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Abstract: Increasing the number of inspection sources creates an opportunity to combine information
in order to properly set the operation of the entire system, not only in terms of such factors
as reliability, confidence, or accuracy, but inspection time as well. In this paper, a magnetic
sensor-array-based nondestructive system was applied to inspect defects inside circular-shaped steel
elements. The experiments were carried out for various sensor network strategies, followed by
the fusion of multisensor data for each case. In order to combine the measurements, first data
registration and then four algorithms based on spatial and transformed representations of sensor signals
were applied. In the case of spatial representation, the data were combined using an algorithm operating
directly on input signals, allowing pooling of information. To build the transformed representation,
a multiresolution analysis based on the Laplacian pyramid was used. Finally, the quality of the obtained
results was assessed. The details of algorithms are given and the results are presented and discussed.
It is shown that the application of data fusion rules for magnetic multisensor inspection systems can
result in the growth of reliability of proper identification and classification of defects in steel elements
depending on the utilized configuration of the sensor network.

Keywords: nondestructive evaluation; magnetic flux leakage; multisource inspection; multisensor array;
defect indication; steel elements; multisensor data fusion; signal data fusion; data fusion strategy

1. Introduction

There are currently two main aspects of newly introduced technological solutions: production
and quality control. The technology used must meet high quality standards. By “quality”, we mean
a high discrimination rate between possible material states, which, in consequence, allows highly
effective correct identification of the actual condition and a high level of product safety. In practice,
this involves the need to develop integrated inspection instrumentation coupling multisource systems
and advanced methods of processing and data fusion [1–14].

According to the fact that most of the current structures are made of conductive and magnetic
materials, the use of electromagnetic testing methods becomes a natural solution. The methods
can be utilized to inspect surface and subsurface regions as well as deeper parts of the material for
the detection of cracks or any inhomogeneity affecting the electromagnetic properties of the material.
One of the most common electromagnetic nondestructive testing techniques used in the industry
is magnetic flux leakage (MFL). The objective of the method is to detect the magnetic field
over the inspected area which leaks from the material when a difference in magnetic conditions
(permeability) appears, caused by a defect’s occurrence [1]. It finds its application in the inspection of
any object with ferromagnetic properties. It is frequently utilized for the inspection of pipelines
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or tubes [1,4–8,15,16], train wheels and axles or rail tracks [9,17–19], steel wire ropes [10,11,20],
storage tanks [15,21], or steel construction elements [2,12,22–24]. The method is suitable for detecting
various types of surface, subsurface, and surface-breaking deeper defects in magnetic materials such
as metal loss [2,10,11,20], fatigue damage cracks [1–3,5,8,9,16], pitting corrosion [1,2,5,6], or plastic
deformation [1,15,24,25]. The relatively small dimensions of the detectors of leaking magnetic flux
allow us to apply the method to examine both the external sides [1–5,9–11] of the tested objects and
the internal sides such as the inner wall of a pipe or hollow axle [1,6,8,16,19]. One of the main advantages
of the method is the lack of need for direct contact between the inspected element and the sensing
device. Therefore, it can be applied even when the material is covered with paint or dust. One of
the main challenges in the construction of measuring systems is the magnetization section. They can
be built with a magnetizing coil generating an alternating (AC) or direct (DC) field or, alternatively,
with a permanent magnet [1,4]. The AC source, due to the skin effect, is mostly used for surface
condition monitoring. More frequently, the DC field is utilized, as it allows deeper inspection of
the material. On the other hand, the sensing can be affected by some disturbance conditions [1,4,10].
Nevertheless, during the design and further inspection process, orientation of defects, which can possibly
occur in the tested element in reference to the direction of the magnetizing field, should be considered.
The sensitivity of the method strongly depends on the degree of disruption of the free flow of the magnetic
field lines caused by anomalies in the material. Thus, detection of defects aligned parallel to the field lines
path is restricted and can strongly affect the proper indication. One of the main limitations of the method
is the scanning speed [1,9]. Utilization of a high testing speed can result in eddy currents affecting
testing. Therefore, due to the simultaneous desire to increase the reliability and speed of conducted
inspections, as well as to gain complementarity and completeness of the acquired examination information,
there currently arises a strong need to design and build complex and distributed multiple homogenous or
heterogeneous sources network for nondestructive control systems [3,12,17–19,22,23,25,26].

In case of industrial magnetic flux leakage inspection systems, the array of homogenous sensing
elements has been most frequently utilized for inspection of steel wire rope [4,10,11] or the inner
and outer wall of pipelines or any circle-shaped steel object [1,4–6]; however, usage for constriction
condition monitoring has also been common [2,3,12,15]. In the majority of cases, the sensors were
arranged in linear arrays [2,4,5,10,11,15] placed in the magnetic field and aligned parallel [2,4]
or perpendicular [5,6,10,11] to the field lines, wrapping the surface of the material. During inspection,
the arrays observed one or all three components of the magnetic field (tangential x and y and normal
z). The scanning method was adjusted to the type of the tested element and the size of the device
in reference to the size of the objects. Usually the array was moved linearly along the scanning
direction [2,8,10,11]. In [11], a flexible GMR-type (giant magnetoresistive) sensor array fixed within
a pair of saddle-type magnetizing coils was used for the detection of defects on the outer surface
of steel track rope. The tested object was magnetized along the axial direction and the array was
used to sense the axial component of leakage flux during linear movement. The system performance
was validated using artificial defects (with length of few to few tens and depth of 2 to around
5 mm) made in the circumferential and axial directions. It showed some possibility for identifying
the spatial information and a higher discrimination level for circumferentially aligned notches.
A similar solution of array general construction was presented in [10]. Utilization of TMR-type
(magnetoresistive tunnel) devices allowed high sensitivity even for defects with depth and length of
0.5 mm. However, the accuracy of presented solutions along with the scanning mode depends on the
distance between two successive sensing elements and can result in misdetection of relatively small
defects. A possible enhancement of the achieved effectiveness could be reached by a set of two shifted
sections of sensor arrays following each other, like that demonstrated in [8]. In [9], the three sections,
each comprising 16 Hall sensors, observing different components of a vector field and placed one by
another were used for the detection of multiple cracks in steel elements of rail tracks. The monitoring
of all three components allowed the evaluation of the shape and orientation of multiple cracks, but was
not efficient in depth assessment. In the case of round-shaped examined elements, when the array
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length was less than the circumference of the object, the helical rotation mode was also applied in order
to cover a greater inspection area [4–6] and preserve relatively high inspection speed. Nevertheless,
in the majority of proposed solutions, in order to obtain a high inspection speed, the defects were
detected each time only by a single sensor or a pair of neighbouring sensors. This could result in
achieving restricted inspection resolution when a defect crosses the array line at the midpoint between
two neighbouring sensing elements [10]. Furthermore, disrupted or incorrect indications provided by
one element in the sensor array can also significantly limit the whole system’s defect detection ability
and efficiency. Thus, the construction of the sensor array not only affects the examination speed but also
plays a crucial role in the definition of the overall system’s performance.

Generally, under the concept of a multisensor inspection system, various aspects, such as risk of
faulty indication, spatial coverage, imprecision, and uncertainty, should be considered [27]. In such
cases a multisensor data fusion methodology appears as a natural solution of the combined problem.
Such multisensor structures permit the adjustment of the sensing unit configuration under various
terms including inspection area range and coverage of a single sensor, acquisition time, or reliability
of results [27–30]. Thus, application of a data fusion procedure allows us to simultaneously balance
the operation of the system in reference to the mentioned factors. Furthermore, it is possible to
achieve greater robustness and reliability, greater spatial coverage and a gain of higher resolution,
and an increase of confidence and decrease of uncertainty at the same time. Therefore, the choice
of scanning mode, in the case of multisensor solutions, is an important factor that should be
taken into account when assessing the relationship between system reliability and speed of
inspection. According to [31], the sensors can operate under three major configurations: competitive,
complementary, or cooperative. The array is running in competitive mode when each sensing element
provides independent information about the same range of the inspected object and the combined
information is building a redundant image. In fact, this configuration allows us, at the end, to reduce
the risk of incorrect indication caused by failure of one sensor by minimizing its influence on the final
result or even excluding it from building the image. In consequence, this might result in an increase
in the reliability, accuracy, or confidence of the data. On the other side of configuration modes,
the complementary one arises. Utilization of this strategy means that each sensor is monitoring
a different selected part of the examined object and collected information by all elements is combined
to provide a broader image of the tested material. Finally, the cooperative mode refers to usage of
a set of sensors to deliver one different aspect of the same object and create, in that manner, a more
comprehensive image of the inspected material. The described categories are not mutually exclusive
and a set of two sensors could be operating within the complementary, competitive, or cooperative
mode in a different inspection range. Therefore, taking into account the specific feature of operation
of the measurement system to be optimized, it is possible to apply various strategies. Regardless of
the final configuration of the sensor array, the use of multisensor collection and data fusion allows us
to gain an improvement in the general system performance.

Some initial consideration of multisensor data fusion under the competitive mode was previously
presented in [26]. In the current paper, taking into consideration all described aspects, multisource
data fusion is carried out on multisensor array data obtained during inspection of defects in
a circular-shaped tube sample under different terms. Several strategies of sensor array operation
are examined and the resulting performance is evaluated. Under each considered configuration,
information gathered from the sensor array is fused using different fusion algorithms. The aim
of the process was to gain a higher quality of inspection results and thus increase the possibility
of obtaining correct indication and evaluation of defects, balancing reliability and inspection time.
During the integration of data, several aspects were considered. First, multisensor data registration
is carried out. Then, the applied fusion algorithms are described and the obtained results discussed.
Finally, the performance is evaluated and the conclusions are presented.
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2. Multisensor Data Source and Fusion Strategies

In order to process the experiments, the magnetic sensor array data were used. The data were
acquired during inspection of a circular-shaped tube magnetic steel sample with six artificial defects: d1–d6

(Figure 1). All were made on the internal wall of the sample using the EDM (Electro Discharged Machined)
method in two main orientations with reference to the axis of symmetry (Figure 1c): in the axial (d1, d3,
and d5) and circumferential directions (d2, d4, and d6). The defects had the same length of 5 mm
and width of 0.5 mm while the depths varied: 0.5 mm for d3 and d4, 1 mm for d1 and d2, and 2 mm
for d5 and d6. The data were acquired under the DC magnetic field conditions. Before scanning,
the internal surface of the sample was magnetized in the axial direction, by moving along its axis l
the permanent magnet with magnetic poles placed in the axial direction. A visualization of the course
of the obtained leakage field vectors over the surface of the inner wall, in the vicinity of defects located
axially and circumferentially, is shown in Figure 2. It can be noticed that the circumferential defects
are located perpendicularly to the direction of the field lines, hence causing greater disturbance of
the field. As a result, a higher indication value of this type of defect is achieved. The residual flux
leakage field is then measured by an array of 3-axis AMR-type (anisotropic magnetoresistive) sensors
(Figure 1a,b). The sensors were fitted within a hole of 30 mm diameter in equally spaced positions located
every 45 degrees on the circumference, which resulted in having 8 sensors in an array. Each sensor was
measuring three components of magnetic field: two tangential to the surface (at a point) of the sample,
along Vx and across Vy the magnetizing stream lines, and the normal Vz.
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planes of the sensor array; (c) cross section in the axial plane of two types of examined defects.
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During the data collection, the array was first moved by linear steps ∆l along the axial direction
l and data acquisition was then carried out during rotation (circumferential direction α) by a given
angle ∆α (Figure 1a). In order to evaluate the performance under different operation strategies,
the range of the rotation angle ∆α was changed during the experiments from 45 up to 360 degrees in
steps of 45 degrees. This enabled one to obtain a different spatial range of data for each sensor
and, in consequence, operation of the array under competitive (∆α equal to 360◦), cooperative,
or complementary (∆α equal to 45◦) conditions. When the rotation angle was equal to 360 degrees,
each sensor was moved over the whole inspection area (full rotation) and thus provided data
corresponding to other sensors’ areas, which was shifted from sensor to sensor by 45 degrees in
the angular direction (Figure 3a). On the opposite side (in terms of the scanning angular range) is
the case of rotating the sensor array by only 45 degrees (Figure 3b). In this situation, each sensor
observes only a selected—not covered by any other sensor—part of the examined sample’s area.
This configuration results in the complementary mode of the sensor array. When the rotation angle
was larger than 45 and less than 360 degrees, the multisensor unit could operate in cooperative mode,
allowing both competition and cooperation of the sensor set. In Figure 3c, a schematic visualization of
the array configuration obtained for a rotation angle equal to 90 degrees is shown. In this example,
sensors s1 and s2 cover the angular areas defined by ∆α1 and ∆α2 ranging from 0 to 90 and from
45 to 135 degrees, respectively. Considering only those two sensors’ data for angles lower than
45 and greater than 90 degrees, the array was operating in complementary mode. In the middle
range (45–90 degrees), the competitive strategy could be applied. Nevertheless, no matter what
the applied ∆α range, the scanning resolution was always equal to 0.1 mm and 0.1 degree. A detailed
description of the construction of the multisensor array used as well as the sample can be found in [19].
The diagram of the whole process for defect evaluation, applied regardless of the utilized operation
mode, is presented in Figure 4. First, the sensors’ data were matched and transformed into the same
representation space and output value dynamic range (data registration stage). Then, data fusion
was processed and, finally, the evaluation of the obtained results was carried out. The selected results
of measurements of all three components measured by one sensor obtained for defect d5 and d4

with respective depths of 2 mm and 0.5 mm are presented in Figure 5. Taking into consideration
the depths, the defects represent two extreme detection cases: the easiest and the hardest, respectively.
Each measured field component allows us to gain different information about the defect, such as
the length, width, and depth [12,18,19,23]. However, it can be noticed that, especially for shallower
defects, beside the visible indication of signals in the faulty area, in other parts, the signal level is also
high; this can result in misclassification of the actual state. Therefore, the need for data fusion arises.
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defect (d4) over 2-D scanning area (l, α); unit: 100 equals 0.4 G.

3. Spatial Alignment Evaluation and Data Registration

Before processing the fusion, the data registration procedure was carried out. The functional
block diagram of the registration algorithm is presented in Figure 6. First, in order to transform
acquired signals into a common coordinate system, the estimation of the angular δφ and linear δl
misalignment of each sensor in the array must be carried out. For that need, the measurements for
defect d6 (allowing archiving of the highest level of signal corresponding to the defect) were processed
under the competitive mode. In consequence, data were acquired in the full angular range for all
8 sensors. Then, for the misalignment evaluation, the analysis of sensor vectors V(l, α) = (Vx(l, α),
Vy(l, α), Vz(l, α)) was carried out. First, based on the location of characteristic values of the components’
signals in the vicinity of the defect d6, the control points cp were determined individually for each
sensor. Then, the spatial relationship between defined cp for each sensor in reference to the ones for
sensor s5 was analyzed. The s5 sensor was chosen as it was placed in the middle of the multisensor
array, so for sensors of number lower than 5, the shifting angle was positive and for ones greater
than 5, it was negative. The results of the angular misalignment evaluation are presented in Figure 7.
According to the results, it can be noticed that the asymmetry of the sensor allocation cannot be
neglected. The highest angular misalignment is around 4% which corresponds to 1.8◦ while the linear
misalignment is 1 mm. Taking into consideration the diameter (close to 29.5 mm) of the sensor array,
the angular misalignment δφ can be recalculated (multiplying by (π/180) R, where R is the radius)
and expressed in corresponding mm scale. This allowed the comparison of the allocation error with
the dimensions of possible defects. The estimated value of misalignment recalculated to arc distance
was less than 0.5 mm, which can be assessed as fairly acceptable for industrial applications.



Sensors 2018, 18, 2091 7 of 22
Sensors 2018, 18, x FOR PEER REVIEW  7 of 22 

 

 
Figure 6. The block diagram of the data registration process. 

 
Figure 7. Spatial alignment evaluation of the transducer’s sensors: (a) view of the sensor array with 
depicted angular distances Δϕ between two successive sensors,; (b) results of the angular 
misalignment δϕ estimation; (c) visualization of linear misalignment δl estimation as a difference 
between center locations in linear positions of given sensor si, i = 1, 2, 3, 4, 6, 7, 8, and the sensor s5, 
and (d) results of the sensor linear misalignment δl estimation. 

In the second step, the sensitivity range of sensors in the array was estimated. During this stage, 
not only the gain and the offset but also the difference in distance between each sensor and the 
surface of the material should be taken into account. Considering the gain tolerance and linearity 
ranges of the sensors and the experimental results, the calibration coefficients were computed, 
allowing one to obtain similar output signal dynamic ranges for each sensor under the same 
measuring conditions. Finally, the data transformation into common representation was carried out. 
The selected results (obtained for all sensors) of vector norm values obtained for all sensors are 
presented in Figure 8, and those for a single sensor for all field components and the norm value are 
in Figure 9. It can be seen (Figure 8) that the applied process allowed one to obtain corresponding 
spatial as well as sensitivity ranges for each sensor. The spatial and sensitivity transformation 
information was also utilized in the case of data acquired under complementary and cooperative 
modes. The result of the registration process obtained for Δα values equal to 45 and 90 degrees are 
presented in Figure 10. Finally, the achieved registered signals of all components were then used as 
input for the data fusion algorithms. 

Figure 6. The block diagram of the data registration process.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 22 

 

 
Figure 6. The block diagram of the data registration process. 

 
Figure 7. Spatial alignment evaluation of the transducer’s sensors: (a) view of the sensor array with 
depicted angular distances Δϕ between two successive sensors,; (b) results of the angular 
misalignment δϕ estimation; (c) visualization of linear misalignment δl estimation as a difference 
between center locations in linear positions of given sensor si, i = 1, 2, 3, 4, 6, 7, 8, and the sensor s5, 
and (d) results of the sensor linear misalignment δl estimation. 

In the second step, the sensitivity range of sensors in the array was estimated. During this stage, 
not only the gain and the offset but also the difference in distance between each sensor and the 
surface of the material should be taken into account. Considering the gain tolerance and linearity 
ranges of the sensors and the experimental results, the calibration coefficients were computed, 
allowing one to obtain similar output signal dynamic ranges for each sensor under the same 
measuring conditions. Finally, the data transformation into common representation was carried out. 
The selected results (obtained for all sensors) of vector norm values obtained for all sensors are 
presented in Figure 8, and those for a single sensor for all field components and the norm value are 
in Figure 9. It can be seen (Figure 8) that the applied process allowed one to obtain corresponding 
spatial as well as sensitivity ranges for each sensor. The spatial and sensitivity transformation 
information was also utilized in the case of data acquired under complementary and cooperative 
modes. The result of the registration process obtained for Δα values equal to 45 and 90 degrees are 
presented in Figure 10. Finally, the achieved registered signals of all components were then used as 
input for the data fusion algorithms. 

Figure 7. Spatial alignment evaluation of the transducer’s sensors: (a) view of the sensor array with
depicted angular distances ∆φ between two successive sensors,; (b) results of the angular misalignment
δφ estimation; (c) visualization of linear misalignment δl estimation as a difference between center
locations in linear positions of given sensor si, i = 1, 2, 3, 4, 6, 7, 8, and the sensor s5, and (d) results of
the sensor linear misalignment δl estimation.

In the second step, the sensitivity range of sensors in the array was estimated. During this stage,
not only the gain and the offset but also the difference in distance between each sensor and the surface
of the material should be taken into account. Considering the gain tolerance and linearity ranges of
the sensors and the experimental results, the calibration coefficients were computed, allowing one to
obtain similar output signal dynamic ranges for each sensor under the same measuring conditions.
Finally, the data transformation into common representation was carried out. The selected results
(obtained for all sensors) of vector norm values obtained for all sensors are presented in Figure 8,
and those for a single sensor for all field components and the norm value are in Figure 9. It can be seen
(Figure 8) that the applied process allowed one to obtain corresponding spatial as well as sensitivity
ranges for each sensor. The spatial and sensitivity transformation information was also utilized in
the case of data acquired under complementary and cooperative modes. The result of the registration
process obtained for ∆α values equal to 45 and 90 degrees are presented in Figure 10. Finally, the achieved
registered signals of all components were then used as input for the data fusion algorithms.
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4. Data Fusion Algorithms

The utilization of a multisensor array gives the advantage of limiting the influence of unwanted
distortions on the observation of any single sensor, thus affecting the efficiency of proper defect
indication [30–37]. In order to combine information provided by all sensors, data fusion algorithms
were utilized. The block diagram of the general data fusion scheme is presented in Figure 11.
First, the registered vector v data of all sensors were fused. The procedure was carried out separately
for each component of v resulting in common representations of vx, vy, and vz components (Stage I of
the data fusion algorithm). Then, taking into consideration that each component can provide one with
different complementary data about the detected defect (which can enhance the efficiency of defect
indication), the final integration was performed by computing the norm value of all components’ fused
distributions (Stage II of the data fusion algorithm).
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In order to process the Stage I algorithms (Figure 12), spatial and transformed representations [31–33,35]
of sensors’ signals allowing pooling of information were applied. The spatial framework can be
expressed by

vdf(l, α) = f df (v1(l, α), v2(l, α), . . . , v8(l, α)) (1)

while the transformed one can be given in the form

vdf(l, α) = T−1{f df (T{v1(l, α)}, T{v2(l, α)}, . . . , T{v8(l, α)})} (2)

where f df, T, and T−1 respectively denote data fusion, transform, and inverse transform operators,
and vdf is the fused distribution of the given component. Finally, in order to carry out the integration,
four fusion rules were introduced considering spatial vectors, spatial information, and multiresolution
representations of multisensor data.
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4.1. Spatial-Vector-Based Data Fusion (DFvec Algorithm)

Taking into consideration that the transducer consists of sensors of the same type, each sensor
should acquire similar observations in reference to common global position. Therefore, a signal’s
representation in terms of specific global position on the measuring area is represented by a common
vector for all sensors defined in 8-dimensional feature space as

v(l, α) = (v1(l, α), v2(l, α), . . . , v8(l, α)). (3)

If any sensor or group of sensors indicates a defect, the length of the vector would change. The rate
of variation grows with the number of sensors that provide the indication information. As a result,
the common representation spatial vector can be defined as

vdf(l, α) =

√
v1(l, α)2 + . . . + v8(l, α)2. (4)

Finally, results of spatial vectors for three components were obtained: vxdf(l, α), vydf(l, α), and vzdf(l, α).

4.2. Direct Spatial Multisensor Data Fusion

In the direct spatial fusion, the sensors’ input signals are integrated using localized spatial
features. In this process, three aspects of multisensor perception for state evaluation can be considered:
conjunctive, disjunctive, and compromise [30].

4.2.1. Conjunctive and Compromise Concepts (DFSF Algorithm)

The first concept leads to building a fused representation including all input information,
regardless of the information importance of each source. This can be simply expressed by

vdf(l, α) = ∑ vn(l, α). (5)

The first approach can be complemented by taking into account the significance of information from
individual sources, also called “building a compromise”. According to Equation (5), the expression
can be defined as

vdf(l, α) =
1
N

N

∑
i=1

wivi(l, α) (6)

where wi stands for the weight of the given ith source referring to its information content (which can
be described by various measures allowing quantification of data) and N is the number of sources.
This definition in terms of performance evaluation can be also understood as a linear opinion pool
(LOP) approach [32]. This strategy is commonly utilized. The weighted sum of data gathered by
similar sources is frequently utilized in signal fusion algorithms [33–36]. The main objective is to build
a common representation enhancing the overall information level. One of the most straightforward
fusion operators of this type is simple superposition by averaging of the inputs. Then, all source
weights are equal. In other cases, the most important aspect is to obtain the weight coefficient
representing the information level supplied by the specific source. The applied coefficient computation
algorithm can be based on classical statistics (e.g., variance or standard deviation) or on analysis
of information content based on, e.g., principal component analysis (PCA) [34] or spatial frequency
(SF) analysis [37,38]. In this paper, the signal processing was carried out for each sensor data and
the overall level of information acquired by a specific sensor was estimated. For that need, a spatial
frequency SF-analysis-based algorithm was utilized in order to compute the weights corresponding to
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the information level provided by input sources. In order to process the calculation, first the row (RF)
and column (CF) frequencies and then SF were computed based on the following expressions [32,34]:

RF =

√√√√ 1
PQ

P−1

∑
p=1

Q−1

∑
q=2

[v(p, q)− v(p, q− 1)]2 (7)

CF =

√√√√ 1
PQ

P−1

∑
p=1

Q−1

∑
q=2

[v(p, q)− v(p− 1, q)]2 (8)

SF =
√

RF2 + CF2 (9)

wi =
SFi

∑ SF
(10)

where P and Q refer to number of rows and columns of analyzed data v, i = 1, . . . , N, and N is the number
of data sources. The obtained weights wi were then used to obtain the fused data for each component
(DFSF algorithm).

4.2.2. Disjunctive Concept (DFIOP Algorithm)

The aim of the second concept is to maintain common information in the fused data,
i.e., that appearing in all the component sources, and to suppress mutually different information
at the same time. In this case, the expression can be given as

vd f (l, α) = ∏ vn(l, α) (11)

Considering the described properties and assuming that the information conditioned on
the measurement set is independent, this strategy can be defined also as an independent opinion
pool (IOP). This concept was utilized in this paper to depict the areas of high confidence of indication
(DFIOP algorithm).

4.3. Multiresolution-Analysis-Based Data Fusion (DFPYR Algorithm)

Multiresolution or multiscale analysis (MRA) is a well-known transformation framework in signal
(or image) fusion processing. Its main idea is to decompose the input data into successive subsets
(layers) of different frequency and resolution representations [33,34,39]. In reference to Equation (2),
MRA-based data fusion concerns two aspects: first is the decomposition algorithm, while the second
one is the fusion rule [28,35,39]. Commonly utilized transformations are based on wavelet, contourlet,
or, recently, shearlet decomposition. Resulting subsets represent details of input sources at different
scales and orientations. The other type of processing technique is pyramid decomposition. In this
case, each layer is filtered and downsampled by a factor of 2 from the representation of a previous
one. The decomposition process can be applied utilizing different transformation algorithms such as
contrast, Gaussian, or Laplacian filtering [28,33,40]. The main idea of the multiscale fusion scheme is
to combine the information at different detail levels in order to preserve the information of different
scales. Then, the multiresolution integrated data is reconstructed to obtain the final fusion result.

In this paper, a Laplacian pyramid was utilized to achieve the multilayer representation of data
for each sensor [32,38,39]. In order to process the Laplacian pyramid transformation, first, the original
data vpyr{0} were decomposed into a 5-layer set vpyr containing sequentially reduced representations.
The reduction operation is a recursive (level-to-level) averaging process carried out according to
the following expression:

vpyr{m}(p, q) =
2

∑
a=−2

2

∑
b=−2

w(a, b)vpyr{m− 1}(2p + a, 2q + b) (12)
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where m refers to a given layer and is within the range 0 < m < 5, p and q are indices of rows and
columns of a given layer defined within the range 0 ≤ p < Pm, 0 ≤ q < Qm, and Pm and Qm are
the number of rows and columns of the mth-level representation. The utilized weight w kernel width
was equal to 5, which allows one to obtain balance between the filtering conditions and computational
time. The kernel is defined by the set {0.25-cw/2, 0.25, cw, 0.25, 0.25-cw/2}, where cw is a center weight.
The inverse operation (expansion) at a given level is obtained by interpolating new values between
the given ones according to the expression

vpyr{m + 1}(p, q) = 4
2

∑
a=−2

2

∑
b=−2

w(a, b)vpyr{m}
(

p− a
2

,
q− b

2

)
. (13)

After decomposition, the Laplacian pyramid set Lvpyr{0}, . . . , Lvpyr{4} is calculated as a sequence which
each level is the difference Lvpyr{m} = vpyr{m} − Expand (vpyr{m + 1}). The original data distribution
can be achieved by expanding and summing operations of the Lvpyr set.

An exemplary view of representations obtained for successive layers of a selected sensor component
x distribution (the resolution is decreasing from the left-hand side to the right-hand side) is presented
in Figure 13. One can notice that the information content about the inspected defect is the highest
for the three middle layers. It is clear that the distributions on both the first and the last layer
provide ambiguous data, which may have a significant influence on further identification processes.
Considering that the characteristic of MFL inspection signals in the vicinity of the defects rather
represents the middle spatial frequency range, the highest signal representation could be neglected.
Similarly, the lowest one can present not only information about the defect but also a high level of
low-frequency background noise. Finally, the fusion was processed for the middle representation
layers (as the first and the last layers of the representations were filtered out). The fusion at a specific
layer was performed under the LOP strategy described earlier by computing the average signal,
and the reconstruction process was then carried out.
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response signals (such as that observed for shallower axial defects), the background signals can be 
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obtained for vx of a selected sensor.

5. Data Fusion Results

The selected results obtained during the fusion process at both stages (Figure 11, results of
Stage I: vxdf, vydf, vzdf and Stage II: vdf) carried out using all four fusion rules are presented in
Figures 14–16. First, the results obtained under competitive operation of the multisensor array were
analyzed (Figures 14 and 15). Considering the outputs of DFvec and DFSF, one can see that both show
relatively similar information content (similar characteristics of distributions). The major difference
between the rules concerns the results’ dynamic range, as a significant gain of DFvec distribution
values in reference to DFSF ones can be noticed. Thus, it can be stated that DFvec allows us to obtain
qualitatively slightly better discrimination and defect indication rate, which can be observed especially
for shallower defects (Figure 14e).



Sensors 2018, 18, 2091 13 of 22

Sensors 2018, 18, x FOR PEER REVIEW  13 of 22 

 

the DFPYR rule. Once again, the greatest advantage can be seen for shallower defects. However, for 
each defect it is possible to notice a significant reduction of noise background when comparing with the 
DFSF and DFvec results.  

According to the utilized magnetization conditions, a worse discrimination ability was obtained 
for axially aligned defects (d1, d3, and d5), as they cause much lower disruption of the free flow of 
magnetic field in the examined element (Figure 15a,c,e). Nevertheless, also for this type of defect, it 
was clearly visible that there was an advantage in using the DFPYR fusion scheme. 

 
Figure 14. Results of Stages I (vxdf, vydf and vzdf) and II (vndf) of data fusion obtained for axial defect d5 
with 2 mm depth using (a) DFvec; (b) DFSF; (c) DFIOP; and (d) DFPYR algorithms; and for a circumferential 
defect d4 with 0.5 mm depth using (e) DFvec; (f) DFSF; (g) DFIOP; and (h) DFPYR algorithms. 

Figure 14. Results of Stages I (vxdf, vydf and vzdf) and II (vndf) of data fusion obtained for axial defect d5

with 2 mm depth using (a) DFvec; (b) DFSF; (c) DFIOP; and (d) DFPYR algorithms; and for a circumferential
defect d4 with 0.5 mm depth using (e) DFvec; (f) DFSF; (g) DFIOP; and (h) DFPYR algorithms.

Generally, on the basis of the presented results, the greatest growth of difference between the defect
response signal and the background signal is qualitatively observed for the DFIOP algorithm. It can be
noticed that the clear indication of flaw edges is possible. This can be utilized in further processing
of the defect identification process and lead to the enhancement of proper indication confidence and
accuracy. However, it should be noted that in the case of a lower level of defect response signals (such as
that observed for shallower axial defects), the background signals can be enhanced by a similar factor
and the defect detection process can lead to an increase in the probability of false alarm (PFA) as well
(case of d1 and d3, Figure 15a,c). In reference to this conclusion, the highest reduction of the influence of
background signals on results was achieved for the DFPYR rule. Once again, the greatest advantage can
be seen for shallower defects. However, for each defect it is possible to notice a significant reduction of
noise background when comparing with the DFSF and DFvec results.

According to the utilized magnetization conditions, a worse discrimination ability was obtained for
axially aligned defects (d1, d3, and d5), as they cause much lower disruption of the free flow of magnetic



Sensors 2018, 18, 2091 14 of 22

field in the examined element (Figure 15a,c,e). Nevertheless, also for this type of defect, it was clearly
visible that there was an advantage in using the DFPYR fusion scheme.Sensors 2018, 18, x FOR PEER REVIEW  14 of 22 
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However, before further defect assessment procedures, the orientation of the defect should be
evaluated first, as its alignment with respect to the magnetizing stream lines strongly affects the level
of leaking magnetic flux and, thus, the indication process. The relationship between the depth and
the signal levels is different for axial and circumferential defects.

In order to evaluate the efficiency of the fusion rule under different operation strategies, experiments
were undertaken for different values of rotation angle ∆α. Selected results obtained for ∆α equal to 45 and
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90 degrees during the inspection of defect d4 are presented in Figure 16. In the first case, the multisensor
array was working in the complementary mode, as each sensor was providing unique data about
a selected area of the examined object. Therefore, the application of algorithms DFvec and DFSF leads
to the same results due to the processing of the fusion procedures, for each 45 degrees, from only one
source of data (Figure 16a,b). On the same basis, the IOP strategy was not possible to carry out as it
requires at least two sources for each part of the inspected area. In that situation, the greatest advantage
can be observed in the case of the DFPYR fusion algorithm. In the case of experiments carried out for
∆α equal to 90 degrees, all fusion schemes were carried out (Figure 16d–g). Even though the source
number was increased only to two, a slight reduction of the background signal level could be noticed.
From the qualitative evaluation of results obtained for both strategies, it can be seen that the level of
the background signal is locally higher (particularly in the noise areas); this can be especially observed
for the DFvec and DFSF results.
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and (g) DFPYR.

6. Evaluation of Data Fusion Results

In order to quantitatively evaluate the performance of the applied data fusion schemes, two quality
factors were computed: entropy E and signal-to-noise ratio SNR [32,34,38]. The entropy is defined as

E = −∑K
k=1 Hv(k) log2 Hv(k) (14)

where Hv is the normalized histogram of distribution v and K is the number of histogram bins. It is
expressing the information contribution of data and is related with the frequency of change in v. It is
high for signals with high information content. However, it is also strongly correlated with the noise
level and unwanted fluctuation of the signal. In the particular nondestructive application presented in
this paper, the defect region covers only a relatively small part of the inspected area. Thus, it is expected
that the signal variation would occur only in that region. Therefore, it can be understood that the
lower the entropy value is, the better the performance of the fusion scheme. The SNR metric measures
the ratio between useful (signal in defected area vsignal) and unwanted signals (background signal
level vnoise):

SNR = 20 log10
vsignal

vnoise
. (15)

The SNR was calculated based on two areas: the area where the defect occurred and an area
without the defect. vsignal and vnoise represent the mean values of signals in the areas where the defect
occurred and without the defect, respectively. Both were obtained utilizing the thresholding operation,
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where the threshold value was calculated based on the values range in the defected area. In this case,
a higher SNR value means that the discrimination ability grows.

The achieved values obtained for single-source signals and for the fusion algorithms under
the competitive strategy for norm value (Stage II: E, SNR) are presented in Tables 1 and 2.

Table 1. Evaluation of data fusion scheme based on entropy E.

Name
Entropy

d1 d2 d3 d4 d5 d6

Raw Signal 6.98 6.35 7.34 6.81 6.07 6.19
DFvec 6.98 6.28 7.38 6.77 6.24 6.14
DFSF 7.00 6.27 7.42 6.84 6.26 6.15

DFIOP 1.36 0.17 1.73 0.29 0.09 0.20
DFPYR 6.22 5.11 6.75 5.37 5.38 5.25

Table 2. Evaluation of data fusion scheme based on SNR.

Name
Signal-to-Noise Ratio (SNR) (dB)

d1 d2 d3 d4 d5 d6

Raw Signal 8.89 10.66 6.54 10.37 15.09 10.97
DFvec 9.09 11.44 6.78 11.54 14.85 11.82
DFSF 8.83 10.44 6.31 10.60 14.06 11.50

DFIOP 45.79 58.94 44.46 56.62 64.91 59.10
DFPYR 14.70 21.94 11.66 20.30 19.96 22.19

The obtained measures of E and SNR confirmed that by carrying out the applied data fusion
schemes, an increase in the signal quality can be achieved. One can see a quantitative gain of information
when comparing the results of raw signals v and the fused vdf ones of the second stage. The lowest
change in E (drop of value) and SNR (increase in value) could be noticed in the case of DFvec and DFSF

fusion schemes. Significant variation of values is visible for DFPYR and the greatest can be observed
for DFIOP. However, it should be underlined that even though the DFIOP scheme results in significant
reduction of noisy content, it can also affect the signal level of the defect area. As the algorithm allows us
to maintain the common part of the data in the fused result and to suppress mutually different parts at
the same time, both background noise and the defect signal level and area can be reduced. From that
point of view, the utilization of the DFPYR rule seems to be the most advantageous. In order to assess
the change of the performance with respect to the operation strategy, the E and SNR were calculated for
the results of DFPYR and DFIOP algorithms achieved for different ranges of rotation angle ∆α. For ∆α

equal to 360 degrees, the sensors were working in competitive mode, while for 45 degrees, they were in
complementary mode. All middle ranges resulted in usage of the cooperation strategy. By successively
adding 45 degrees to the previous range of rotation angle, the number of sensors covering each 1/8
of the full rotation area is also increased by one. The results were normalized to the value obtained
for the competitive mode and presented in the form of the plot in Figure 17. The obtained results
confirmed that utilization of a greater number of sensors for processing the fusion scheme allows one to
obtain a higher quality (confirmed by better levels of both evaluation factors); however, a higher gain in
effectiveness can be noticed for harder indication conditions such as in the case of axial defects. It can be
noticed that only in the case of the d3 defect is there a slight decrease of the SNR value for lower angular
range. The defect d3 is an axial-type defect, which under the utilized magnetizing conditions is harder to
detect than the circumferential one. Additionally, the defect is only 0.5 mm deep; therefore, it is the worst
case (hardest to detect). The examined defect is close to the detection limit of the system as the defect
signal is significantly lower in comparison to other cases. Therefore, the observed background signal
can influence the ability of the system and affect the performance at a much higher rate. As a result,
when only few sensors are used during inspection of a given part, even a slight decrease of SNR can be
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obtained. Thus, only when more than 4 sensors are used to scan the given angular range of the sample
can the monotonic rise in the SNR be noticed.Sensors 2018, 18, x FOR PEER REVIEW  17 of 22 
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In the procedure of performance evaluation of data fusion schemes, additional aspects can be
considered. The application of data fusion allows one to simultaneously balance the operation of
the system in reference to the factors related to inspection area range and coverage of a single sensor,
reliability of results, and acquisition time. Due to the limitations in the scope of the scanning speed
increment (at higher scanning speed, the eddy current could strongly affect the results), the multisensor
array could be utilized simultaneously for decreasing the scanning speed for minimization of the eddy
current effect and preserving the inspection time at least at a similar duration level. Another aspect
is the dimensions of defects that might occur in the material, which the system should be able to
indicate. Then, the scanning resolution should be at least similar to those dimensions. In this paper,
the sampling frequency could be adjusted within the range of 40–400 Hz. The inspection time contains
two periods: first, the scanning combined with data acquisition, and the period for resetting a new
linear position. Taking into consideration the defect dimensions on the surface of the examined sample
(5 mm length and around 0.5 mm width), the inspection time, when using all 8 sensors to perform
the 45◦ scan (resulting in angular rotation range of 45◦), could be increased from around 4 times for
the highest sampling frequency to around 7 times for the lowest one in comparison to a 360◦ scan.

In order to validate the information content enhanced by the applied fusion rules, an additional
experiment was carried out. The aim was to assess the ability of the obtained results to correctly
indicate the occurrence of defects. As it was described earlier, the defects’ orientation with respect to
the direction of the magnetizing field plays an important role in the proper defect characterization process.
Therefore, an automatic procedure for validation of defect orientation was introduced (Figure 18).



Sensors 2018, 18, 2091 18 of 22
Sensors 2018, 18, x FOR PEER REVIEW  18 of 22 

 

 
Figure 18. Results of successive stages of final defect identification procedure: fused results (a); 
zoomed defect area (b); indication of evaluated defect area together with the two main axes of area 
variation (c); block diagram of the successive steps of the defect orientation procedure (d). 

The diagram of the procedure is presented in Figure 18d. The process was based on the fused 
results of Stage II obtained for the DFPYR rule. First, the statistical analysis was processed and the 
thresholding procedure was applied. The threshold was adjusted to the mean value of part of the 
signal for which the level was higher than its 3rd quartile. As a result, the 2-D distribution was 
obtained, depicting the indicated defected area DA. Next, principal component analysis (PCA) was 
carried out for the achieved spatial distribution of points in the (l, α) space, allowing one to define 
two axes of main variation of the DA: PC1 and PC2. In consequence, the length of the sections 
defining the dimensions in both main directions were obtained. In order to determine the final 
length of data variability in the samples axial and circumferential directions, the PC1 and PC2 
sections were projected into the l and α axes of the sample. The achieved orientation evaluation 
results are presented in Table 3. One can notice that in each case, the longer dimension of the defect 
was properly indicated. The longer dimension in the axial direction was evaluated for defects d1, d3, 
and d5 (axial defects), and in the circumferential direction for defects d2, d4, and d6 (axial defects). 
However, it must be pointed that the proposed procedure can be used only for the orientation 
indication of the longer dimension of defects, as the achieved evaluated values differ largely from 
the real one.  

Table 3. Evaluation of inspected defect orientation. 

Defect 
Estimated 

Dimension in α 
Direction (mm) 

Estimated 
Dimension in l 
Direction (mm) 

Real Dimensions 
in α Direction 

(mm) 

Real Dimensions 
in l Direction 

(mm) 
d1 1.12 1.43 0.5 5 
d2 2.78 1.66 5 0.5 
d3 2.55 4.36 0.5 5 
d4 3.94 1.56 5 0.5 
d5 1.85 2.49 0.5 5 
d6 4.64 2.30 5 0.5 

Further, taking into consideration the obtained grouping results, the changes in defect signal 
amplitude were analyzed for both orientations. The results of the ratio of fused results of 
components x and y (Stage I) are presented in Figure 19. It can be noticed that there is clearly visible 
change of the ratio with the growing depth of the defects. Depending on the direction of the defect, 
the increase in depth causes an increase in the amplitude of a particular component of the vector of 
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defect area (b); indication of evaluated defect area together with the two main axes of area variation (c);
block diagram of the successive steps of the defect orientation procedure (d).

The diagram of the procedure is presented in Figure 18d. The process was based on the fused
results of Stage II obtained for the DFPYR rule. First, the statistical analysis was processed and
the thresholding procedure was applied. The threshold was adjusted to the mean value of part of
the signal for which the level was higher than its 3rd quartile. As a result, the 2-D distribution was
obtained, depicting the indicated defected area DA. Next, principal component analysis (PCA) was
carried out for the achieved spatial distribution of points in the (l, α) space, allowing one to define two
axes of main variation of the DA: PC1 and PC2. In consequence, the length of the sections defining
the dimensions in both main directions were obtained. In order to determine the final length of data
variability in the samples axial and circumferential directions, the PC1 and PC2 sections were projected
into the l and α axes of the sample. The achieved orientation evaluation results are presented in
Table 3. One can notice that in each case, the longer dimension of the defect was properly indicated.
The longer dimension in the axial direction was evaluated for defects d1, d3, and d5 (axial defects),
and in the circumferential direction for defects d2, d4, and d6 (axial defects). However, it must be
pointed that the proposed procedure can be used only for the orientation indication of the longer
dimension of defects, as the achieved evaluated values differ largely from the real one.

Table 3. Evaluation of inspected defect orientation.

Defect
Estimated

Dimension in
α Direction (mm)

Estimated
Dimension in

l Direction (mm)

Real Dimensions in
α Direction (mm)

Real Dimensions in
l Direction (mm)

d1 1.12 1.43 0.5 5
d2 2.78 1.66 5 0.5
d3 2.55 4.36 0.5 5
d4 3.94 1.56 5 0.5
d5 1.85 2.49 0.5 5
d6 4.64 2.30 5 0.5

Further, taking into consideration the obtained grouping results, the changes in defect signal
amplitude were analyzed for both orientations. The results of the ratio of fused results of components
x and y (Stage I) are presented in Figure 19. It can be noticed that there is clearly visible change of
the ratio with the growing depth of the defects. Depending on the direction of the defect, the increase
in depth causes an increase in the amplitude of a particular component of the vector of field leakage
sensed by the array. Therefore, in the case of circumferential defects, the ratio is decreasing and in
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axial ones, it is growing. Nevertheless, the obtained data confirmed the possibility to utilize the fused
results in further processes of precise characterization of defect dimensions.
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7. Conclusions

In this paper, a multisensor array was utilized to perform data fusion procedures under various
measuring conditions, allowing adjusting systems in terms of reliability and inspection time. The study
was carried out considering inspection data of defects in a circular-shaped tube sample. During data
collection, the vector magnetic leakage field over the area where the defects occurred in the examined
steel object was monitored. The observation was carried out for defects with different depths and
orientations in reference to the direction of the magnetizing field. The experiments were conducted for
various sensor configurations. Next, multisensor data registration was carried out in order to transfer
all data into a common space. Then, four multisource signal fusions were introduced and applied
for all modes of sensor array configurations. Finally, the quality of the obtained results was assessed.
For that need, the entropy and signal-to-noise ratio were computed for all utilized sensor configuration
strategies. Next, in order to validate the information content of the data achieved during the fusion
process, an additional experiment was carried out to assess the defect indication capability.

It was shown that the application of data fusion rules for a magnetic multisensor inspection
system can result in a growth in reliability of the proper identification and classification of defects
in steel elements. In accordance with the system operation objective demanded by the end user,
a different data fusion algorithm could be implemented. Each sensor in the array defines its own
set of data. When considering the character of the repose signal caused by the defect, a common
representation can be built by calculation of cumulative magnetic vector lengths. Such an approach
was carried out using the DFvec algorithm. The other way to build a conjunctive representation,
allowing preservation in the fused result of all data supplied by each sensor, the addition operation
of set contents can be carried out. Frequently, this methodology is updated with weighting factors
corresponding to each set’s importance (in terms of final set definition). In such a case, referred to
as the “compromise” representation, the addition operation can be supplemented with the weights
calculated on the basis of the coefficients describing the data. In this paper, for this purpose, the DFSF

algorithm was used. It allows one to simultaneously build a representation of all sensors’ full
data in the final result, and also to reward and penalize the sources in terms their data quality
level. On the other hand, it must be pointed that both useful information (concerning the defected
area) and background signals are transferred into the resulting distribution under this method.
Therefore, considering achieving a higher confidence level in the indication of the defect area,
the DFIOP algorithm was applied. It validates in the final result only the part of the data which
is common for all input sources. Thus, the random background signal level is much reduced.
On the other hand, even a small error in the registration process can also affect the signal distribution
in the defect area. High efficiency in noise reduction when building a compromise representation
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can be also achieved by the application of multiresolution analysis methodology (DFPYR algorithm).
It allows one to transform the input data into a series of low or bandpass representations at different
frequency bands. Thus, both the low-frequency background signal and the high-frequency noise
can be significantly reduced. In the same time, the defected area signal representation remains
practically unchanged. The subjective and objective assessment of the fusion results confirmed higher
performance of the multisensor system in comparison to single-source data. The signal fusion scheme
can be relatively easily applied in industrial measuring systems. Simultaneous use of algorithms
DFIOP and DFPYR can significantly affect the increment of levels of correct indication of the defects.
Nevertheless, the obtained results showed that the configuration of multisensor systems should be
deeply considered in accordance with multiple aspects.
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