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Variability in arterial pressure and cerebral blood flow has traditionally been interpreted as a
marker of cardiovascular decompensation, and has been associated with negative clinical
outcomes across varying time scales, from impending orthostatic syncope to an increased
risk of stroke. Emerging evidence, however, suggests that increased hemodynamic
variability may, in fact, be protective in the face of acute challenges to perfusion,
including significant central hypovolemia and hypotension (including hemorrhage), and
during cardiac bypass surgery. This review presents the dichotomous views on the role
of hemodynamic variability on clinical outcome, including the physiological mechanisms
underlying these patterns, and the potential impact of increased and decreased variability
on cerebral perfusion and oxygenation. We suggest that reconciliation of these two
apparently discrepant views may lie in the time scale of hemodynamic variability; short
time scale variability appears to be cerebroprotective, while mid to longer term fluctuations
are associated with primary and secondary end-organ dysfunction.
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INTRODUCTION
Traditionally, clinicians have assessed the cardiovascular status of
their patients with static “snapshot” techniques, such as radial
pulse for heart rate, brachial sphygmomanometry for arterial
pressure, and chest excursions for respiration rate. Subsequently,
clinical judgment about health status and identification of poten-
tial risk factors was based on average values, without considera-
tion of the inherent dynamic nature of these variables. While the
notion that arterial blood pressure is not constant, but fluctuates
dynamically over time has been known since the 18th century, the
clinical importance of this phenomenon is only now being rec-
ognized. There is growing recognition that assessment of hemo-
dynamic variability (e.g., heart rate and arterial pressure) across
multiple time scales may provide important insight into acute
and long-term clinical outcomes, such as risk of stroke (Shimbo
et al., 2012), myocardial infarction (Kjellgren and Gomes, 1993),
and end organ damage from hypertension (Mancia et al., 2007;
Verdecchia et al., 2007; Leoncini et al., 2013). With advances both
in monitoring technologies and data analysis capabilities, we now
have the capacity to capture dynamic changes in patient status by
recording and analyzing non-invasive, high frequency hemody-
namic waveform data, including ECG, arterial pressure, and most
recently, cerebral blood flow and oxygenation. These high fidelity
recordings have advanced assessment of hemodynamic variabil-
ity from intermittent day-to-day or visit-to-visit measures, to a
beat-to-beat time scale.

In particular, the advent of transcranial Doppler (TCD)
ultrasound monitoring in the 1980s by Aaslid et al. (1982)
rapidly moved assessment of cerebral blood flow from inva-
sive, technically cumbersome techniques with poor spatial (global
cerebral perfusion) and temporal (minutes) resolution [e.g.,

the Kety-Schmidt diffusible tracer method (Kety and Schmidt,
1948)], to a relatively easy, non-invasive method, overcom-
ing these resolution limitations (i.e., spatial resolution: individ-
ual intracranial vessels; temporal resolution: beat-to-beat). TCD
ultrasound is now routinely utilized in both the research and clin-
ical settings (Newell and Aaslid, 1992; Willie et al., 2011), and,
in combination with non-invasive cerebral oxygen monitoring
technologies (e.g., near infra-red spectroscopy, NIRS), continu-
ous assessment of both cerebral blood flow and oxygenation are
possible.

The evolving appreciation that measurement of hemodynamic
variability provides important physiological insight is demon-
strated by Newell et al. in the early 1990s who cautioned that
the variability of cerebral blood velocity obtained from TCD
may “interfere” with measurement of mean values (Newell et al.,
1992). Since then, cerebral blood flow variability has been exten-
sively examined in the research setting in an effort to understand
underlying regulatory mechanisms, particularly the role of adren-
ergic (Zhang et al., 2002; Ogoh, 2008; Hamner et al., 2010; Peebles
et al., 2012; Purkayastha et al., 2013), cholinergic (Hamner et al.,
2012), and myogenic modulation (Langager et al., 2007; Tzeng
et al., 2011; Tan et al., 2013) of the cerebral vasculature with
changes in arterial pressure. Assessment of cerebral blood flow
variability in the clinical setting, however, has lagged the abun-
dance of studies investigating the role of blood pressure variability
(BPV), despite clear implications for the subsequent integrity of
cerebral tissues (Tzeng et al., 2012b).

Furthermore, the potential role of increased variability in arte-
rial pressure and cerebral blood flow on clinical outcome is
somewhat disparate, with studies suggesting both protective (e.g.
Sanderson et al., 1972; Allen et al., 2012; Koning et al., 2012), and
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detrimental (e.g., Lipsitz et al., 1997; Zhang et al., 1998b; Parati,
2005; Kilpatrick et al., 2010; Ko et al., 2010; Rothwell, 2010)
effects. This review will provide a brief background on some of
the underlying physiological mechanisms responsible for variabil-
ity in pressure and flow, and then examine the evidence on both
sides of the debate, including potential reasons for this apparent
dichotomy.

TIME SCALE OF PRESSURE AND FLOW VARIABILITY
Fluctuations in arterial pressure and cerebral blood flow occur
across multiple time scales, from beat-to-beat (Figure 1) to day-
to-day variability, all associated with a multitude of over-lapping
and interacting physiological processes. The most commonly
reported metrics of pressure and flow variability include time
domain means and standard deviations, which can represent
both “static,” long-term variations (hours to days) and short-
term (minute to minute) variability, while methods such as power
spectral analysis, often assessed using various discrete frequency
bands, are generally only suitable for assessment of short-term
variations (e.g., 5–20 min).

The underlying physiological mechanisms associated with
these different methodological approaches align with the time
scale of measurement. For example, changes in mean and stan-
dard deviations of pressure and flow over hours to days are
most likely associated with long time scale cycles, such as circa-
dian rhythms, hormonal fluctuations, hydration status, fatigue,
and associated variations in vascular properties such as com-
pliance (Kotsis et al., 2011; Schillaci et al., 2012; Garcia-Garcia
et al., 2013). In comparison, beat-to-beat or minute to minute
variability quantifies physiological mechanisms operating within
this time scale, such as the cardiac cycle (e.g., approx. ≥1 Hz),

respiratory frequency (e.g., high frequency (HF); 0.15–0.4 Hz)
(Brown et al., 1993; Cooke et al., 1998), sympathetic/baroreflex
modulation (e.g., low frequency (LF); 0.04–0.15 Hz) (Julien,
2006; Stauss, 2007), and myogenic activity (e.g., very low fre-
quency (VLF); 0.004-0.04 Hz) (Stauss, 2007; Tzeng et al., 2011;
Tan et al., 2013).

It is important to note that the terminology used to describe
hemodynamic variability differs between disciplines; while in the
clinical setting, “short-term” variability may describe changes in
arterial pressure every 15 min over a 24-h period (Schillaci et al.,
2012), this same designation can also be used to describe beat-
to-beat variations quantified in the frequency domain. In the
case of this review, we will use the latter definition for short-
term variability (i.e., 5–10 min recordings with quantification of
VLF, LF and HF power), and longer time scales will be described
as mid- (within 24-h) and long-term variability (day-to-day, or
visit-to-visit).

“FOE”
The idea that exaggeration of hemodynamic variability may be
detrimental for vital organs such as the brain is both physio-
logically plausible and intuitive. Because the brain has a high
metabolic demand for oxygen, any process that enhances perfu-
sion variability has the potential to destabilize tissue oxygenation
leading to ischemic injury. Conversely, excessive perfusion can
result in the breakdown of the blood-brain barrier, permit the
transudation of fluid into the interstitium, and incite hyperper-
fusion syndromes that are characterized by debilitating neurolog-
ical sequelae including seizures, headaches, encephalopathy and
stroke (van Mook et al., 2005). Therefore, stringent control of
cerebral blood flow is pivotal for normal brain function.

FIGURE 1 | Resting time domain arterial pressure and cerebral blood

velocity tracings (A) and corresponding power spectrums across the

frequency range of 0.01–10 Hz (B). Panels are presented on log axes. ULF,

ultra low frequency; VLF, very low frequency; LF, low frequency; HF, high
frequency. f0, f1...fn, refers to the fundamental cardiac frequency and its
higher frequency harmonics (From Tzeng and Ainslie, 2014).
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However, while it is generally recognized that blood pressure is
an important determinant of cerebral blood flow, the exact rela-
tionship between pressure and flow is more complex when viewed
in light of a contemporary model of cerebral autoregulation (CA)
(Tzeng and Ainslie, 2014). The classic model of CA is that cerebral
blood flow is maintained constant across a wide range of cere-
bral perfusion pressures (60–150 mm Hg) (Lassen, 1959). This
concept implies that mechanisms normally involved in systemic
blood pressure control are relatively unimportant for cerebral
blood flow in the presence of intact CA, which is assumed to effect
near-perfect compensation of blood pressure variations within
the autoregulatory range. Blood pressure, however, is not a static
entity that can be described purely in steady-state terms. Blood
pressure is highly dynamic and the capacity of the cerebrovas-
culature to counter-regulate against blood pressure changes is
relative and depends on the timescale of the presenting stimuli.
Available data supports the idea that the slower, low frequency,
components of blood pressure are more effectively buffered than
faster, higher frequency, components (such as those associated
with respiration), and elevations in blood pressure may be better
buffered than reductions in blood pressure (Zhang et al., 1998a).
Although the precise mechanisms underpinning these features of
CA are still under investigation (Tzeng et al., 2011, 2012a), it is
clear that cerebral blood flow exhibits variability, and that BPV is
an important determinant of this variability (Tzeng and Macrae,
2013).

Unlike the case for cerebral perfusion variability being a
“friend” with protective properties, little data exists that directly
implicate perfusion variability being a “foe” for organ function.
Rather, the case for exaggerated haemodynamic variability being
a negative predictor for organ dysfunction is mainly built on
studies of blood pressure dynamics that came initially with the
advent of ambulatory blood pressure monitoring in the 1960s
(Parati et al., 2001), and since then, other non-invasive blood
pressure monitoring devices that allow detailed blood pressure
assessment down to timescales of seconds. The successful appli-
cation of non-invasive blood pressure monitoring technology has
firmly established the idea that identifying elevated BPV across a
wide range of timescales (as distinct from average blood pressure)
may be useful in predicting poorer health outcome (Rothwell,
2010). Notwithstanding the limitations of drawing inferences on
cerebral perfusion from blood pressure, we herein present a sum-
mary of research that suggest exaggerated systemic hemodynamic
variability is associated with poor clinical outcomes.

BPV AND PRIMARY ORGAN INJURY
As previously described, short-term variations in blood pres-
sure are commonly characterized in the frequency domain using
power spectral analysis typically of short recordings (e.g. range
5–10 min) (Tzeng and Macrae, 2013). Such variations encom-
pass beat-to-beat changes due to mechanically induced changes
in cardiac output caused by respiratory activity (Sin et al., 2010),
and longer term fluctuations related to a myriad of cardiovascu-
lar control mechanisms including the arterial baroreflex (Tzeng
et al., 2009), the renin-angiotensin system (Gouedard et al., 1996),
the vascular myogenic response (Bayliss, 1902), and endothelial
nitric oxide release (Nafz et al., 1996). As a result, enhanced short

term variability may occur due to altered central autonomic drive,
impaired arterial baroreflex function, changes in humoral fac-
tors, and well as changes in ventilatory parameters (Stauss, 2007).
Compared to longer-term variations, which are clearly associated
with end-organ disease (Sega et al., 2002), there is little direct
evidence implicating short-term BPV in these pathophysiologi-
cal processes. However, some investigations have suggested a role
of increased LF variability in arterial pressure (Lipsitz et al., 1997)
and cerebral blood flow (Zhang et al., 1998b) in acute orthostatic
intolerance, associated with enhanced vasomotor activity medi-
ated by variations in sympathetic activity (Lipsitz et al., 1997) and
impaired CA (reducing the ability to buffer fluctuations in arterial
pressure) (Zhang et al., 1998b). Augmentation of spontaneously
occurring oscillations in blood pressure and cerebral blood veloc-
ity and cerebral oxygenation in the 0.06–0.40 Hz range have also
been documented in hypertensive patients (Li et al., 2013). The
clinical significance of these hemodynamic changes are presently
unclear but may reflect alterations in metabolic and or vascular
myogenic function in hypertensive individuals.

Mid-term blood pressure variations are usually defined as
blood pressure fluctuations that occur within a 24-h period.
There is considerable overlap in the mechanisms that are respon-
sible for both mid-term and short-term blood pressure variations.
Therefore, impairment of baroreflex function, or central sympa-
thetic drive can both augment mid-term BPV. In an early investi-
gation into the link between elevated mid-term BPV to end organ
damage, Parati et al., showed that 24-h mean blood pressure
and 24-h BPV were independently associated with the magni-
tude of mid-term BPV (Parati et al., 1987). Subsequently, elevated
mid-term BPV has been found to be independently linked to a
number of outcome measures that indicated widespread vascu-
lar and end-organ damage to the heart, blood vessels, and the
kidneys. In particular, there is substantive data pointing to an
enhanced propensity for carotid intimal media thickening and
atherosclerosis progression (Mancia et al., 2001), increased arte-
rial stiffness (Schillaci et al., 2012), and the development of left
ventricular hypertrophy (Schutte et al., 2011). Interestingly, the
relationships between BPV and left ventricular hypertrophy is
apparent in patients with and without elevations in absolute
blood pressure (Palatini et al., 1992), suggesting that surveil-
lance for elevated mid-term BPV may help identify apparently
normotensive individuals who are otherwise at increased risk of
cardiovascular complications. In other studies that have primar-
ily focused on clinical outcome measures, elevated mid-term BPV
is associated with a higher risk of coronary artery restenosis after
percutaneous coronary intervention (Cay et al., 2011), cognitive
dysfunction in the elderly (Sakakura et al., 2007), and increased
radiological presence of cerebral micro-bleeds and white matter
hyper-intensities on MRI (Liu et al., 2012).

There is also an emerging body of literature relating BPV and
disease outcomes based on clinical measurements of day-to-day
or visit-to-visit brachial blood pressures that provide informa-
tion on long-term blood pressure variability (Mancia et al., 2012).
In studies involving the general population, day-to-day systolic
and diastolic BPV have been linked to increased all-cause mor-
tality, cardiac mortality, and stroke-related mortality (Kikuya
et al., 2008; Johansson et al., 2012). Likewise in patients with
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co-morbidities such as diabetes and chronic kidney disease, visit-
to-visit systolic BPV has been linked to elevated risk of death,
and accelerated deterioration of renal function (McMullan et al.,
2013).

It needs to be acknowledged that while the majority of research
has linked elevated mid- and long-term BPV with increased risk
of end-organ disease, there is some data suggesting that the
impact of BPV are no greater than can be explained by mean
pressure alone. For example, Schutte et al., have argued that in
a large unbiased population sample (n = 2944), BPV does not
contribute to risk stratification over and beyond mean systolic
pressure (Schutte et al., 2012). However, blood pressure record-
ings in this particular trial involved five consecutive blood pres-
sure recordings taken on only two occasions separated 2–4 weeks
apart. Given the complexities of BPV, it seems that such a protocol
is unlikely to yield a comprehensive summary of true BPV.

BPV AND SECONDARY ORGAN INJURY
Not only are increases in mid- and long-term BPV associated
with accelerated end-organ damage and acute primary cardio-
vascular events (e.g., acute stroke) (Pringle et al., 2003), there
is growing recognition that BPV (beat-to-beat and reading-to-
reading) is also a crucial determinant of acute secondary organ
damage, once an initial vascular insult has occurred (Stead et al.,
2006; Sykora et al., 2009; Tsivgoulis and Ntaios, 2012). Secondary
damage is particularly important for organs such as the heart
and brain that have no regenerative capacity and have a high
metabolic demand for oxygen and therefore low tolerance for
hypoxia. Accumulating clinical data shows that patients who are
admitted to hospital with acute stroke are more likely to suffer
poor function outcomes if BPV is acutely elevated (Dawson et al.,
2000). Enhanced beat-to-beat, or reading-to-reading BPV during
the acute stroke period predicts the risk of secondary stroke com-
plications such as hemorrhagic transformation of an ischemic
stroke (Ko et al., 2010). Because major cardiovascular events such
as stroke are often accompanied by increased absolute blood pres-
sure, a major challenge for data interpretation is separating the
effects of elevated BPV from that of average increases in mean
blood pressure (Schutte et al., 2012). Although Ko et al., has
convincingly demonstrated that individuals with high reading-to-
reading BPV are more likely to develop secondary complications
following stroke event regardless of whether absolute blood pres-
sure is high or low (Ko et al., 2010) (Figure 2), not all studies
have fully accounted for likely interactions between these two
facets of blood pressure. Further, it must be recognized that Ko
et al., did not specifically quantify cerebral perfusion variability.
The relationships between elevated BPV and perfusion stability
in neurocritical care populations remains poorly understood.

MECHANISMS AND IMPLICATIONS FOR ENHANCED BPV AND
END-ORGAN DAMAGE
The precise mechanisms underpinning the regulation of BPV
are multi-factorial and involve factors that drive and attenuate
blood pressure changes. Behavioral factors (Pickering et al., 1982)
such as physical activity, changes in body posture, and sleep, can
induce blood pressure changes at varying time scales. Likewise,
centrally driven influences (e.g., sympathetic neural outflow) can

also enhance BPV (Poletto et al., 2011; Yoshimoto et al., 2011).
Recent genome-wide association studies have identified potential
genetic markers for enhanced BPV (Xu et al., 2013), which sug-
gests that BPV elevation may be a heritable trait like hypertension.
On the other hand, neural blood pressure control mechanisms,
in particular the arterial baroreflex, functions to attenuate blood
pressure changes (Bristow et al., 1969). Therefore, the balance
between factors that favor and oppose blood pressure variations
ultimately determines mid- and long-term BPV.

The precise mechanisms underpinning the links between ele-
vated BPV and end-organ damage are not yet fully understood,
but available evidence suggest that both functional impairment
and structural vascular changes are involved (Figure 3). Several
studies have shown in sino-aortic denervated (SAD) rats that a
chronic increase in BPV induces aortic hypertrophy and left ven-
tricular hypertrophy (Su and Miao, 2001; Miao and Su, 2002).
The mechanical cardiac changes are typified by enhanced car-
diac wall thickness and increased total myocardial wall area, and
relative reduction in elastin (Su and Miao, 2001). There is also
evidence that increased BPV induced by SAD increases cardiac
expression of type I and III collagen, and atrial natriuretic peptide
(Flues et al., 2012). These findings suggest that the hypertrophic
cardiac changes in SAD are the consequence of collagen accu-
mulation in addition to smooth muscle proliferation. The time
course of these changes are poorly understood but preliminary
evidence suggests that cardiac changes usually arise only after
elevations in BPV. In contrast, evidence suggests that vascular
changes occur early and can be the first signs of BPV related
organ damage. In SAD rats for example, vascular changes emerge
as early as 2 weeks whereas cardiac changes occur around 10–16
weeks (Miao and Su, 2002). The trigger for these abnormal struc-
tural changes are unclear but enhanced stress on the arterial wall
associated with increased rate of blood pressure variations may
play a role (Miao et al., 2006). In contrast, the downstream effects
of stiff arteries on the cardiovascular system are well recognized.
The loss of arterial compliance leads to the loss of the Windkessel
function which can lead to enhanced linear transmission pulse
waves along the arterial path (Bateman, 2004), as well as increase
left ventricular load (Yano et al., 1997). This may explain why
vascular changes appear to precede cardiac changes in animal
experimental models such as the SAD rat (Miao and Su, 2002).
It is important to recognize that associations between BPV and
end-organ dysfunction do not imply causality and it is possible
that BPV elevation may be the product, rather than the cause of
organ damage.

Furthermore, in addition to vascular structural changes, ele-
vated BPV can also lead to end-organ dysfunction by disturb-
ing organ perfusion and oxygenation. Because the vital organs
such as the brain and heart have high metabolic demand,
any process that enhances perfusion variability has the poten-
tial to destabilize tissue oxygenation and therefore result in
organ dysfunction. This means that, in addition to BPV, the
integrity of flow-stabilizing mechanisms such as CA may partly
underlie the relationship between elevated BPV and end-organ
disease, particularly in the context of secondary brain injury
(Reinhard et al., 2005, 2012; Aries et al., 2010). The com-
plexities that CA introduces may also be of importance when
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FIGURE 2 | Proportion (%) of patients with hemorrhagic transformation

following an initial ischemic stroke in the low and high blood pressure

variability groups of each quartile of mean systolic blood pressure (SBP)

or mean diastolic blood pressure (DBP) during the first 72 h. Measures of
blood pressure variability include the standard deviation (SD), difference

between maximum and minimum (max-min), the successive variation index
(sv), and the maximum successive variation index (svmax). The successive
variation was defined as the square root of average difference in blood
pressure between successive measurements (From Ko et al., 2010, with
permission).

considering the pathogenesis of BPV related disease as well
as therapeutic treatment effects. Recently, Matsui et al. (2012)
reported that day-by-day BPV is lower in patients treated with an
angiotensin II receptor blocker/calcium channel blocker combi-
nation compared to those treated with an angiotensin II receptor
blocker/diuretic combination. This raised the possibility that ele-
vated BPV and or cerebral blood flow variability can be treated

using conventional antihypertensive agents (Parati and Bilo,
2012) (Figure 4).

“FRIEND”
While a wealth of studies have assessed the negative clinical con-
sequences of high BPV (and most likely variability in cerebral
blood flow) as highlighted in the “foe” section of this review, the
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FIGURE 3 | Relationship between the severity of organ damage and

(A) 24 h systolic blood pressure (SBP) and (B,C) its variability (SBPV)

in the short (B) and long term (C) spontaneously hypertensive rat at

60 weeks of age. For (A): n = 50, r = 0.31, P < 0.05; for (B): n = 50,
r = 0.65, P < 0.001; for (C): n = 50, r = 0.63, P < 0.001. Severity of organ
damage are composite scores calculated from the scoring criteria outlined
in Shan et al. (1999). Rats are assigned scores ranging from 0 (no
evidence of damage) to 2 (severe damage) for a broad range of clinically

relevant gross-anatomic and light micro-scopic end-points. Specific items
include left/right ventricular thickness, renal cortical thickness, myocardial
infarction/ischaemia, coronary atheroscherosis, thickness of myocardial
fibers, atrophy or compensative enlargement of glomeruli, and tubules,
Arterial sclerosis and degeneration of kidney, Basilar artery arteriosclerosis
of cerebrum, Cerebral hemorrhage or infarction, mesenteric artery
hypertrophy, and stroke and hemiplegia (Data and results from Su and
Miao, 2001, with permission).

potentially protective effect of pulsatile arterial pressure and/or
cerebral blood flow has also been demonstrated in a variety of
experimental and clinical settings, focused primarily on what we
define as “short-term” variability.

“HIGH” FREQUENCY PULSATILE FLOW
In 1972, Sanderson et al. (1972) demonstrated that pulsatile
cerebral blood flow was associated with decreased neuronal dam-
age following prolonged cardiac arrest in dogs (up to 3 h).
The frequency of the pulsatile perfusion was 1.7 Hz (i.e., 100
cycles/minute), consistent with the estimated heart rate, and was
able to generate pulse pressures of 25–90 mm Hg, compared
with only 2–15 mm Hg with non-pulsatile perfusion (Sanderson
et al., 1972). Mean arterial pressure and blood flow, however,
were approximately 50 and 12% lower with pulsatile perfu-
sion, but peripheral vascular resistance was also 57% lower;
increased shear stress with pulsatile perfusion increases endothe-
lial nitric oxide production (Nakano et al., 2000; Lanzarone et al.,
2009), subsequently decreasing resistance (Nakano et al., 2000).
The observed decrease in neuronal damage indicates that pul-
satile flow improves perfusion and oxygenation of vital tissue,
even with lower perfusion pressures. In reviewing the litera-
ture, Sanderson et al. (1972) suggest that pulsatile flow may also
promote baroreflex-mediated vasodilation, increase the rate of
tissue respiration, reduce cerebral critical closing pressure, and
prevent the depression of kidney function. In a study of pro-
longed cardiopulmonary bypass (up to 80 min) combined with
hypothermia in dogs, Onoe et al. also demonstrated an increase
in cerebral blood flow with pulsatile perfusion, although once
rewarming was complete this only persisted in the group arrested

for 60 min (Onoe et al., 1994). While some of these findings have
been substantiated in subsequent studies of extracorporeal per-
fusion with cardiac bypass surgery in patient populations, with
increased microcirculatory perfusion of the sublingual mucosa
(Koning et al., 2012; O’Neil et al., 2012) (Figure 5), increased
oxygen consumption (Koning et al., 2012), reduced leukocyte
activation (O’Neil et al., 2012), and decreased morbidity and
mortality (Taylor et al., 1982; Murkin et al., 1995), pulsatile per-
fusion therapy is still not a standard procedure in this setting
(Hornick and Taylor, 1997; Murkin, 2006; O’Neil et al., 2012).

Pulsatile flow has also been shown to improve cerebral hemo-
dynamic status in other clinically relevant states, including pro-
longed cerebral ischemia as a model of stroke (Allen et al.,
2012), and severe hemorrhage (Bassuk et al., 2010). In a pig
model of prolonged (30-min) isolated global normothermic
brain ischemia, Allen et al. (Allen et al., 2012) demonstrated
that 20-min of pulsatile perfusion at a frequency of 1.3 Hz
(80 cycles/min) and a flow rate of 750 ml/min resulted in reduced
neurological deficit and cerebral tissue edema, no post-ischemic
seizures (compared to 100% of animals in the non-pulsatile per-
fusion group), and an attenuated increases in oxygen radical
damage. While these studies show benefit with pulsatile perfusion
at or around the cardiac frequency, Adams et al. (Adams et al.,
2000, 2001) have introduced a novel approach to induce pulsatile
flow by applying whole body periodic acceleration in the head-to-
foot axis (Gz) at a frequency of approximately 3–4 Hz (180–240
cycles/min) and an acceleration of ±0.4 m/s2. These investiga-
tors have demonstrated that periodic acceleration can increase
vital organ blood flow in pigs, including the brain, heart, kidneys,
and liver at rest (Adams et al., 2001), and following significant
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FIGURE 4 | Power spectral density (PSD) for mean middle cerebral artery

flow velocity (MCAvmean) and mean arterial blood pressure (MAP) in

patients treated with a low dose calcium channel blocker (oral

Nimodipine 60 mg) and placebo pill. Solid and dashed lines represent

group median PSD before and following treatment, respectively. Dashed
vertical lines illustrate boundaries of the very low frequency (VLF;
0.02–0.07 Hz), low frequency (LF; 0.07–0.20 Hz), and high frequency (HF;
0.20–0.30 Hz) bands (Adapted from Tzeng and Macrae, 2013).

clinical events such as severe hemorrhage (Bassuk et al., 2010),
and cardiac arrest (Adams et al., 2011); subsequent survival from
hemorrhage also increased from 0 to 50% (Bassuk et al., 2010).
In studies using rats and piglets, these protective effects have
been shown to be mediated by shear-stress induced release of
vasoactive mediators including endothelial nitric oxide, prostacy-
clin, and prostaglandin E2, with subsequent vasodilation leading
to improved tissue perfusion (Adams et al., 2005; Uryash et al.,
2009). The potential role of periodic acceleration in recovery from
stroke has also been established, with reduced brain damage up
to 7 days following ischemia, indicated by reduced infarct size,
and decreased markers of autophagy (beclin 1) and apoptosis
(fractin) (Martinez-Murillo et al., 2009). Combined, these stud-
ies provide intriguing evidence in support of pulsatile perfusion
induced by periodic acceleration as a therapy for the protection
of cerebral tissues in a variety of clinical scenarios that challenge
cerebral blood flow and oxygenation, such as ischemic stroke;
human studies investigating these effects appear warranted.

Pulsatile flow patterns around the cardiac frequency can
also be assessed via calculation of pulsatility, generally derived
as systolic-diastolic/mean flow. Studies have reported a role of
increased cerebral blood flow pulsatility and tolerance to central
hypovolemia in healthy human subjects following head-up tilt
and lower body negative pressure (LBNP) (Thomas et al., 2009),
in hemorrhaging sheep (Lewis et al., 1999), and in patients with
head injury (Czosnyka et al., 1994). In these studies, increased
pulsatility resulted from a reduction in diastolic cerebral blood
velocity, and was interpreted as a mechanism of protecting blood

supply to the cerebral tissues with decreasing perfusion pressures
(Czosnyka et al., 1994; Lewis et al., 1999; Thomas et al., 2009).
Less energy may be required to maintain forward flow if the flow
is pulsatile vs. non-pulsatile, as higher mean flow rates can be
generated for equal mean arterial blood pressures (Shepard et al.,
1966; Sanderson et al., 1972; Czosnyka et al., 1994).

“LOW” FREQUENCY PULSATILE FLOW
The studies described thus far have utilized pulsatile perfu-
sion therapy at frequencies at or above the cardiac frequency
(i.e., ≥1 Hz). Other investigations, however, have also assessed
pulsatile flow at much lower frequencies, generally associated with
patterns of respiration, sympathetic nerve activity, and myogenic
activity, among other factors.

Under conditions of experimentally induced central hypov-
olemia in healthy human subjects, such as LBNP and head-up
tilt, increased oscillatory power in arterial pressure and/or cere-
bral blood flow has been associated with increased tolerance to
these stressors. In a number of studies using head-up tilt alone,
or combined with LBNP, individuals with poor tolerance (i.e.,
display symptoms of presyncope or syncope) exhibited reduced
LF oscillations in arterial pressure (Gulli et al., 2001; Kamiya
et al., 2005) and muscle sympathetic nerve activity (MSNA)
(Kamiya et al., 2005), compared with non-syncopal subjects who
showed a persistent elevation in LF power (Figure 6). The reduc-
tion in blood pressure and MSNA LF variability was associated
with reduced absolute MSNA (Kamiya et al., 2005). Additional
studies have demonstrated a clear relationship between changes
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FIGURE 5 | The proportion of perfused sublingual microvessels (PPV,

%) with and without pulsatile perfusion before, during, and after

cardiac bypass surgery (CPB). Sublingual microcirculation was assessed
using orthogonal polarization spectral imaging. Three to five 30 s steady
state video images were obtained from the lateral side of the tongue, 2 cm
from the tip at each time point. An investigator blind to the study performed
the analysis of each video clip. T0 = baseline; T1 = 30-min on CPB; T2 =
90-min on CPB; T3 = 1 h post CPB; T4 = 24 h post CPB; T5 = 48 h post
CPB. For the data presented, blood flow was classified as “normal” at
approximately 250–350 µm/s. At each time point, the number of vessels
that were classified as “normal” was divided by the total number of
vessels and reported as PPV%. (Data modified from O’Neil et al., 2012).
∗P < 0.05 compared with non-pulsatile group.

in the LF oscillatory characteristics of MSNA and the magni-
tude and direction of MSNA responses, such as during severe
hypovolemic stress (Cooke et al., 2009) (Figure 7), underscor-
ing the role of sympathetic variability on arterial pressure vari-
ability within the LF range. In studies assessing physiological
responses to pre-syncopal limited LBNP, we observed increases
in reflex-mediated endogenous LF variability in arterial pressure
and cerebral blood velocity in subjects with high tolerance (HT)
to this stress compared with low tolerant (LT) subjects (Rickards
et al., 2011); this was despite similar reductions in absolute arte-
rial pressure and cerebral blood flow between groups (∼20–30%)
(Figure 8). Breathing through an inspiratory threshold device
also increased LF variability in arterial pressure and cerebral
blood flow in subjects undergoing LBNP, which was associated
with the delayed onset of presyncopal symptoms, and increased
tolerance (Rickards et al., 2007). These exogenously-induced
oscillations were also coincident with profound reductions in
absolute cerebral blood velocity, which was not protected com-
pared with the control condition (i.e., no resistance breathing)
(Rickards et al., 2007) (Figure 9). Interestingly, posture depen-
dent increases in LF power of cerebral oxygen (derived from
NIRS) have also been shown in healthy subjects transitioning
from the supine to seated, or supine to standing position, coinci-
dent with higher LF power in arterial pressure. Absolute cerebral
oxygen levels were not protected, however, and the role of these
oscillations on orthostatic tolerance was not assessed (Tachtsidis
et al., 2004).

FIGURE 6 | Mean arterial pressure (MAP), MAP low frequency

amplitude (LFA), muscle sympathetic nerve activity (MSNA), and

MSNA LFA responses to head-up tilt (HUT) in syncopal (closed circles)

and non-syncopal subjects (open circles). Line 1 and line 2 represent 100
and 60 s time points prior to presyncope or completion of the HUT protocol
(From Kamiya et al., 2005, with permission).

FIGURE 7 | Muscle sympathetic nerve activity (MSNA) and MSNA low

frequency (LF) power in response to progressive central hypovolemia

induced via lower body negative pressure (LBNP). Data presented as a
percentage of maximum LBNP tolerance (Data modified from Cooke et al.,
2009).
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FIGURE 8 | Mean middle cerebral artery velocity (MCAv), mean arterial

pressure (MAP), and end-tidal (et) CO2 responses during progressive

central hypovolemia in a representative high tolerant (HT; A) and low

tolerant (LT; B) subject. Data are from the final 3-min prior to presyncope.

Note the enhanced oscillatory characteristics of the MCAv and MAP tracings
in the HT subject compared with the LT subject, and the transition from low
frequency (LF) to high frequency (HF) oscillations at presyncope in the HT
subject (From Rickards et al., 2011).

FIGURE 9 | Mean middle cerebral artery velocity (MCAv), and MCAv low

frequency (LF) power during progressive central hypovolemia induced

by lower body negative pressure (LBNP) while breathing through a

sham or active inspiratory threshold device (ITD). Breathing through an

ITD further decreases intra-thoracic pressure upon inspiration, subsequently
increasing venous return and stroke volume (Data modified from Rickards
et al., 2007). ∗P < 0.05 compared with baseline, †P < 0.05 compared with
sham condition.

In these aforementioned studies where respiration was
reported, the elevation in LF power was not associated with
breathing rate, as subjects, on average, were breathing outside
of the LF range (i.e., >0.15 Hz or >9 breaths/min) (Gulli et al.,
2001; Kamiya et al., 2005; Rickards et al., 2007, 2011). There is,
however, a potentially important role of breathing rate in the gen-
eration of LF variability in arterial pressure and cerebral blood
flow, which can lead to improved orthostatic tolerance. Recently,

Lucas et al. (2013) observed a 15% increase in tolerance to com-
bined head-up tilt and LBNP in subjects breathing at a fixed
rate of 6 breaths/min (i.e., 0.1 Hz) vs. spontaneous breathing at
16–20 breaths/min (i.e., 0.27–0.33 Hz), thereby forcing a marked
increase in LF power of mean arterial pressure and mean cerebral
blood velocity; again, the reduction in cerebral blood velocity was
similar between the two breathing conditions, so did not account
for the improvement in tolerance.
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While these improvements in tolerance to central hypov-
olemia were not associated with the preservation of absolute
cerebral blood flow, the effect of LF pulsatile cerebral blood flow
on cerebral tissue oxygenation is a plausible underlying mecha-
nism based on the animal and human clinical studies outlined
above using pulsatile perfusion at higher frequencies. Some of
these studies have demonstrated the role of nitric oxide-induced
vasodilation and improved oxygen delivery at high oscillatory fre-
quencies (Nakano et al., 2000; Lanzarone et al., 2009; Uryash et al.,
2009; Adams et al., 2011). Additionally, forcing oscillations in
arterial pressure at 0.1 Hz has also been shown to elicit an acute
antihypertensive effect (over the first 8 h of a 24 h recording) in a
dog model via liberation of nitric oxide (Nafz et al., 2000), which
could improve tissue perfusion and oxygenation. The role of LF
cerebral blood flow variability on the release of nitric oxide and
subsequent regulation of cerebral blood flow in humans, how-
ever, is unclear. Zhang et al. showed that inhibition of nitric oxide
synthase (NOS; via infusion of L-NMMA) did not alter the gen-
eration of LF oscillations in cerebral blood velocity or arterial
pressure in healthy humans at rest or during head-up tilt, and did
not affect transfer function estimates of cerebral autoregulation
(Zhang et al., 2004). Cerebral blood flow at rest and in response
to head-up tilt were also not affected by NOS inhibition, suggest-
ing that nitric oxide may not be liberated from the endothelium
under conditions of increased LF variability. It is possible, how-
ever, that other shear-stress induced vasoactive mediators may
be improving perfusion and oxygenation of the cerebral tis-
sues under these conditions, such as histamine (DeForrest and
Hollis, 1978), or prostaglandins, but these effects have not been
elucidated. In comparison, while cerebral blood flow responses
were not assessed, Castellano et al. (1995) demonstrated that
NOS inhibition reduced systolic arterial pressure LF power for
up to 40-min following infusion of L-LMMA, likely due to
baroreflex-mediated reductions in sympathetic activity as a result
of increased arterial pressure. These investigators only assessed
these effects at rest, however, and did not perturb the system (e.g.,
forcing 0.1 Hz oscillations, or performing a head-up tilt maneuver
to induce sympathetically-mediated LF oscillations) to determine
if LF power was also reduced under these conditions.

It has been speculated that the spontaneous generation of
oscillations in cerebral blood flow and cerebral oxygenation in the
lower frequency ranges (i.e., <1 Hz) is associated with changes
in vascular properties, such as arterial compliance (Schroeter
et al., 2004, 2005). Theoretically, a decrease in arterial compli-
ance could result in increased oscillatory characteristics of arterial
pressure and cerebral blood flow due to the reduced buffering
capacity of the vasculature. However, in a study of elderly sub-
jects (62–71 years), LF variability in cerebral oxygenation (via
NIRS as a measurement of the microvasculature) was lower at
rest and during a visual stimulation task compared with young
subjects (19–29 years) (Schroeter et al., 2004). These investiga-
tors suggested that this response was due to decreased compliance
of the arteries with aging, and a reduction in the reactivity of
the microvascular smooth muscle cells (Schroeter et al., 2004),
although they did not quantify arterial compliance to confirm
this hypothesis. Similarly, in studies of patients with cerebral
microangiopathy (Schroeter et al., 2005) or a history of cerebral

infarction (Li et al., 2010), conditions associated with an increase
in arterial stiffness (and decreased arterial compliance), sponta-
neous LF (Schroeter et al., 2005; Li et al., 2010) and VLF (Li
et al., 2010) power of oxy-hemoglobin was also reduced com-
pared with age matched controls, but again, cerebral vascular
compliance was not directly assessed. Finally, VLF BPV was lower
in stroke-prone hypertensive rats compared with stroke-resistant
hypertensive rats, reflective of reduced cerebrovascular myogenic
function, which usually protects the brain from hemorrhagic
stroke (Stauss et al., 2008). The direct role of arterial compli-
ance on the generation of these short-term oscillations in arterial
pressure, cerebral blood flow, and/or cerebral oxygenation has not
been clearly quantified, and should be investigated further.

CONCLUSION
In this review we have attempted to highlight the complexities
inherent in the characterization of hemodynamic variables such
as blood pressure and cerebral blood flow. We have contrasted
evidence that supports hemodynamic variability as a protective
feature of physiology against evidence suggesting that hemody-
namic variability heralds expansive damage to organ function.
Our review suggests that reconciliation of these two apparently
discrepant views may lie in the time scale of hemodynamic
variability; short time scale variability appears to be cerebro-
protective, while mid-to-longer term fluctuations are associated
with primary and secondary end-organ dysfunction. The extent
to which knowledge of the positive and deleterious influences of
hemodynamic variability will lead to improve health outcomes
are presently unknown, but the case is mounting against classical
approaches to hemodynamic assessment that focuses narrowly on
absolute blood pressure and/or cerebral blood flow.
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