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Abstract

Background: A comprehensive intuition of the systemic lupus erythematosus (SLE), as a complex and multifactorial
disease, is a biological challenge. Dealing with this challenge needs employing sophisticated bioinformatics
algorithms to discover the unknown aspects. This study aimed to underscore key molecular characteristics of SLE
pathogenesis, which may serve as effective targets for therapeutic intervention.

Methods: In the present study, the human peripheral blood mononuclear cell (PBMC) microarray datasets (n = 6),
generated by three platforms, which included SLE patients (n = 220) and healthy control samples (n = 135) were
collected. Across each platform, we integrated the datasets by cross-platform normalization (CPN). Subsequently,
through BNrich method, the structures of Bayesian networks (BNs) were extracted from KEGG-indexed SLE, TCR, and
BCR signaling pathways; the values of the node (gene) and edge (intergenic relationships) parameters were
estimated within each integrated datasets. Parameters with the FDR < 0.05 were considered significant. Finally, a
mixture model was performed to decipher the signaling pathway alterations in the SLE patients compared to
healthy controls.

Results: In the SLE signaling pathway, we identified the dysregulation of several nodes involved in the (1) clearance
mechanism (SSB, MACROH2A2, TRIM21, H2AX, and C1Q gene family), (2) autoantigen presentation by MHCII (HLA
gene family, CD80, IL10, TNF, and CD86), and (3) end-organ damage (FCGR1A, ELANE, and FCGR2A). As a remarkable
finding, we demonstrated significant perturbation in CD80 and CD86 to CD28, CD40LG to CD40, C1QA and C1R to
C2, and C1S to C4A edges. Moreover, we not only replicated previous studies regarding alterations of subnetworks
involved in TCR and BCR signaling pathways (PI3K/AKT, MAPK, VAV gene family, AP-1 transcription factor) but also
distinguished several significant edges between genes (PPP3 to NFATC gene families). Our findings
unprecedentedly showed that different parameter values assign to the same node based on the pathway topology
(the PIK3CB parameter values were 1.7 in TCR vs − 0.5 in BCR signaling pathway).

Conclusions: Applying the BNrich as a hybridized network construction method, we highlight under-appreciated
systemic alterations of SLE, TCR, and BCR signaling pathways in SLE. Consequently, having such a systems biology
approach opens new insights into the context of multifactorial disorders.
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Introduction
Called as “the Great Imposter,” systemic lupus erythe-
matosus (SLE) is a chronic and complex autoimmune
disease with multisystem manifestations [1, 2]. The dis-
ease prevalence is estimated about 5 million people
worldwide, and it occurs mostly before the age of 45
years [3–5]. The loss of central and peripheral tolerance
to self, as a result of genetic susceptibility or environ-
mental factors, is proposed to be a crucial first step in
the SLE development [6, 7].
Certain lines of evidence suggested that a break in

central B cell tolerance results in autoreactive clones
to reach the periphery [8], which followed by auto-
antibodies’ production and immune complex depos-
ition and finally damage the end organ [9, 10].
Likewise, an aberrant TCR signaling followed by
hyper-responsiveness of T cells has been shown in
SLE patients [11]. The genome-wide association stud-
ies (GWAS) coupled with gene expression profiling
data shed light on the critical role of genes involved
in B cell receptor (BCR) and T cell receptor (TCR)
signaling pathways in SLE pathogenesis [7]. Despite
numerous strong-minded studies have been done, the
SLE pathogenesis is still far from clear. Many studies
used bioinformatics approach such as enrichment
analysis and determined pathways implicated in multi-
factorial disease pathogenesis. To the best of our
knowledge, there is no study with deep insight into
the implicated pathways in SLE.
Towards a better intuition of molecular mechanisms

involved in multifactorial immune-related diseases es-
pecially SLE, lots of researchers acknowledge the gene
network approach which helps to prioritize main
driver genes and pathways, to propose a better drug
development [12]. Bayesian networks (BNs), as a
worthwhile powerful gene network construction
methods, integrate and model biological data with
causal relationships [13–17]. By applying gene expres-
sion data of SLE patients, Li et al. recently recon-
structed a BN, in which prior edges were randomly
sampled based on the text-mining in SLE pathogen-
esis [12]. Remarkably, some methods such as BNrich
were also developed based on BN properties [18]
which identifies significant genes (nodes) and bio-
logical relationships (edges). The BNrich method has
two key concepts: (1) the structure of BN is recon-
structed by the signaling pathway structure, and (2)
the expression level of the gene (node) is modeled as
a regression function of expression levels of its up-
stream genes (parents) [18].
As a method that is widely used to integrate gene ex-

pression data, cross-platform normalization (CPN) (1)
increases sample sizes and improves gene signature se-
lection [19–23], (2) rises the heterogeneity of the overall

estimate, and (3) decreases the effects of individual
study-specific biases [22, 23]. On the other hand, the
mixture model, known as a model averaging method, is
well documented to integrate node and edge parameters
based on their distribution [24].
With systems biology approach, we aimed to illus-

trate the superiority of using CPN and mixture model
method and the BNrich to better understand new as-
pects of underlying molecular mechanisms in the
pathogenesis of complex diseases such as SLE. Here,
we concentrated on SLE, BCR, and TCR signaling
pathways, which are among the most enriched path-
ways in SLE, to highlight significant alterations of
those pathways in SLE patients compared to healthy
controls. Besides the altered gene expression level, we
demonstrated several significant intergenic relation-
ships which can be proposed as effective targets for
therapeutic intervention in SLE patients.

Methods
The human peripheral blood mononuclear cell (PBMC)
microarray datasets (n = 6) associated with SLE were
downloaded and integrated by CPN method. Subse-
quently, we employed SLE, TCR, and BCR signaling
pathways as structures of BNs and we determined sig-
nificant node and edge parameters by BNrich method in
each dataset independently. Consequently, significant
parameters of all datasets were merged through mixture
model method and key driver parameters in the selected
pathways were defined (Fig. 1).

Gene expression datasets
The human PBMC microarray datasets that contain
both SLE patient and healthy control (HCs) samples,
published or updated in 2010–2019, were downloaded
from the Gene Expression Omnibus (GEO) database:
GSE 17755 [25], GSE 12374 [26], GSE 50772 [27],
GSE 81622 [28], GSE 121239 [29–31], and GSE
126307 [32]. We described the details of the data in
Table 1.

Cross-platform normalization
Each expression dataset was preprocessed and normal-
ized by normalizeQuantiles function from R package
limma [33]. Then, we performed CPN [23] with Reduce
function in R to integrate each paired gene expression
data emanated from the same platform. Finally, we have
three major datasets from Affymetrix, Illumina, and
Hitachisoft; each platform has a SLE patient group and a
HC group. Afterwards, the empirical Bayes method
(ComBat) from the R package sva was used for batch
effect removal [34].
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BNrich approach
To reconstruct BN structures, the SLE (hsa:05322), TCR
(hsa:04660), and BCR (hsa:04662) signaling pathways were
implemented. All of the pathways were extracted directly
from the KEGG database (Release 90.0, April 1, 2019) [35].

In the parameter estimate step, the mean value of the
expression for each gene (node) can be modeled as a lin-
ear regression of its parents’ (upstream) gene expression
[18]. When Y gene has X1, X2…Xp − 1 parents in the

Fig. 1 Workflow and analysis procedure to identify signaling pathway alterations in SLE patients. At the first step, human peripheral blood
mononuclear cell (PBMC) microarray datasets associated with SLE, which were generated using three platforms, were downloaded and each
paired data related to the same platform integrated by CPN method. Subsequently, SLE, TCR, and BCR signaling pathways were employed as
structures of BNs and trained by three major datasets independently by BNrich method. Afterwards, the differences between any paired
corresponding parameters related to patients and controls were examined by independent t test. Consequently, the significant parameters
merged by the mixture model to achieve the key driver parameters in studied pathways
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network, and Ŷ s and Ŷ h describe the estimations of Y
for the SLE patient and HC datasets, respectively, they
can be modeled as follows:

Ŷ s ¼ βs0 þ βs1X1 þ βs2X2 þ…þ βs p−1ð ÞXp−1 þ εc
Ŷ h ¼ βh0 þ βh1X1 þ βh2X2 þ…þ βh p−1ð ÞXp−1 þ εh

ð1Þ

In the SLE- and HC-associated trained BNs, the con-
stant coefficient β(s/h)0 demonstrates the expression level
of Y gene, known as a node parameter. The coefficients
of X1, X2…Xp − 1 are the parameters of the edge in the
trained BNs which reveal a biological relationship be-
tween two genes, Y and X. For example, the value of βs3
is the edge parameter between Y and X3 genes in the
network structure related to SLE patient data and shows
the value of the biological relationship between these
two genes. The εc and εh are the residual values.
Using Eq. 1, the node and edge parameters of the BN

structures (derived from SLE, BCR, and TCR signaling
pathways) were estimated for SLE patient- and HC-gene
expression datasets of the three related platforms, separ-
ately. Subsequently, we compared the parameters of
trained networks in SLE patients (βs) with HCs (βh) by
independent t test [36] and gained the β∗(j) (j ∈ {A, I,H})
which is the significant parameter based on false discov-
ery rate (FDRj < 0.05) for Affymetrix (A), Illumina (I),
and Hitachisoft (H) datasets.
The estimated parameters of BNs have the following

distribution [37]:

β ≈ N β̂; σ2 XTX
� �−1� �

ð2Þ

Accordingly, the significant parameters had been dis-
tributed as follows:

βs−βh ¼ β�; β� jð Þ ≈ N μ βs
� �

−μ βh
� �

; var βs
� �þ var βh

� �� �

j∈ A; I;Hf g
ð3Þ

Therefore, we had up to three significant parameters
for each node (or edge) which are β∗(A), β∗(I), and β∗(H).

Merge significant parameters via mixture model
By using the mixture model approach [38], we merged
the significant parameters of three platform-associated
datasets and calculated the significant final parameters,
both at the node and edge level. The final parameters, βf,
have a normal distribution, and their mean and variance
were defined by:

μ β f

� �
¼

X

j∈ A;I;Hf g
p j μ β� jð Þ

� �� �

Var β f

� �
¼

X
j∈ A;I;Hf gpj var β� jð Þ

� �
þ μ2 β� jð Þ

� �� �
−μ2 β f

� �

pj ¼
N j

NA þ NI þ NH
j∈ A; I;Hf g

ð4Þ
where NA = 166, NI = 95, and NH = 94 were the number

of subjects in Affymetrix, Illumina, and Hitachisoft.
Since the range of the variances across final parameters
is varied, their mean is divided by the standard deviation
to achieve comparable parameters. Hence, we plotted
the figures based on the following definition:

μ� β f

� �
≜

μ β f

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var β f

� �r ð5Þ

If the parameter β∗(j) in each dataset was not significant,
its mean and variance were considered to be zero in calcu-
lating the corresponding final parameter. When the βf was
associated with the node parameters, the sign of μ∗(βf) in-
dicated upregulation (+) or downregulation (−) of the gene

Table 1 Description of the datasets used in the study

No. GSE
no.

GPL/platform No. of sample Cell
type

Update
(year)

Race

SLE patients Controls

1 17755 1291/Hitachisoft 22 55 PBMC 2010 Japanese

2 12374 1291/Hitachisoft 11 6 PBMC 2012 Japanese

3 50772 570/Affymetrix 61 20 PBMC 2015 Unknowna

4 81622 10558/Illumina 30 25 PBMC 2016 Unknownb

5 121239 13158/Affymetrix 65c 20 PBMC 2018 Caucasian/African Americand

6 126307 13369/Illumina 31 9 PBMC 2019 Several racese

aThe data were collected in the USA/South San Francisco, but the race of subjects is unknown
bThe data were collected in the USA/Dallas, but the race of subjects is unknown
cOnly the data related to the first visit (v1) samples of any patient were entered in the analysis
dThis subset of the samples is derived from a preliminary dataset which were collected in the USA/Johns Hopkins University School of Medicine Institutional, and
most of the race of subjects (92.8%) are Caucasian and African American
eThe data collected in USA/Dallas, but the race of subjects is Australian, Australian (Irish/Scottish descent), born in India—ethnicity unknown, Caucasian,
Caucasian/Japanese, English, Filipino, Indian, Iraqi, Latin American, Persian, Spanish, and White Australian/Anglo-Celtic
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and the absolute value of μ∗(βf) was used to measure the
value of activation or inhibition. Where the βf was associ-
ated with the edge parameters, the sign of μ∗(βf) indicated
increasing (+) or decreasing (−) biological function and
the absolute value of μ∗(βf) was used to measure the value
of these increased or decreased functions.

Results
Data integration using CPN
After downloading the six mentioned datasets (Table 1), to
reduce the batch effect generated between different arrays,
each paired data emanated from the same platform was in-
tegrated using the ComBat algorithm. The efficiency of the
ComBat process in our integration for batch removal can
be verified by the comparative boxplots and principle com-
ponent analysis (PCA) plots (Fig. 2 and Additional file 1).
We did not observe any genes lost after performing CPN

on Illumina and Hitachisoft related data, while in the Affy-
metrix platform, information of about 5.4% and 8.5% of
genes in the datasets GSE 50772 and GSE 121239 were lost
correspondingly. Considering the CPN benefits, we pursue
of using all 166 samples of Affymetrix platform

simultaneously instead of analyzing 81 or 85 individual sam-
ples (Table 2).

Identify significant parameters using BNrich
To identify significant parameters, including nodes and
edges, in SLE patients against HCs in every major
dataset, the SLE, TCR, and BCR signaling pathways were
utilized as structures of BN and significant parameters
(nodes and edges) were determined using BNrich
method. Table 3 presents the number of significant node
and edge parameters in the three dataset-associated
platforms based on FDR < 0.05 for SLE, TCR, and BCR
signaling pathways.

Fig. 2 Graphical demonstration of the batch effect removal using ComBat for Affymetrix platforms. Boxplot (a) and PCA plot (b) show the gene
expression distributions and the samples of microarray datasets before batch effects removal respectively. As the same way, Boxplot (c) and PCA
plot (b) show the corresponding concepts after batch removal. The boxplots distributions show the normalization and decreasing technical
diversities between datasets; and in the horizontal axis, the jth healthy control subjects and the jth SLE patient in the ith dataset were illustrated
with DiH.j and DiS.j, correspondingly. In the PCA plots, each dot represents one sample, and the color indicates its dataset

Table 2 The percentage of lost genes after running CPN

GSE no. Platform Genes (n) Genes after CPN (n) Lost genes (%)

50772 Affymetrix 19,689 18,627 5.4

121239 20,351 8.5

81622 Illumina 30,500 30,500 0

126307 30,500 0

17755 Hitachisoft 13,102 13,102 0

12374 13,102 0
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According to our results, 34 significant nodes and the
C1QB→ C2 edge were common among all datasets in
the SLE pathway. Across datasets of all platforms, 53
nodes and 26 edges of the TCR signaling pathway and
36 nodes and 30 edges of the BCR signaling pathway
were common. All significant parameters of different
platforms, based on three examined signaling pathways,
are presented in Additional file 2.

Determine the key driver parameters of signaling
pathways via mixture model
To distinguish the altered signaling pathway parameters
in SLE patients compared to HCs, the identified signifi-
cant parameters of all dataset merged by the mixture
model method (Eqs. 4 and 5), the range of μ∗(βf) in all
nodes and edges are represented in Table 4.
The three nodes and edges that have the extreme values

of μ∗(βf) in each desired pathway are illustrated in Table 5,
and the all μ∗(βf) represented in Additional file 2.
Among genes involved in the clearance mechanism of

SLE pathway, TRIM21, H2AX, C1QA, C1QB, H2BC12,
and H2BC12 were mostly upregulated. However, SNRPD3,
SSB, MACROH2A2, GRIN2B, and C4B were mostly
downregulated. In antigen presentation process mediated
by MHCII, nodes such as HLA-DPB1, HLA-DMA, CD80,
IL10, and TNF and three edges, CD80 and CD86 to CD28
and DD40LG to CD40, were found to be dysregulated.
In addition, our analysis showed that among genes

which participated into damaging of the end organ, the
expression of genes like FCGR1A, CTSG, ELANE,
FCGR3B, FCGR3B, and C1QA were increased and the
expression of C7, C3, C4B, C2, and C4A genes were de-
creased. Particularly, in that functional part of SLE path-
way, we also found dysregulation of several important

edges like C1R, C1S, and C1QB to C2 (Fig. 3 and
Additional file 2).
By integrating BCR and TCR signaling pathway infor-

mation with gene expression data, we identified many of
the altered key driver genes in these pathways among
SLE patients. Our results revealed 46 shared dysregu-
lated nodes (e.g., AKT1, AKT2, AKT3, MALT1, MAPK3,
SOS) and 64 common dysregulated edges (e.g., PIK3CA
to AKT1 and AKT2, IKBKB to NFKBIA, NFKBIB and
NFKBIE) between these two pathways (Figs. 4 and 5 and
Additional file 2).

Discussion
In the context of identifying SLE gene signature, previous
studies have been limited to gene expression level regard-
less of intergenic relationship. In the present study, for the
first time, through data aggregation via BNrich, CPN, and
mixture model method, we merged several diverse gene ex-
pression data into SLE, TCR ,and BCR signaling pathways
and unraveled key genes and intergenic relationships that
may serve as effective targets for therapeutic intervention in
SLE patients. By using the CPN method, we increased the
sample size and decreased the heterogeneity of the samples
in comparison to previous studies [25–32]. According to
BNrich properties, we could integrate two levels of bio-
logical data, gene expression and signaling pathways.
Hence, the value of the node and edge parameters in
addition to being influenced by gene expression data also
depends on the topology of the underlying pathway [18].
For instance, in the Illumina platform, the mean value of
the final parameter in PIK3CB gene was 1.7 and − 0.5, and
the mean value of the final parameter in edge PPP3CC→
NFATC3 was − 0.07 and 0.12, in TCR and BCR signaling
pathways, correspondingly (Additional file 2). Moreover, we
used the mixture model, as a model averaging method, to
determine the key driver parameters across all datasets. In
contrast to model selection, the mixture model dramatically
minimizes the risk relative to selection [24].
First, we investigated SLE signaling pathway (hsa:

05322), which included three sections: (1) autoantigen
clearance mechanism, (2) antigen presentation mediated
by MHCII, and (3) tissue injury and end-organ damage.
The uncleaned apoptotic components which recognized
by both the innate and the adaptive immune systems
can trigger the pathogenesis of SLE. Therefore, the dys-
regulation of effective genes involved in the clearance of
apoptotic components has a fundamental role in SLE
[39–43]. In the same vein, we showed significant upreg-
ulation of 69 genes which include TRIM21, C1Q gene
family, and SNRPD1 and significant downregulation of
15 genes which include SNRDP3, SSB, and GRIN2B
(Fig. 3b). Over the recent years , TRIM21, SSB, and C1Q
have gained particular attention in SLE [44–46]. In line
with earlier studies, we also underscored the

Table 3 The number of all significant node and edge
parameters of BNs extracted from SLE, TCR, and BCR signaling
pathways obtained via BNrich

Signaling
pathways

FDR < 0.05

Affymetrix Illumina Hitachisoft

Nodes Edges Nodes Edges Nodes Edges

SLE 73 4 108 11 50 7

TCR 82 161 81 120 75 75

BCR 57 103 68 91 56 60

Table 4 The minimum and maximum final parameter values of
nodes and edges in three signaling pathways

SLE TCR BCR

Nodes Edges Nodes Edges Nodes Edges

μ∗(βf) Min − 1.70 − 0.46 − 1.68 − 1.01 − 1.39 − 0.96

Max 2.37 0.55 1.43 1.12 1.43 0.94

Maleknia et al. Arthritis Research & Therapy          (2020) 22:156 Page 6 of 12



Table 5 The top three nodes and edges of the studied pathways
Nodes Edges

Down Up Increasing biological function Decreasing biological function

SLE SNRPD3 FCGR1A C1R→ C4A C1QA→ C2

HLA-DPB1 CTSG C1QB→ C4A CD86→ CD28

HLA-DMA ELANE C4B→ C3 C1S→ C4A

TCR CD3E BCL10 RASGRP1→ NRAS NCK2→ PAK3

PPP3CC PAK5 CBLB→FYN MAP2K1→MAPK1

CBLB MAPK14 PPP3CB→ NFATC3 CD3E→ FYN

BCR INPP5D BCL10 AKT3→ IKBKG SYK→ PIK3AP1

PPP3CC PIK3AP1 MAPK1→ FOS MAP2K1→MAPK1

CD81 IFITM1 PPP3CC→ NFATC1 VAV1→ RAC2

Fig. 3 The alterations in SLE signaling pathway based on calculated final parameters. The representation design of KEGG-extracted SLE signaling
pathways (a), genes involved in autoantigen clearance (b), antigen presentation mediated by MHCII (c), and tissue injury and end-organ damage
(d). The color and size of nodes reflect the values and the absolute values of the μ∗(βf), respectively, and it is equivalent to the upregulation or
downregulation of genes. Moreover, the color of the edges reflects the values of the μ∗(βf), respectively, and it is equivalent to the increasing or
decreasing biological function
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dysregulation of histone gene family (H2A, H2B, H3,
and H4) [47]. The clearance procedure followed by anti-
gen presentation was mediated by MHCII. While CD80,
CD86, IL10, and TNF-α as key mediators of this pathway
were distinctively activated, the HLA gene family mem-
bers (DPB1, DQA1, DMA, etc.) showed the significant
reduction (Fig. 3c). The association of HLA genes with
childhood- and adult-onset SLE was represented recently
[48]. Besides, the elevated level of serum TNF-α has been
shown in SLE patients. Using anti-TNF monoclonal
antibodies like infliximab and etanercept to treat SLE
patients further confirmed the importance of TNF as a

targeting agent [49]. Despite the negative results for
CD40LG and CD40 node parameters, the edge param-
eter between them showed a positive biological function.
Therefore, we further highlight the therapeutic effect of
CD40-CD40LG pathway blockade in SLE [50]. Although
CD28 expression was reduced, CD80→ CD28 biological
function was enhanced significantly (Fig. 3c). At the end
of the SLE signaling pathway, end-organ damage occurs
via dysregulation of several genes. Among them, the de-
ficiencies of early complement proteins, including C1,
C4, and C2, were strongly associated with the develop-
ment of SLE [51]. Our results showed that not only the

Fig. 4 The alterations in TCR signaling pathway. The schematic figure of the TCR signaling pathway in KEGG (a), and the TCR signaling pathway
alterations based on calculated final criteria (b). The color and size of nodes reflect the values and the absolute values of the μ∗(βf), respectively,
and it is equivalent to the upregulation or downregulation of genes. Moreover, the color of the edges reflects the values of the μ∗(βf),
respectively, and it is equivalent to the increasing or decreasing biological function
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parameters of C3, C7, and C4B were reduced but also
C1R→C2, C1QA→C2, and C1S→C4A biological func-
tions were lessened (Fig. 3d). Additionally, our findings
showed augmented ELANE, FCGR1A, FCGR2A, FCGR3B,
and CTSG node parameters. By applying a multicohort
analysis of 7471 transcriptomic profiles, Haynes et al. have
just introduced ELANE as an “Under-appreciated SLE
MetaSignature.” [52] In a recent study, the FCGR2A poly-
morphisms have been linked to SLE susceptibility in
Mexican patients [46].
As outlined earlier, the fundamental importance of BCR

and TCR signaling pathways in SLE pathogenesis has been
well established via both clinical and experimental evi-
dence [53–55]. In the TCR signaling pathway, we ob-
served lower expression of several genes like CBLB,
PPP3CC, NFKB1, CD3E, and ZAP70. Recently, a study by

Matsuo et al. revealed that a genetic mutation in ZAP70
resulted in the TCR signaling defect which followed by T
follicular helper (Tfh) cell development and the manifest-
ation of lupus-like systemic autoimmunity [56]. Having
several significant edges with the other nodes proposes
ZAP70 as a hub gene of the TCR signaling pathway impli-
cated in SLE pathogenesis. Interestingly, the perturbation
in TCR culminated to enhanced expression of CDK4, IL2,
and IL10 genes. In the BCR signaling pathway, the most
up- and downregulated genes were BCL10 and INPP5D,
respectively. Furthermore, we also identified significant
lower expression of CD79A and CD79B (also known as
Igα and Igβ, respectively). In a meta-analysis of GWAS re-
sults, Julià et al. reported BCR signaling pathway as the
most significant biological process and BCL10 and CD79A
among top single markers associated with SLE [57].

Fig. 5 The alterations in the BCR signaling pathway. The schematic figure of the BCR signaling pathway in KEGG (a), and the BCR signaling
pathway alterations based on calculated final criteria (b). The color and size of nodes reflect the values and the absolute values of the μ∗(βf),
respectively, and it is equivalent to the upregulation or downregulation of genes. Moreover, the color of the edges reflects the values of the
μ∗(βf), respectively, and it is equivalent to the increasing or decreasing biological function

Maleknia et al. Arthritis Research & Therapy          (2020) 22:156 Page 9 of 12



Interestingly, our results addressed the dysregulation
of several noteworthy node and edge parameters shared
by both TCR and BCR signaling pathways. Among them
PI3K/AKT signaling pathway and VAV gene homo-
logs were altered; AKT1, AKT2 and VAV1, VAV2 ex-
pression levels were particularly reduced (Figs. 4 and 5).
Previously, some researcher confirmed these results and
proved phosphorylation level of AKT in SLE patients,
which further support the major role of PI3K/Akt/TSC/
mTOR signaling pathway in the disease [58, 59]. Ac-
cording to our results, the MAPK signaling pathway as
an effective subnetwork of TCR and BCR signaling in
SLE pathogenesis [59] also displayed a significant dys-
regulation, especially higher expression of MAPK1,
MAPK3, and PPP3CA genes. Similarly, the strong associ-
ation of PPP3CA with SLE-like disease has been de-
scribed as new [60]. Moreover, we observed the reduced
expression of JUN and FOS together with some in-
creased or decreased biological relations with their
neighbors in both TCR and BCR pathways. JUN and
FOS are subunits of the transcription factor AP-1 which
regulates cytokines and chemokines of TCR and BCR
pathways in inflammatory and autoimmune disease [61].
Further investigation will be required to evaluate the ef-

ficiency of CD80 and CD86→CD28, C1R and C1QA→
C2, and C1S→C4B biological functions, PI3K/AKT sig-
naling pathways, besides JUN gene as therapeutic targets
in SLE disease. Moreover, analyzing the RNA-seq datasets
could be better for distinguishing expression levels and
biological relationships of genes’ isoforms in considered
signaling pathways. It is necessary to examine the BNrich
among some other autoimmune diseases in order to iden-
tify SLE signature genes more precisely.

Conclusions
In the present study, we exploited BNrich to hybridize inter-
genic relations inferred from signaling pathways and gene
expression profiling to improve the insight about SLE as a
complex disease. We figured out the significant genes and
intergenic relationships and systemic alterations in SLE,
TCR, and BCR signaling pathways. Through cross-platform
normalization and meta-analysis, large-enough SLE patients
were analyzed. Since multiple platforms were utilized, the
effects of individual study-specific biases were reduced.
Notably, the proposed computational methodology

can be applied to a variety of complex diseases to illu-
minate new mechanistic insights in their pathogenesis.
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