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Globally, more than 250 million people are affected by depression (major depressive
disorder; MDD), a serious and debilitating mental disorder. Currently available treatment
options can have substantial side effects and take weeks to be fully effective. Therefore,
it is important to find safe alternatives, which act more rapidly and in a larger number
of patients. While much research on MDD focuses on chronic stress as a main risk
factor, we here make a point of exploring dietary factors as a somewhat overlooked,
yet highly promising approach towards novel antidepressant pathways. Deficiencies
in various groups of nutrients often occur in patients with mental disorders. These
include vitamins, especially members of the B-complex (B6, B9, B12). Moreover, an
imbalance of fatty acids, such as omega-3 and omega-6, or an insufficient supply with
minerals, including magnesium and zinc, are related to MDD. While some of them are
relevant for the synthesis of monoamines, others play a crucial role in inflammation,
neuroprotection and the synthesis of growth factors. Evidence suggests that when
deficiencies return to normal, changes in mood and behavior can be, at least in
some cases, achieved. Furthermore, supplementation with dietary factors (so called
“nutraceuticals”) may improve MDD symptoms even in the absence of a deficiency.
Non-vital dietary factors may affect MDD symptoms as well. For instance, the most
commonly consumed psychostimulant caffeine may improve behavioral and molecular
markers of MDD. The molecular structure of most dietary factors is well known. Hence,
dietary factors may provide important molecular tools to study and potentially help treat
MDD symptoms. Within this review, we will discuss the role of dietary factors in MDD risk
and symptomology, and critically discuss how they might serve as auxiliary treatments
or preventative options for MDD.

Keywords: major depressive disorder, dietary factors, antidepressants, vitamins, fatty acids, caffeine, minerals

MDD – A MAJOR HEALTH CHALLENGE IN MODERN SOCIETIES

Anhedonia, feelings of guilt and worthlessness, circadian alterations and a lack of motivation are
only some symptoms of major depressive disorder (MDD; Krishnan and Nestler, 2010; Edgar
and Mcclung, 2013). In 2016, the global prevalence of MDD amounted to 268.2 million people
worldwide and accounted for 44.2 million life-years lost to disability (Vos et al., 2017). Major
depressive disorder is the main cause for suicide and therefore potentially lethal (Bebbington, 2001).
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The MDD-related loss in productivity at work costs governments
annually billions of dollars [e.g., Switzerland: 8.2 billion Euros
(2008) (Tomonaga et al., 2013); United States: 210.5 billion
dollars (2010) (Greenberg et al., 2015)]. Major depressive
disorder is now one of the largest categories of health care
expenditure, in part due to patients, which are resistant
to currently available treatments (Mrazek et al., 2014). In
contrast to many formerly life-threatening diseases, which have
been successfully controlled due to hygiene, vaccination and
antibiotics, the risk for MDD is on the rise in many modern
societies (Hidaka, 2012). Hence, the research field of MDD is
becoming increasingly recognized.

Throughout the years, various risk factors for MDD
were described. Besides a genetic predisposition, multiple
environmental risk factors have been determined. These
include traumatic events in early or adult life and chronic
stress (Mann and Currier, 2006). Hence, a complex interplay
between social, psychological and genetic factors seems to be
responsible for MDD.

Perhaps due to the multifactorial nature of this illness, a large
population of MDD patients does not fully respond to current
pharmacological antidepressant treatments (Krystal et al., 2019),
which moreover take weeks to reach their full efficacy (Harmer
et al., 2017). Nevertheless, the choice in treatment options
has been greatly expanded during the last decades. Despite a
good amount of serendipity in antidepressant research, over the
last years, various treatments have been developed based on
functional hypotheses of MDD: Medications that increase the
amount of monoamines, suppress an overactive hypothalamic-
pituitary-adrenal (HPA) axis or anti-inflammatory drugs are
used to counteract MDD (Ferrari and Villa, 2017), albeit more
unconventional paths such cholinergic and opioid signaling are
under investigation as well (Papakostas and Ionescu, 2015).
Although those antidepressants evoke a response at the molecular
level within hours, it often takes weeks before a therapeutic
effect takes place. A possible alternative, which is mainly used
in therapy-resistant cases, lies in the fast-acting compound
ketamine (Krystal et al., 2019). This drug, originally used as a
sedative and abused as a psychoactive substance, has an anti-
depressant effect that occurs within hours and lasts for several
days. Consequently, it is a fast-acting and highly effective drug
against MDD. However, due to its abuse potential, the use of
ketamine is limited and not practicable as a long-term treatment
(Andrade, 2017).

Alternatively, there are non-pharmaceutical interventions
available. Light therapy, sleep restriction, as well as psycho-
therapeutic interventions such as interpersonal therapy and
cognitive behavioral therapy can cause some improvements
in MDD (Markowitz and Weissman, 2004; Golden et al.,
2005; Anthes, 2014; Murphy and Peterson, 2015). Indeed,
cognitive behavioral therapy has been shown to be as effective
as pharmacological interventions (Weitz et al., 2015). Other
non-pharmacological interventions in use for MDD are
electroconvulsive therapy, trancranical magnetic stimulation
and vagus nerve stimulation, all of which can be effective in
refractory cases (O’Reardon et al., 2006). However, some of
these treatments come at a considerably larger cost to healthcare

providers, require invasive protocols or remain stigmatized
(O’Reardon et al., 2006; Ross et al., 2019). In consequence,
despite their health-benefits, non-pharmacological interventions
are often not sufficiently available.

Interestingly, despite accumulating evidence for a link
between MDD and nutrition, dietary factors as potential
pharmacological tools for MDD treatment have been largely
overlooked. Hence, in this review we will make a point, that
more effort should be invested in this direction: Deficiencies
in numerous nutrients, including vitamins, minerals or fatty
acids, are more commonly observed in patients with mental
disorders. By correcting dietary deficiencies, both behavioral
changes and an improvement in mood may be achieved (Rao
et al., 2008). Furthermore, preliminary evidence suggests
that supplementation with certain dietary factors might
improve MDD-symptoms even in non-deficient populations.
Additionally, non-vital nutritional factors such as caffeine
may positively affect MDD-symptomology (Lucas, 2011).
Supplementation with dietary factors may be a safe, cost-effective
and easily implementable therapeutic approach. Moreover,
dietary factors provide well-characterized single-molecule tools
to unravel previously unknown molecular pathways underlying
MDD in animal models. In this review, we will discuss the
role of selected dietary factors in MDD and we will critically
examine how they might serve as an adjunctive treatment or
preventative option for MDD.

DEPRESSION – AN ILLNESS WITH MANY
CAUSES

The brain areas affected in MDD are largely known. These
comprise regions involved in cognitive and emotional processing,
including the prefrontal cortex, hippocampus, hypothalamus
and amygdala as well as the brain reward system (nucleus
accumbens, ventral tegmental area, habenula). Nevertheless, the
exact pathophysiological origin of the disease remains unclear.
Up to now, various hypotheses about the molecular cause of
MDD have been established:

1.) The monoamine hypothesis is one of the best-known
theories on the molecular origins of MDD: The underlying
assumption is that a depletion of monoamines is
responsible for MDD-symptoms. Monoamines such as
norepinephrine (NE), serotonin (5-HT), and dopamine all
play a crucial role in the coordination of mood, motivation,
and circadian rhythms – processes, which are often
affected during MDD (Hamon and Blier, 2013). Several
studies have provided causal evidence that an insufficient
supply or an increased degradation of monoamines, and
dysregulation of subsequent signal transduction pathways,
cause MDD-like symptoms (Meyer et al., 2006; Prins et al.,
2011; Ferrari and Villa, 2017).

2.) Growth factors are associated with MDD as well. In
particular, the brain-derived neurotrophic factor (BDNF) is
strongly correlated with antidepressant action (Bjorkholm
and Monteggia, 2016). Brain-derived neurotrophic factor
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is widely expressed in the central nervous system and
is important for neuronal maturation, but also for
synapse formation and synaptic plasticity. The activity of
BDNF is regulated by the cyclic AMP response element
binding protein (CREB), which binds to its promoter
region. Brain-derived neurotrophic factor modulates
tropomyosin receptor kinase B receptors (TRKB), thereby
influencing neurotransmission and synaptic plasticity.
A transcriptional dysregulation of BDNF and TRKB has
been commonly observed in MDD (Dwivedi et al., 2003;
Qi et al., 2015; Bjorkholm and Monteggia, 2016) and in
suicide completers (Maussion et al., 2014). This suggests
that the TRKB-pathway may be an interesting target
for possible treatment approaches. Lesser known growth
factors implicated in MDD are fibroblast growth factor,
vascular endothelial growth factor, insulin-like growth
factor and glial cell-line derived neurotrophic factor
(Levy et al., 2018).

3.) Another hypothesis implicates the hypothalamus-
pituitary-adrenal (HPA) axis and specifically addresses
the link between chronic stress and MDD-risk (Pariante
and Lightman, 2008). Through a hormonal cascade,
stress increases the secretion of adrenal glucocorticoids.
Glucocorticoids are involved in the control of neuronal
survival, neurogenesis, synaptic plasticity and hippocampal
size, linking brain function and stress (McEwen, 2017).
Intriguingly, glucocorticoids can inhibit their own release
via a negative feedback loop, which is thought to be
impaired in MDD (Pariante and Lightman, 2008). Chronic
stress can lead to a disruption of this negative feedback
loop. The result is a frequently observed overactivation of
the HPA axis in MDD-patients (Bhagwagar et al., 2003;
Bao and Swaab, 2010).

4.) Furthermore, there is evidence for a link between
inflammation and MDD (Miller et al., 2009). Analysis of
peripheral blood from MDD-patients revealed elevated
levels of inflammatory biomarkers, including cytokines,
chemokines, and adhesion molecules (Howren et al.,
2009). These molecules can cross the blood–brain barrier,
where they interact with different brain regions involved
in monoamine synthesis, neuroendocrine regulation, and
neuronal plasticity, which are heavily implicated in MDD
(Ferrari and Villa, 2017). Since inflammation affects
monoamines and the HPA axis, an interaction between
many different factors is likely to contribute to MDD.

5.) Cellular damage due to excitotoxicity, changed gene
expression, chronic stress (e.g., due to nitric oxide) or
elevated inflammation in the brain can also be observed
during aging. Symptoms that are associated with MDD,
including cognitive decline, fatigue, or sleep disturbances,
often occur in aged populations, especially in the context of
neurodegenerative diseases. Furthermore, MDD patients
have a shorter average life expectancy. This connection led
to the hypothesis that MDD is a condition of accelerated
brain aging (Heuser, 2002; Wolkowitz et al., 2010; Kinser
and Lyon, 2013). Postmortem examination of the brains
of MDD patients revealed anatomical changes consistent

with this idea, including a reduction in gray matter volume
(Grieve et al., 2013; Zhao et al., 2014), neuronal loss (Banasr
et al., 2011), and impaired cerebral blood flow (Burrage
et al., 2018). On a molecular level, MDD patients tend to
show a reduced telomere length (Monroy-Jaramillo et al.,
2018), altered DNA methylation (Peña and Nestler, 2018)
and accumulated damage in mtDNA (Kasahara and Kato,
2018), which all have been implicated in aging (Booth and
Brunet, 2016). However, it is currently unclear, whether
these alterations contribute to MDD or are the result of it.

6.) MDD can be, at least in part, understood as a metabolic
disorder. There is a bidirectional comorbidity between
MDD and obesity (Milaneschi et al., 2019). Above-
mentioned alterations in the HPA-axis and inflammation
as well as genetics may be shared risk factors for both,
MDD and metabolic changes. However, more direct
metabolic regulators may affect MDD as well. For instance,
the feeding hormone leptin has antidepressant-like effects
in mouse models (Yamada-Goto et al., 2011; Garza et al.,
2012), while deletion of the leptin receptor in certain brain
areas can induce resistance to common antidepressants
(Guo and Lu, 2014). There may also be an association
between insulin resistance and MDD in patients (Kan
et al., 2013). The microbiome, which is critical in both,
regulating nutrient uptake and fighting inflammation,
appears to be affected in MDD patients as well (Jiang et al.,
2015; Zhernakova et al., 2016; Lin et al., 2017). However,
secondary effects due to antidepressant medications need
to be ruled out when interpreting those studies. Given
those contributing factors, it is intriguing to speculate that
MDD may be a manifestation of a metabolic syndrome.
Interestingly exercise, a main regulator of metabolism,
has been repeatedly shown to ameliorate MDD symptoms
(Carek et al., 2011).

7.) Twin studies suggest that MDD is only 37% heritable
(Kendler, 2001). Hence, there is a strong environmental
component to this disorder. Epigenetic mechanisms can
modify chromatin without affecting the DNA-sequence
and are known to integrate environmental risk factors and
genetic propensity to ultimately affect gene transcription.
There is accumulating evidence that a variety of chromatin
modifications is altered both, in peripheral tissue (typically
blood), and postmortem in the brains of MDD patients
(Penner-Goeke and Binder, 2019).

DNA methylation is thought to be the most stable and long-
lasting chromatin modification. Hence, MDD risk factors such as
early life trauma may alter DNA methylation patterns to shape
disease risk later in life (Matosin et al., 2017). In monozygotic
twin studies, DNA methylation patterns were associated with
MDD risk later in life (Palma-Gudiel et al., 2020). Of the many
DNA methylation changes described in MDD, changes in the
BDNF gene have been most often replicated (Chen et al., 2017;
Penner-Goeke and Binder, 2019).

Not only DNA, but histones, too, can be methylated –
albeit by a different enzymatic machinery. Of the plethora of
histone residues, changes in the repressive marks H3K4me3
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and H3K27me3 have been described in MDD patients and
suicide victims (Ernst et al., 2009; Chen et al., 2011; Fiori et al.,
2012). Moreover, histone acetylation changes have been observed
postmortem at the enhancer mark H3K14ac (Covington et al.,
2009). Accordingly, changes in histone deacetylase enzymes
HDAC2 and SIRT1 have been detected in postmortem brain
tissues of MDD patients (Covington et al., 2009; Kishi et al., 2010;
Ledford, 2015). Rodent models of MDD have shown an even
larger number of changed histone marks, suggesting that there
may be a specific histone foot print induced by chronic stress
(Nestler et al., 2015). Besides “classical” epigenetic modifications
on histones and DNA, a large number of micro-RNA changes in
peripheral tissue has been implicated in MDD. Of these, miR-132
has most often been replicated (Yuan et al., 2018). Furthermore,
a reduced telomere length has been observed in patients with
MDD (Henje Blom et al., 2015; Monroy-Jaramillo et al., 2018)
and bipolar depression (BD; Squassina et al., 2017; Powell et al.,
2018). Telomeres are relevant to maintain genome stability and
their shortening is typically associated with aging in mitotic
cells. Furthermore, mutations in mitochondrial DNA have been
detected in patients suffering from MDD and BD (Kato, 2017;
Czarny et al., 2018).

The epigenetics field is highly dynamic. New histone
modifications such as dopaminylation and homocysteinylation
are still being discovered (Zhang et al., 2018; Lepack et al.,
2020). It is very likely that additional chromatin marks that
are just being described or are currently still unknown, play a
role in MDD as well.

All of the MDD hypotheses mentioned above are
interconnected. For instance, changed DNAme in the BDNF
pathway connects epigenetic and growth factor aspects (Bakusic
et al., 2017), while increased inflammation and oxidative stress
can lead to epigenetic changes such as reduced telomere length
and mtDNA mutations (Czarny et al., 2018).

VITAMINS AND THEIR ROLE IN
DEPRESSION

Vitamin B6 Is an Essential Puzzle Piece
for Neurotransmitter Production
Pyridoxine, pyridoxal, and pyridoxamine are three related,
naturally occurring isoforms that are grouped together under the
name of vitamin B6. They can be obtained from a variety of
food, including meat, dairy products, grains, nuts, vegetables, and
certain fruits. Once absorbed in the small intestine, all isoforms
can be converted into pyridoxal 5′-phosphate (PLP), the active
metabolite of B6, which modulates more than 150 enzymatic
reactions within the body. In consequence it is involved in several
processes related to mental function and mood as well (Hvas
et al., 2004; Mikkelsen et al., 2016).

The production of serotonin (5-hydroxytryptamine, 5-HT),
a neurotransmitter that is depleted during MDD, takes place
primarily in the raphe nuclei of the brain. Although it is possible
to ingest 5-HT with the diet, the molecule itself cannot cross the
blood-brain barrier. However, tryptophan (TRP), the precursor

of 5-HT, can enter the brain. Two enzymes within serotonergic
neurons are then responsible for the conversion of TRP into 5-
HT: Hydroxylation of TRP is induced by tryptophan hydroxylase
2 (TPH2), followed by decarboxylation through aromatic L-
amino acid decarboxylase (AADC) (Figure 1). Pyridoxal 5′-
phosphate acts as a cofactor for AADC and is hence crucial for the
synthesis of 5-HT in the brain. Therefore, a vitamin B6 deficiency
could lead to reduced 5-HT levels and may thus be a potential
risk factor for MDD (Höglund et al., 2019; Mikkelsen et al.,
2016). Furthermore, low levels of PLP may be associated with
stress (McCarty, 2000). Accordingly, supplementation with both,
vitamin B6 and TRP, increases 5-HT neurotransmission (Shabbir
et al., 2013).

Vitamin B6 supplementation improved MDD-symptoms in
an aged cohort and vitamin B6 levels generally correlated
with MDD severity (Moore et al., 2019). Furthermore, lower
vitamin B6 intake correlated with disease severity in female
MDD-patients (Kafeshani et al., 2019). The diagnosis of vitamin
B6 deficiency in MDD patients and the subsequent change
in diet could therefore serve as a treatment complementary
to drug therapy.

Vitamin B6 is not only part of the 5-HT synthesis pathway,
it also plays a role in the kynurenine pathway (Figure 1).
Pyridoxal 5′-phosphate serves as a co-factor for both, kynurenine
aminotransferase and kynurenine hydroxylase. The products of
this pathway are the neuroprotective metabolite kynurenic acid
(KYNA) and the neurotoxic substance quinolinic acid (QUIN).
Normally, the effects of KYNA and QUIN are well balanced.
However, during chronic stress or inflammation, the equilibrium
can be shifted towards QUIN. Being an agonist of N-methyl-
D-aspartate (NMDA) receptors, high concentrations of QUIN
can induce excitotoxicity (Guillemin, 2012) and may contribute
to the neural damage often observed in MDD-brains (Miura
et al., 2008; Meier et al., 2016). Elevated glutamate concentrations
can also lead to oxidative stress and mitochondrial damage via
an increase in nitric oxide synthases (nNOS, iNOS) (Dawson
et al., 1991), which can contribute to inflammatory processes.
An upregulation of inflammatory mediators is not only induced
by QUIN but also occurs in the absence of vitamin B6
(Ueland et al., 2017).

Pyridoxal 5′-phosphate is a co-factor for a variety of enzymes
that affect the homocysteine pathway (see below) (Wu and
Lu, 2012). Vitamin B6 may therefore indirectly alter chromatin
marks such as DNA- and histone methylation as well as
chromatin structure.

Furthermore, vitamin B6 is an important metabolite in
the production of gamma amino butyric acid (GABA) out
of its precursor glutamate (McCarty, 2000; Jung et al., 2019).
A decreased turnover of GABA due to vitamin B6 deficiency
could therefore result in a lack of inhibitory feedback in the brain.
This mechanism could further amplify the damage caused by
increased glutamate levels.

NFκB, a transcription factor involved in the production of
cytokines and cell survival, is influenced by vitamin B6 as
well. It modulates the immune response of macrophages and
is suppressed in the presence of PLP (Yanaka et al., 2005).
The resulting inflammatory response activates the kyurenine
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FIGURE 1 | Vitamin B6 acts on MDD-related pathways via a variety of mechanisms. TDG/IDG, tryptophan dioxygenase or indoleamine dioxygenase; KYN,
kynurenine; QUIN, quinolonic acid; ROS, reactive oxygen species; TPH2, tryptophan hydrolase 2; AADC, amino acid decarboxylase; KYNA, kynurenic acid. Arrows:
permissive effects, cross bars: inhibitory effects.

pathway further (Ueland et al., 2017). Therefore, vitamin B6
has key functions in monoamine synthesis and is involved in
the regulation of the immune response to various stressors.
A misregulation of these processes due to insufficient supply can
lead to 5-HT depletion and increased inflammation, which links
vitamin B6 deficiency to a variety of risk factors for MDD.

Prophylactic intake of vitamin B6 did not reduce the risk
of MDD among older women in a 7-year longitudinal study
(Okereke et al., 2015). However, in this study, potential prior
deficiencies have not been investigated, which impedes the
interpretation of the data. In contrast, vitamin B6 appeared
to rapidly ameliorate symptoms such as low mood in young
MDD-patients when the disease was already present, even
though in this study, deficiencies have not been assessed either
(Tsujita et al., 2019). Furthermore, the beneficial properties of
vitamin B6 have been demonstrated in a variety of non-deficient
rodent studies. For instance, vitamin B6 improved behavioral
measures in forced swim and sucrose preference tests in the
dexamethasone mouse model of depression (Mesripour et al.,
2019). Additionally, when co-administered, vitamin B6 enhanced
the effect of antidepressants clomipramine and venlafaxine but
not fluoxetine in the forced swim test (Mesripour et al., 2017).
However, further research is required to make more precise
predictions on the efficacy of vitamin B6 supplements in MDD.
For instance, in human cohorts, an undiagnosed vitamin B6
deficiency or an interaction with other risk factors such as stress
and comorbid diseases should be taken into consideration when
designing future studies. In mouse models, the effect of vitamin

B6 on the susceptibility to chronic stress should be investigated,
paying special attention to chronic versus fast-acting effects of
vitamin B6. Furthermore, the impact of vitamin B6 on manic
states in BD is insufficiently investigated. For instance, a case
report suggests that vitamin B6, at least in combination with
other substances, may induce secondary mania (Chaturvedi and
Upadhyaya, 1988). However, it appears that vitamin B6 may
have a positive effect on lithium-induced tremor in patients
(Dias Alves et al., 2017).

Two Main Players Within the One Carbon
Metabolism – Vitamin B9 and B12
Two other members of the vitamin B-complex are often
associated with MDD. Vitamin B9 (folate) is primarily obtained
from plant-based nutrients, while vitamin B12 (cobalamin) is
only synthesized by bacteria and enriched across the food chain in
animal products and certain algae or fungi. Together they are two
interdependent nutrients, which are involved in the regulation of
various essential processes, including the methionine cycle, the
one-carbon metabolism and monoamine synthesis (Figure 2).

The methionine cycle, which is responsible for the
synthesis of methionine and the universal methyl donor
S-adenosylmethionine (SAM), heavily depends on vitamin B9
and B12. Methionine is produced through the methylation of
homocysteine (Froese et al., 2019). This reaction is catalyzed
by the methionine synthase, which uses vitamin B12 as a
co-factor and 5-methyltetrahydrofolate (5-MTHF), a primary
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biological active form of vitamin B9 as methyl-group donor.
During vitamin B9/12 deficiencies, 5-MTHF conversion
to tetrahydrofolate (THF) is decreased. At the same time
there is an accumulation of the metabolite homocysteine
(Mikkelsen et al., 2016). Although homocysteine is an important
precursor for the production of methionine, SAM, and
THF, elevated concentrations of homocysteine cause cerebral
damage and a decline in cognitive abilities and memory
(Obeid and Herrmann, 2006; Moore et al., 2018). Being an
agonist of the NMDA receptor, homocysteine can increase
postsynaptic Ca2+ levels and thereby contribute to excitotoxicity
(Lipton et al., 1997).

Elevated homocysteine levels can also promote oxidative stress
via the production of reactive oxygen species (ROS; Djuric
et al., 2018). The result is a disruption in energy supply, which
can lead to neuronal damage and an increased inflammatory
response (Obeid and Herrmann, 2006). Correspondingly, a
vitamin B9 deficiency causes an increased expression of pro-
inflammatory cytokines via homocysteine (Mikkelsen et al.,
2017). Inflammation is affected by vitamin B9/12 via other
pathways as well. The NFκB pathway is suppressed by vitamin
B9 (Au-Yeung et al., 2006). Moreover, weak evidence suggests
that vitamin B12 stimulates the proinflammatory interleukin-6
production in rats (Scalabrino et al., 2002).

A deficiency in vitamin B9 and B12 not only causes elevated
homocysteine levels and increased inflammation in the brain,
but also reduces the amount of available SAM (as measured in
a reduced SAM/SAH ratio). The methyl donor SAM is required
for the methylation of DNA, proteins and neurotransmitters,
thereby controlling their transcription, structure and activity.
Hence, abnormal SAM-levels can affect transcription, chromatin
structure and DNA repair (De Berardis et al., 2016). Accordingly,
SAH is inhibitor of methyltransferases (Berger and Sassone-
Corsi, 2016). Notably, there is accumulating evidence that SAM
may have antidepressant effects (De Berardis et al., 2016; Karas
Kuželièki, 2016). Rats fed with a diet rich in methyl-donors show
improved depressive-like behaviors (McCoy et al., 2016)

Folate deficiency is associated with increased levels of DNA
methyltransferases and histone methyltransferases (Ghoshal
et al., 2006). Furthermore, supplementation with a variety
of nutraceuticals including folate, cobalamin, choline, and L-
methionine, inhibited HDAC1 in rodents (Cho et al., 2014).
Unfortunately, few studies have investigated the impact of
single vitamins on chromatin marks, especially not in human
peripheral tissue. An intriguing new link between the one-
carbon metabolism and chromatin may be the posttranslational
modification homocysteinylation, which has been detected in
neurons on histone 3 lysine 79 (Zhang et al., 2018). It’s relevance
to mental disorders is currently not known.

Besides the one-carbon metabolism, vitamin B9 and B12
can affect monoamine synthesis. Tetrahydrobiopterin (BH4) is
a major cofactor in the conversion of various amino acids to
5-HT, dopamine, and NE. Tetrahydrobiopterin is the limiting
agent in the synthesis, while being also extremely susceptible to
oxidation. The oxidized form of BH4, known as dihydrobiopterin
(BH2) is reconverted into BH4 with the help of dihydrofolate
reductase, an enzyme requiring THF as a cofactor for its reaction.

During vitamin B9 deficiency, there is lower BH2 recycling
and monoamine production (Miller, 2008). This could result in
reduced levels of 5-HT and dopamine that are often observed in
MDD (Miller, 2008; Ramaekers et al., 2016).

With the help of SAM, NE is converted into melatonin,
a main hormonal regulator of circadian rhythms, which is
often disrupted in MDD (Mendoza, 2019). Dysregulation of
the noradrenergic system due to vitamin B9/12 deficiency
may therefore contribute to MDD-symptoms through a
variety of mechanisms.

In summary, vitamin B9 and vitamin B12 are involved in
many mechanisms that are impaired in MDD. The synthesis of
monoamines, the regulation of the immune response, chromatin
modifications as well as the removal of metabolic by-products
with neurotoxic effects are disrupted during vitamin B9/12
deficiencies. Both interact and influence one another. This,
however, also results in studies that are often insufficiently
distinguishing between the effects of each vitamin on its’ own.

Human studies on vitamin B9 generally support its’ role in
MDD. For instance, a large meta-analysis shows that vitamin
B9 deficiency is associated with higher MDD risk, even after
controlling for confounding factors (Gilbody et al., 2007).
Vitamin B9 deficiency also occurs more often in treatment-
resistant patients and correcting this deficiency can aid in
MDD-treatment (Coppen and Bolander-Gouaille, 2005; Fava and
Mischoulon, 2009; Mikkelsen et al., 2016). The link between
vitamin B12 and Major depressive disorder is even more evident.
Vitamin B12 deficiency leads to symptoms of MDD, and can
be diagnosed in up to one third of MDD patients (Mikkelsen
et al., 2016). Accordingly, chronic supplementation with injected
vitamin B12 improved MDD-symptoms in two large cohorts
(Walker et al., 2012; Syed et al., 2013). Notably, chronic
supplementation with either, vitamin B9 or vitamin B12, may
improve MDD-symptoms particularly in men (Murakami et al.,
2008; Gougeon, 2014).

In rodents, vitamin B12 deficiency induces MDD-
like symptoms (Ghosh et al., 2018). Notably, chronic
supplementation with methyl donors including vitamin B9
and vitamin B12 improved depression-like behaviors in a
non-deficient rodent model of early life stress (Paternain
et al., 2016). Chronic vitamin B9 supplementation on its’ own
prevented stress-induced depressive-like effects in mice (Rosa
et al., 2014). Interestingly, an acute dose of vitamin B9 was
sufficient to prevent the detrimental effects of acute stress on
behavior and hippocampal biomarkers of MDD in mice as
well (Budni et al., 2013). Furthermore, a single acute dose
of vitamin B12 in non-deficient mice ameliorated molecular
and behavioral effects reminiscent of depression induced by
a combination of chronic and acute stress (Trautmann et al.,
2020a). This suggests, that vitamin B9 and B12 may potentially
have fast-acting antidepressant effects, at least in rodents. Hence,
the underlying pathways should be explored further to reveal
potentially undescribed fast-acting antidepressant pathways.

Serum folate levels are reduced in patients with BD as
well (Hsieh et al., 2019). Furthermore, BD patients may
have elevated homocysteine levels during the manic episode
(Permoda-Osip et al., 2013). Accordingly, it has been suggested
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FIGURE 2 | Vitamins B9 and B12 regulate MDD-pathways via the one-carbon metabolism and beyond. MET, methionine; Homocys, homocysteine; NE,
norepinephrine; THF, tetrahydrofolate; 5-MTHF, 5-methyltetrahydrofolate; ROS, reactive oxygen species; SAM, S-adenosylmethionine; BH2, dihydrobiopterin; BHç:
tetrahydrobiopterin. Arrows: permissive effects, cross bars: inhibitory effects.

that folate as an adjunct therapy with regular medication
may be beneficial to treat manic phases in BD patients
(Behzadi et al., 2009; Nierenberg et al., 2017). In rats,
too, a combination of chronic folate and lithium chloride
improved behavioral measures in the metamphine model of
mania (Menegas et al., 2020). However, in a prospective study
with people at familial risk for mood disorders, no effect
of folate on disease was observed but folate supplementation
caused a slight delay in disease onset (Sharpley et al., 2014).
Unfortunately, despite being otherwise rigorously designed,
this study, too, did not assess any initial deficiencies. To
our knowledge, no hypomania was induced by folate or
vitamin B12 supplementation.

TRACE MINERALS AND MDD-RISK

Magnesium May Improve Mood Through
the Gut
The bivalent cation magnesium (Mg2+) is an important
modulator of various processes in the human body. It serves
as a cofactor in over 300 different reactions, including DNA
replication, transcription and translation (Schwalfenberg and
Genuis, 2017). Obtained from foods such as nuts, seeds, grains,
and green leafy vegetables, Mg2+ is essential for healthy brain

function. Accordingly, Mg2+ is implicated in a variety of illnesses
(Volpe, 2013).

Mg2+ blocks the NMDAR in a voltage-dependent manner.
Hence, in the brain, Mg2+ deficiency can lead to excitotoxicity
and ROS production (Murck, 2013; Figure 3A). Indeed, the
action of Mg2+ on the glutamatergic system has been likened
to that of the glutamatergic regulator ketamine, which has fast-
acting antidepressant effects (Górska et al., 2019). Accordingly,
both ketamine and Mg2+ evoke similar downstream changes
such as increased expression of eukaryotic elongation factor
2 and BDNF (Slutsky et al., 2010; Pochwat et al., 2015),
and both have similar effects on slow wave sleep in humans
(Murck, 2013).

Mg2+ deficiency also acts on the brain indirectly via
the gut-brain-axis. The gut microbiome produces hormones
and neuro-active molecules and has a major impact on
the immune system. Notably, there is an interplay between
microbiome composition and MDD (Bastiaanssen et al.,
2020). Mg2+ deficiency disturbs the composition of the gut
microbiome in mice (Pyndt Jørgensen et al., 2015), while
Mg2+ supplementation increases the microbial diversity in
the gut (Crowley et al., 2018). Mg2+ induced changes in the
microbiome can also affect the levels of circulating cytokines,
and therefore increase the risk for systemic inflammation
during Mg2+ deficiency (Wang et al., 2018) . An increase in
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the inflammatory markers C-reactive protein (CRP), IL-6,
and TNFα can contribute to neuronal damage and defective
myelination, and may contribute to the cognitive symptoms in
some depressed patients (Cubała and Landowski, 2014). Since
glutamate-induced ROS can trigger an immune response as
well, Mg2+ deficiency can alter the immune response by two
different mechanisms.

However, not only the immune response is modified by Mg2+,
but also the stress response (Figure 3B). Mg2+ controls the HPA
axis by reducing the release of adrenocorticotropic hormone
(ACTH) as well as modulating the sensitivity to it (Wang et al.,
2018). As a result, Mg2+ may prevent the hyperactivation of the
HPA axis often seen in MDD-patients.

Mg2+ plays a role in enzymatic reactions that mediate
the maintenance of DNA structure. In particular, the role
in maintaining telomere integrity is well described. Here,
Mg2+ appears to be particularly necessary to maintain Lamin
B interaction with the chromatin (Maguire et al., 2018).
Furthermore, Mg2+ may indirectly increase the risk of mtDNA
damage by being required for a proper energy metabolism in
mitochondria (Zheltova et al., 2016; Maguire et al., 2018).

In rodent studies, Mg2+ deficiency induces depressive-like
behaviors (Singewald et al., 2004; Spasov et al., 2008), while
co-administration of Mg2+ potentiates the beneficial effects
of common antidepressants (Poleszak et al., 2007). In human
studies, there is some evidence for Mg2+ deficiency occurring
more commonly in MDD patients. However, the effects are
heterogeneous (Serefko et al., 2013; Yary et al., 2016; Wang et al.,
2018; Górska et al., 2019; Sun et al., 2019; Tarleton et al., 2019).
On the other hand, chronic Mg2+ supplementation appears to
improve MDD symptoms even without a prior diagnosis of Mg2+

deficiency (Tarleton et al., 2017). Intriguingly, improvements may
occur much more rapidly than with traditional antidepressant
treatment (Eby and Eby, 2006).

While Mg2+ supplementation appears to have antidepressive
effects, at least in rodents and certain human populations, high
doses of Mg2+ supplements can have a variety of side effects, so
careful assessment of an underlying Mg2+ deficiency and proper
dosing are key (Van Laecke, 2019).

The Immunomodulating Mineral Zinc
The second most common trace element in the human
body after Mg2+ is zinc (Zn2+). Although Zn2+ can be
obtained from plant foods including cereals and legumes, the
absorption of the ion can be impaired by the phytic acid
present in plants. The bioavailability of Zn2+ from crops
is therefore often limited (Gibson et al., 2010). The main
sources of Zn2+ are thus red meat, oysters and crabs. Zn2+

is involved in countless enzymatic reactions, both systemically
and in the brain (Takeda, 2000). These include pathways that
regulate biosynthesis, neurogenesis, antioxidant defense and the
immune response (Szewczyk et al., 2011; Wang et al., 2018;
Prasad and Bao, 2019).

Intriguingly, there is a strong negative association between
MDD and Zn2+ levels, which has led to the suggestion to
use serum Zn2+ levels as a biomarker for affective disorders
(Maes et al., 1994; Szewczyk et al., 2011; Siwek et al., 2013;

Wang et al., 2018). Correspondingly, Zn2+ supplementation
generally improves MDD symptoms (Wang et al., 2018) and
co-treatment with Zn2+ improved antidepressant action in two
placebo controlled double-bind studies (Nowak et al., 2003a;
Siwek et al., 2010). In various rodent models of depression, both
chronic and acute Zn2+ supplementation improved depression-
like behaviors (Kroczka et al., 2000; Nowak et al., 2003b; Cieślik
et al., 2007; Sowa-Kuæma et al., 2008; Wang et al., 2018)
and promoted the effects of antidepressants in these models
(Szewczyk et al., 2011). It is still unclear how exactly Zn2+ is
involved in the clinical picture of MDD. However, there is a
plethora of hypotheses:

Zn2+ is enriched in glutamatergic presynaptic vesicles in
the central nervous system (Frederickson et al., 2000). Being
an antagonist of the NMDA receptor (Peters et al., 1987)
Zn2+ may help to reduce excitotoxicity (Figure 3). Zn2+

also may have antioxidant effects by inhibiting the enzyme
NADPH oxidase, which is responsible for the production of
ROS, and generates proteins that act as scavengers for free
radicals (Doboszewska et al., 2016). Therefore, Zn2+ deficiency
results in a greater production of ROS, and increased levels
of QUIN. As a result, QUIN as NMDA agonist increases
excitotoxicity while at the same time, less TRP is available for
5-HT production (Doboszewska et al., 2016). Zn2+ can also
counteract the neurotoxicity caused by chronic inflammation via
the NFκ B-pathway.

A20, a zinc-finger containing protein, is an endogenous
inhibitor of the NFκB-pathway. Zn2+ leads to an increased
production of the A20 and thereby suppresses the formation of
pro-inflammatory cytokines (Hongxia et al., 2019). This suggests
that Zn2+ affects inflammation and oxidative stress in various
ways and thus serves as an important regulator of pathways that
are known to contribute to MDD.

Zn2+ is also involved in the regulation of neuropeptide
Y (NPY) (Lee et al., 1998; Levenson, 2003). Neuropeptide
Y is released from nerve endings in various regions of the
brain, including the hypothalamus, cortex, amygdala, and
hippocampus, some of which are associated with MDD. Both,
Zn2+ and NPY regulate daily food intake (Levenson, 2003),
may be of interest in the context of anhedonia as a symptom
of MDD as well as co-morbid illnesses such as eating disorders
(Shay and Mangian, 2000). Furthermore, NPY controls sleep
and is particularly involved in promoting and modulating the
REM sleep phase (Dyzma et al., 2010). However, probably the
most important aspect linking NPY to MDD is the peptide’s
involvement in maintaining the homeostasis of the HPA axis.
In the hypothalamus, NPY antagonizes corticotropin-releasing
hormone, which normally coordinates the release of ACTH
from the pituitary gland (Thorsell, 2010). Therefore, NPY
can indirectly inhibit ACTH. Adrenocorticotropic hormone
release follows a circadian rhythm and helps prevent the
hyperactivation of the HPA axis (Heilig, 2004; Adam and Epel,
2007; Morales-Medina et al., 2010).

Altered levels of NPY and its receptors have been reported in
the context of MDD and stress (Morales-Medina et al., 2010).
In rodent models, Zn2+ deficiency prevents the release of NPY
and thus may cause a dysregulation of various physiological
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FIGURE 3 | Impact of zinc and magnesium on MDD-related pathways. (A) Pathways reducing cellular damage. (B) Pathways that inhibit a hyperactive HPA-axis.
BDNF, brain-derived neurotrophic factor; NPY, neuropeptide Y; CRH, corticotropin-releasing hormone; ACTH, adenocorticotropic hormone; QUIN, quinolonic acid;
ROS, reactive oxygen species. Arrows: permissive effects, cross bars: inhibitory effects.

functions, including feeding behaviors and the stress response
(Levenson, 2003; Reichmann and Holzer, 2016).

Zn2+ may also indirectly act as a neuromodulator, although
its function in this respect is still poorly understood. Zn2+

can be stored in synaptic vesicles and may help facilitate
GABA-ergic neurotransmission (Minami et al., 2002). Zn2+

can also interact with ZnR/GPR39, a G-protein coupled
receptor (Hershfinkel, 2018). Interestingly, ZnR/GPR39 is
downregulated in MDD and upregulated by antidepressant
treatment (Młyniec et al., 2015). Furthermore, in mice the
zinc receptor agonist TC-G 1008 reduces the immobility time
in the forced swim test (Starowicz et al., 2019). Activation
of ZnR/GPR39 triggers a variety of biochemical pathways
associated with cell proliferation, anti-apoptotic properties
and neuroplasticity (Hershfinkel, 2018). These include
the ERK/MAPK signaling pathway (Holst et al., 2007),
the AKT/PI3K signaling pathway (Dong et al., 2016) and
the CREB/BDNF pathway (Mlyniec et al., 2015). Hence,
ZnR/GPR39 is involved in various mechanisms that are
dysregulated in MDD, making it an interesting potential
therapeutic target for MDD.

Zn2+ is a cofactor for histone deacetylases, the enzymes which
remove acetyl groups from histones (Seto and Yoshida, 2014).
Some of these, including HDAC2 and SIRT1, are implicated
in MDD (Lu et al., 2018; Penner-Goeke and Binder, 2019).

Additionally, protein binding to the DNA is faciliated by a
so called zinc finger-domain. Accordingly, zinc finger proteins
regulate chromatin on a variety of levels (Klug, 2010). They
include transcription factors as well as the structural factor
CTCF (Phillips and Corces, 2009). Hence, a Zn2+ deficiency
is likely to fundamentally disturb chromatin dynamics and in
consequence transcription.

Taken together, Zn2+ may impact on MDD via direct and
indirect mechanisms. Correcting Zn2+ deficiencies may improve
MDD-symptoms and amplify the effects of antidepressant
treatment. Studies on the molecular basis of Zn2+ action have
revealed a bouquet of previously unknown neural pathways
and mechanisms. However, Zn2+ should only be taken in
physiological quantities as overdosing can induce a variety
of side effects including neurotoxicity (Salzman et al., 2002;
Yang et al., 2013).

NEUROPROTECTION VIA FATTY ACIDS –
OMEGA-3 AND OMEGA-6

The organ with the highest proportion of fatty acids, besides
adipose tissue itself, is the brain (Sastry, 1985). Fatty acids
are essential for the development and maintenance of the
central nervous system, are involved in various biological
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processes within the brain and play an important role in the
stability and structure of membranes (Rao et al., 2008). Of all
lipids found in the brain, poly-unsaturated fatty acids (PUFAs)
constitute the largest fraction (Sastry, 1985). In this context,
the so-called Omega-3 (ω3) and Omega-6 (ω6) PUFAs are
of great importance. Members of these two groups cannot be
synthesized by the body and must therefore be provided by
the diet (Simopoulos, 1991; Gibson and Makrides, 2001). The
short-chain precursors of ω3 (α-linoleic acid, ALA) and ω6
PUFAs (linoleic acid, LA) can be obtained from fish, cereals,
vegetables or cereal oil. ALA and LA are further converted into
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and
arachidonic acid (AA), generating the three main long chain
PUFAs present in the brain (Thomas Larrieu and Layé, 2018).
Here, they serve as signal molecules and are involved in the
regulation of membrane fluidity and function, inflammation,
the HPA axis and neurogenesis. As soon as the long-chain
ω3 and ω6 PUFAs are transported into the brain, the fatty
acids are esterified at and attached to neuronal and glial
cell membranes (Layé et al., 2018). Through the activation
of glutamatergic, serotonergic, cholinergic, or dopaminergic
receptors, or through inflammation, PUFAs can be released
from the cell membrane (Bazinet and Layé, 2014). In their
detached forms, they can act on a variety of receptors, including
the G-protein coupled receptor GPR32 and the peroxisome
proliferator-activated receptor γ (PPARγ) (Bazinet and Layé,
2014; Marion-Letellier et al., 2016). Peroxisome proliferator-
activated receptor agonists have neuroprotective and anti-
inflammatory properties (Kapadia et al., 2008) and have been
suggested for the treatment of MDD (Colle et al., 2017).
Furthermore, ω3 and ω6 PUFAs themselves display anti-
oxidative effects and, when metabolized to oxylipins, they
are involved in modulating the immune response as well
as the activity of the HPA axis (Bazinet and Layé, 2014;
Layé et al., 2018).

DHA interacts with retinoid X receptors (RXR; Calderon
and Kim, 2007) and the beneficial effects of DHA on
measures despair are blocked in RXR knockout-mice
(Wietrzych-Schindler et al., 2011). Similarly, inhibition
or ablation of the DHA receptor GPR40 (Figure 4)
is linked to effects of chronic stress and depression-
like states in mouse models (Nishinaka et al., 2014;
Aizawa et al., 2017, 2018). Additionally, GPR40 regulates
BDNF levels in mice (Sona et al., 2018) and primates
(Boneva and Yamashima, 2012).

Furthermore, DHA and its metabolite EPA are used for the
production of the factors resolvin and neuroprotectin (Bazinet
and Layé, 2014). These proteins inhibit the infiltration of
immune cells into the brain, the production of inflammatory
modulators and they initiate the restoration of damaged neurons
(Layé et al., 2018). Therefore, ω3 PUFAs potentially have anti-
inflammatory and neuroprotective properties. Furthermore, they
have antioxidant properties: ROS can be regulated by EPA and
DHA via the nuclear factor-like 2 (NRF2) antioxidant pathway
(Bang et al., 2017; Zgórzyńska et al., 2017).

Heavy research has been undertaken to investigate the link
between ω3 PUFAs and MDD. There appears to be an inverse

relationship between the intake of food rich in ω3 PUFAs
and MDD, although the variability between studies warrants
more investigation (Grosso et al., 2014; Larrieu and Layé,
2018). For instance, depression rates are generally higher in
regions with low fish consumption, a main source of ω3 PUFAs
(Grosso et al., 2014). Accordingly, supplementation with ω3
PUFAs may improve MDD-symptoms (Bozzatello et al., 2016;
Trebaticka et al., 2020). ω3 PUFAs also appear to improve
markers associated with MDD in humans including the HPA axis
(Mocking et al., 2013; Thesing et al., 2018) and inflammatory
markers (Layé et al., 2018).

In ω3 PUFA deficient rodents, hyperactivity of the HPA
axis was observed as well (Morgese et al., 2017; Tang et al.,
2018). Conversely, ω3 PUFA supplementation ameliorated
behavioral deficits induced by stress in rodent models (Song
et al., 2003; Ferraz et al., 2011). In addition, accumulating
evidence suggests that in rodents chronic stress-induced
depressive-like behaviors and stress-induced molecular
alterations in the HPA axis, antioxidant pathways and the
gut microbiome may be ameliorated by ω3 supplementation
(Larrieu et al., 2014; Pusceddu et al., 2015; Wu et al., 2016;
Réus et al., 2018).

Poly-unsaturated fatty acids can regulate chromatin
dynamics. For instance, they are ligands to PPARs, which
regulate gene expression, chromatin structure, and chromatin
modifying enzymes (Yu and Reddy, 2007; Romagnolo et al.,
2014). Accordingly, maternal separation and unpredictable
maternal stress (MSUS) stimulates ALA/LA and (AA
pathways in adult mice (van Steenwyk et al., 2020). The
resulting inhibition of PPARs can affect transposable
elements and gene expression. These effects may contribute
to intergenerational transmission of certain stress-induced
disease risks (van Steenwyk et al., 2020). Effects of various
PUFA on DNAme have been described as well (Kiec-
Wilk et al., 2011; Kulkarni et al., 2011). Various human
studies suggest epigenetic effects of PUFAs, too. Mostly
these studies supplement with a combination of several
PUFAs and are not controlled for confounding factors
(González-Becerra et al., 2019).

Interestingly, butyric acid, a short fatty acid produced by
the microbiome from dairy products, can inhibit HDACs (Lee
et al., 2017; González-Becerra et al., 2019). The derivative sodium
butyrate is promoted for treating mood disorders and cognitive
deficits (Stilling et al., 2016).

Mixed results were observed in BD patients when dietary
PUFA-supplements were administered or in correlative
studies with systemically circulating PUFAs (Saunders et al.,
2016). Supplementation with omega-3 may improve BD
symptoms (Sarris et al., 2012). However, in BD patients,
AA metabolism may be increased as shown by postmortem
studies (Kim et al., 2011) and by circulating AA plasma
levels (Sublette et al., 2007). Furthermore, medication
for BD may reduce the AA cascade (Rapoport, 2014).
Consistently, an upregulation of the AA cascade, e.g., via
supplements, may worsen the illness (Saunders et al., 2016).
Hence, the type of PUFA supplement will be crucial for
treatment outcome. Accordingly, an imbalance between
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FIGURE 4 | PUFAs reduce cellular damage and the pathological stress response. HPA, hypothalamic-pituitary-adrenal; PUFA, polyunsaturated fatty acid; ROS,
reactive oxygen species; Pathol., pathological; PPARg, Proliferator-activated receptor gamma; NRF2, nuclear factor-like 2. Arrows: permissive effects, cross bars:
inhibitory effects.

ω3 and ω6 PUFAs is often associated with depression,
perhaps through an increased inflammatory response
(Trebaticka et al., 2020).

Taken together, there is increasing consent that ω3
PUFA supplementation promotes positive outcomes for
mental health problems including MDD. Combined with
other benefits such as a lower risk for cardiovascular
disease, high ω3 PUFA content in the diet is likely
to generally improve health in human populations.
However, supplementation may have to be tailored
to the type of depression (MDD/BD) as well as to
the antidepressant treatment that is currently being
taken by the patient.

CAFFEINE’S UNDEREXPLORED
MOOD-ELEVATING PROPERTIES

All previously mentioned dietary factors are essential for
proper functioning of the human body. Vitamins, minerals and
fatty acids are obtained through diet and a deficit contributes
to the development of various diseases, including MDD.
Treating an underlying deficiency in these factors may help
to reduce MDD-symptoms and there is preliminary evidence
that some of these dietary factors may have antidepressant
properties even in non-deficient populations. However,
there are also non-essential dietary factors that can aid in
the treatment of MDD. This includes caffeine, the most
frequently consumed psychoactive substance in the world
(Ferré, 2013).

The main molecular targets of caffeine are G-protein
coupled adenosine receptors (A1, A2A, A2B, A3) (Ribeiro
and Sebastio, 2010). Purinergic signaling has been generally
associated with mood disorders (van Calker et al., 2019).
At a first glance, adenosine receptors seem to regulate a
complex web of pathways due to the fact that some receptor
types have opposing functions. While the stimulation of
A2AR increases symptoms associated with depression, A1R can
promote rapid antidepressant effects (van Calker et al., 2019).
This may be due to the fundamental classification of receptor
types as A1R inhibiting cyclic adenosine monophosphate

FIGURE 5 | Caffeine regulates a variety of pathways, which impact on MDD.
NRF2, nuclear factor-like 2; HO1, heme oxygenase 1; ROS, reactive oxygen
species; DARPP-32, Dopamine and cAMP regulated phospho-protein 32kD;
BDNF, brain-derived neurotrophic factor; CLOCK, Circadian Locomotor
Output Cycle Kaput protein; BMAL1, Aryl hydrocarbon receptor nuclear
translocation like protein 1.

accumulation and subsequent activation of protein kinase A,
and A2R stimulating it (van Calker et al., 1979, 1978). Among
A2R, the A2AR has the highest affinity for adenosine (van
Calker et al., 2019). In addition to regulating proteinase K
activity, binding of adenosine to A1R inhibits the release of
glutamate from the pre-synapse and reduces the postsynaptic
excitability via potassium channels (van Calker et al., 2019).
Furthermore, the activity of the A1R can be inhibited by the
A2AR (Cunha et al., 1994), and the A2AR can interact with
dopamine 2-receptors (Fuxe et al., 2007). This interplay makes
it difficult to predict outcomes of purinergic stimulation or
inhibition with pharmacological compounds such as caffeine
on a receptor level. However, there is an integration of
pathways downstream of protein kinase A, which integrates
purinergic as well as glutamatergic and dopaminergic signaling:
cAMP-regulated phosphoprotein Mr 32000 (DARPP-32) is
a key signaling protein in the brain reward system, upon
which a variety of signal transduction pathways converge
(Yger and Girault, 2011; Figure 5). We recently showed
that in mouse striatum, acute caffeine administration can
ameliorate mood via the DARPP-32: Circadian Locomotor
Output Cycle Kaput protein (CLOCK) pathway (Trautmann
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et al., 2020b). Specifically, caffeine increases the phosphorylation
of Thr75 on DARPP-32 (Lindskog et al., 2002). Thr75
is necessary for DARPP-32 binding to CLOCK, a main
regulator of circadian rhythms, which is implicated in mood
disorders as well (McClung, 2007b,a). Importantly, DARPP-
32 has been linked to mood disorders as well (Kunii et al.,
2014). Mutation of Thr75 to alanine (T75A) inhibits DARPP-
32 binding to CLOCK. Importantly, it also prevents the
mood-elevating effects of caffeine, which occur in a diurnal
manner (Trautmann et al., 2020b). Since caffeine affects
CLOCK: Aryl hydrocarbon receptor nuclear translocation-
like protein 1 (BMAL1) binding to chromatin, the caffeine-
induced behavioral changes are likely mediated by gene
expression changes, with the affected the gene products
currently under investigation. Not only do CLOCK and
BMAL1 influence the sleep-wake cycle and various circadian
physiological functions (e.g., body temperature), but they also
regulate the release of glucocorticoids (Landgraf et al., 2014;
Mendoza, 2019). In turn, many CLOCK-regulated genes possess
glucocorticoid responsive elements within their promoter regions
(Kiessling et al., 2010; Landgraf et al., 2014). Hence, the
caffeine-DARPP-32:CLOCK pathway may interact with stress-
induced pathways as well, however this subject, too, is still
under investigation.

Caffeine may also affect antidepressant-associated
pathways independently of DARPP-32. For instance, in
mouse hippocampus, acute caffeine can stimulate BDNF
expression via the A1R-cAMP-CREB-BDNF pathway (Connolly
and Kingsbury, 2010) or via the insulin receptor substrate
2 (IRS2)-phosphoinositide 3 kinase (PI3K)-Akt-pathway
(Lao-Peregrín et al., 2017).

Moreover, acute treatment with caffeine reduces oxidative
stress in rodents. Specifically, caffeine inhibits the markers of
oxidative stress NRF2 and heme oxygenase 1 (HO-1), the pro-
inflammatory cytokine NFκB as well as pro-apoptotic pathways
(Hall et al., 2015; Endesfelder et al., 2017).

Human cross-sectional and prospective studies generally
observed an inverse relationship between coffee intake and
MDD-risk (Hall et al., 2015). Given various other bioactive
compounds in coffee other than caffeine, these studies are by
nature not conclusive about caffeine effects alone. To pinpoint
the effects of caffeine, de-caffeinated coffee may be used as
a control. In humans, the beneficial effects of caffeine occur
at appropriate quantities (4–7 cups a day). However, a higher
intake may actually impair mental health (Hall et al., 2015).
In rodent models of depression, chronic caffeine improved
motivational and cognitive deficits (Machado et al., 2020) as well
as escape behaviors and measures of anxiety (Pechlivanova et al.,
2012). Furthermore, chronic caffeine administration increased
the resilience to chronic stress in rodents (Yin et al., 2015).
While caffeine also appears to have fast-acting benefits on mood
(Trautmann et al., 2020b) and synaptic plasticity of the brain
reward system (Engmann et al., 2016), acute effects of caffeine
need to be explored in further detail.

Besides caffeine, caffeinated beverages can contain other active
substances, such as the nonselective phosphodiesterase and
histone deacetylase-2 inhibitor theophylline (Barnes, 2013). In

order to rule secondary effects due to these compounds, in human
studies, caffeinated beverages should be directly compared
with their decaffeinated counterparts or dissolved caffeine
should be utilized.

In summary, caffeine appears to have several neuroprotective
effects and may rapidly improve mood. However, studies
using chronic and acute doses of caffeine are often difficult
to compare. The psychostimulant effects of acute caffeine
can impact on the interpretation of behavioral results gained
after acute caffeine administration. Notably, the effects of
acute caffeine are light-phase dependent in mice (caffeine
improves mood only in the active phase), which needs
to be taken into consideration for future investigations in
rodents. The few human studies on the subject are difficult to
interpret, perhaps because of the high baseline consumption
of caffeine in the human population or due to other bioactive
compounds in caffeinated beverages. Furthermore, there may
an optimal dose of caffeine intake as well as common side
effects such as high blood pressure. A variety of studies
have described anxiogenic effects of caffeine under certain
conditions (Charney et al., 1985; Bhattacharya et al., 1997).
Nevertheless, the available research suggests that acute caffeine
intake may rapidly improve mood and that caffeine may be a
valuable research tool to potentially identify previously unknown
antidepressant pathways.

CONCLUSION – NUTRITION AN
DEPRESSION: RESEARCHERS STILL
HAVE A LOT ON THEIR PLATE

Major depressive disorder is one of the most common mental
illnesses worldwide. It is disabling not only to patients and
their loved ones but represents a major economical burden to
societies as well. Although there are various treatment options
available, these often take weeks to fully function. In some
patient cohorts, current antidepressants are not affective at
all. For instance, in the STAR∗D trial, a major longitudinal
study measuring antidepressant efficiency in more than 4,000
outpatients, the response rate to a 14-week treatement with
selective 5-HT reuptake inhibitors was only 47% (Warden
et al., 2007). It is therefore of great interest to find new
approaches to treat or even help prevent MDD. In this
review, we have discussed examples of dietary factors, which
can assist in the therapy of MDD. These include essential
nutrients such as B vitamins (B6, B9, B12), minerals (Zn2+,
Mg2+) and PUFAs, which are frequently deficient in MDD-
patients. Indeed, MDD may be a symptom of many dietary
deficiencies. Hence, rectifying the diet can improve symptoms
associated with monoamine signaling transmission, neural
inflammation, HPA axis hyperactivity and oxidative stress.
However, most research questions on this subject are still
insufficiently addressed: Can chronic or acute supplementation
of those dietary factors improve MDD-symptoms even in
non-deficient patient populations? What are the underlying
pathways beyond traditional hypotheses of MDD? In order to
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address these gaps in the field, mouse models of depression,
such as the CVS-model (Labonte et al., 2017) should be
chronically or acutely supplemented with various dietary factors
and behavioral testing should be applied to observe behavioral
improvements. Besides classical tests that address mood and
anhedonia, circadian alterations need to be considered as well,
since they are a substantial factor of MDD-symptomology. RNA-
sequencing should be performed as an unbiased approach to
identify altered gene products. Notably, research on animal
models should be performed in their active phase, since acute
behavioral effects can be masked by artificially measuring
behavioral changes at a time, when mice are typically asleep
(Trautmann et al., 2020b).

Caffeine has shown beneficial effects on mood in mice
as well. As with the other dietary factors, effects of acute
administration in human MDD-cohorts have been insufficiently
documented. Given that dietary factors and caffeine are
safe to administer, these studies should be feasible in the
future. Special attention needs to be paid to separate patient
cohorts that are regularly using vitamin supplements/caffeine
and to take into consideration that this may introduce
behavioral biases as well. Furthermore, studies should clearly
state whether patients suffer from a nutritional deficiency
before starting supplementation. Supplying nutrients beyond
physiological requirements may have consequences distinct
from a rescue of nutrient deficiency. Moreover, the timing of
supplementation may be relevant. Data from animal studies
suggest that certain interventions may reverse chronic stress
effects with a supplementation at the end of the stressor.
This may reflect best a scenario, when conventional rapid-
acting antidepressant drugs are administered as well (Bagot
et al., 2017). However, preventative measures may be a more
sustainable approach to mental illness. Hence, the timing of
supplementation, together with the assessment of the deficiency
state of patients for multiple nutrients, should be a priority in
future experiments. Furthermore, confounding factors present
in many studies may lead to nutritional deficiencies and
increased MDD risk as well. These include certain life style
choices such recreational drug intake, a lack of exercise or
unhealthy eating habits may both,. Future studies would have to
control for those factors. Ideally, prospective studies randomly
assign patients to placebo vs. supplement groups and measure
MDD outcome in the future. This would allow for causal
instead of purely correlative evidence. Experimenters should,
however, assess deficiency levels in the beginning of the study.
Unfortunately this has not been done in many previous
prospective studies.

Another aspect that needs to be taken into consideration
is a reduction of both, nutritional deficiencies and
MDD symptoms by tertiary interventions such as
antidepressants, exercise or psychotherapy. Furthermore,
deficiencies may represent adaptive responses to risk
factors for MDD such as inflammation and oxidative
stress. However, independently of the cause of comorbid
deficiencies, a rescue of MDD symptoms through
supplementation remains intriguing. When studying the
effects of supplements in patient cohorts, pharmacological

interactions between supplements and medication (such as
selective 5-HT reuptake inhibitors) may have to be taken
into consideration.

When orally administered, supplements are likely
to have a variety of systemic effects, all of which are
insufficiently explored. For instance, they may affect the
microbiome, liver metabolism or the HPA axis. Hence, brain
physiology may be affected directly as well as indirectly.
Approaches such as oral administration vs. i.p.-injection
and microinfusion of supplements into various brain
areas in MDD-mouse models will help to untangle the
underlying mechanisms.

As several supplements converge onto the same
pathways (inflammation, HPA-axis, DNA methylation),
a variety of supplements may induce similar outcomes.
This makes an interpretation of deficiencies more
challenging, as a combination of deficiencies would have
to be assessed. Equally, a combination of supplements
may provide a similar, albeit unspecific, outcome, which
may improve allover mental health. All these factors
make studies on dietary factors in mental illness a
complex undertaking.

This complexity is increased by the fact that dietary factors
are unlikely to have specific effects for MDD. Instead, they
may alter the risk for other mental illnesses such as BD and
schizophrenia as well (Moustafa et al., 2014; Bozzatello et al.,
2016; Ashton et al., 2019). We are not aware of supplements
that benefit MDD while aggravating symptoms of mania or
schizophrenia. Instead it is likely that certain dietary factors
alter endophenotypes that are relevant to a spectrum of mental
illnesses. For instance, DNA methylation is affected in MDD, but
also in drug addiction (Brown and Feng, 2017) and Alzheimer’s
disease (Qazi et al., 2018). Hence, altering the one-carbon
metabolism through vitamins B9 and B12 may change the
symptomology for all of these conditions. Accordingly, the
relevance of dietary factors may have to be studied in the
context of certain endophenotypes such as cognitive abilities,
social interaction or psychosis, rather than the combination of
symptoms that is known as MDD.

Ideally, personalized nutritional interventions would be
adapted to other occurring stressors in patients’ lives. Based on
currently available data, reversal or prevention of stress effects
may benefit those patients most, which have been exposed
to stress recently. In contrast, studies on nutrients’ effects on
early life stress-induced symptoms are more sparse. Additionally,
the interaction of nutrients with genetic components or
environmental risk factors for MDD other than stress are largely
unexplored as well.

Basic research on animals may identify more potent
molecular targets regulated by dietary factors, which may
ultimately be used to develop faster acting antidepressant
drugs, which circumvent the side effects of currently
available medications.

In this review, we have only discussed a few selected
dietary factors. There are many other dietary compounds
that have not been included in this review but may still
have an effect on MDD. Vitamins B2 (riboflavin) and B3
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(nicotinic acid) are highly relevant to metabolism as they are
essential for the synthesis of flavin adenine dinucleotide (FAD)
and nicotineamide adenine dinucleotide (NAD), respectively.
NAD and FAD are not only key parts of the energy
metabolism but they also participate in chromatin regulation
(Berger and Sassone-Corsi, 2016).

Furthermore, the combination and timing of certain diets,
such as ketogenic diet or intermittent fasting were not
discussed here. Altogether, the field of nutrition research in
psychiatry, while gaining more momentum in recent years, is
still in its infancy.
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