, RPV

Dashes represent lack of available genotyped sequences.
S, susceptible; I, intermediate; R, resistant; ATV, atazanavir; DRV, darunavir; FPV, fosamprenavir; IDV, indinavir; LPV/r, lopinavir boosted by ritonavir;
NFV, nelfinavir; SQV, saquinavir; TPV, tipranavir; 3TC, lamivudine; ABC, abacavir; ZDV, zidovudine; d4T, stavudine; ddI, didanosine; FTC, emtricitabine;
TDF, tenofovir; EFV, efavirenz; NVP, nevirapine; ETV, etravirine; RPV, rilpivirine.
aAll genotyped viruses were susceptible to the following PIs not included in Table 2: FPV, IDV, LPV/r and NFV.
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before switching cART to an optimized combination along with dolu-
tegravir in HIV-infected children in therapeutic failure.
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