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Abstract

Motivation: Systems immunology leverages recent technological advancements that enable broad

profiling of the immune system to better understand the response to infection and vaccination, as

well as the dysregulation that occurs in disease. An increasingly common approach to gain insights

from these large-scale profiling experiments involves the application of statistical learning meth-

ods to predict disease states or the immune response to perturbations. However, the goal of many

systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors

identified using current approaches can be biologically uninterpretable or present only one of

many equally predictive models, leading to a narrow understanding of the underlying biology.

Results: Here we show that incorporating prior biological knowledge within a logistic modeling

framework by using network-level constraints on transcriptional profiling data significantly im-

proves interpretability. Moreover, incorporating different types of biological knowledge produces

models that highlight distinct aspects of the underlying biology, while maintaining predictive ac-

curacy. We propose a new framework, Logistic Multiple Network-constrained Regression

(LogMiNeR), and apply it to understand the mechanisms underlying differential responses to influ-

enza vaccination. Although standard logistic regression approaches were predictive, they were

minimally interpretable. Incorporating prior knowledge using LogMiNeR led to models that were

equally predictive yet highly interpretable. In this context, B cell-specific genes and mTOR signaling

were associated with an effective vaccination response in young adults. Overall, our results dem-

onstrate a new paradigm for analyzing high-dimensional immune profiling data in which multiple

networks encoding prior knowledge are incorporated to improve model interpretability.

Availability and implementation: The R source code described in this article is publicly available at

https://bitbucket.org/kleinstein/logminer.

Contact: steven.kleinstein@yale.edu or stefan.avey@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Systems immunology leverages recent technological advancements

in high-dimensional immune profiling to monitor the response to

perturbations such as vaccination, as well as the dysregulation that

occurs in disease. An increasingly common approach to gain insights

from these large-scale profiling experiments involves the application

of statistical learning methods, such as classification, to accurately

predict immune state or clinical outcome (Larra~naga et al., 2006).

However, interpreting these models to gain insights into the underly-

ing process remains a challenge.

Although a statistical model must be accurate to be meaningful,

many systems biology studies focus on understanding the underlying
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biology and not on maximizing predictive accuracy. Even in cases

where model accuracy is the main goal, such as diagnosis or progno-

sis, an accurate model that is interpretable in terms of underlying

biology would likely be preferred over a similarly accurate model

which lacked interpretability. Thus, it may be preferable for statis-

tical learning models to be interpretable in terms of what is already

known about a system rather than attempting to maximize accuracy

using a ‘black box’ approach.

In order to interpret a model, the most predictive genes can be

identified and tested for enrichment using collections of related gene

lists known as gene set libraries. However, previous studies have

shown that regression models built from transcriptional profiles can

accurately predict immune state or cancer subtype using multiple

completely distinct sets of genes (Gruvberger et al., 2001; O’Hara

et al., 2013). Strikingly, O’Hara et al. (2013) found that removing

all predictive genes from a model and refitting the model can be

done for several iterations before a decrease in accuracy is observed.

This result implies that single, parsimonious models may miss genes

important to the underlying biology of the system of interest.

Furthermore, the top predictive genes identified by a model can

sometimes fail to be enriched in any gene set libraries, resulting in a

lack of biological interpretability.

In an effort to improve model interpretability, many studies have

proposed network-constrained regularization approaches that utilize

prior knowledge (Chuang et al., 2007; Li and Li, 2008; Rapaport

et al., 2007; Sun and Wang, 2012). These methods take advantage

of large repositories of biological knowledge (e.g. pathways or pro-

tein–protein interactions) by encoding them in gene–gene networks

and using these networks to enforce a constraint on the model.

Including prior knowledge in the modeling process improves inter-

pretability of the classifiers and in some cases can improve their ac-

curacy over non-network methods. However, these studies were

performed with a single source of prior knowledge. Thus, it remains

unknown how prior knowledge network choice affects model per-

formance and whether a single model is sufficient to capture the

underlying biology.

Here we show that fitting multiple models, each incorporating a

different source of prior biological knowledge, greatly improves

model interpretability. We propose a new framework, Logistic

Multiple Network-constrained Regression (LogMiNeR), which util-

izes multiple models that each highlight distinct aspects of the

underlying biology, while maintaining predictive accuracy. We first

apply LogMiNeR to transcriptional profiling data to better under-

stand differential influenza vaccination responses and subsequently

show that LogMiNeR can be applied to classification of many im-

mune as well as non-immune-mediated diseases. This new paradigm

provides additional insights in systems biology studies which focus

on finding predictive signatures that are interpretable in terms of

prior biological knowledge.

2 Materials and Methods

2.1 Availability of transcriptional profiling data
The validation data (SDY80) is described in (Tsang et al., 2014).

The gene expression data from SDY63 and SDY404 are published

and described in Thakar et al. (2015). The design of SDY400 is iden-

tical to that described in Thakar et al. (2015) except that the samples

were collected during the 2012–13 vaccine season. Data are avail-

able from ImmPort (https://immport.niaid.nih.gov) and GEO

(Discovery: GSE59635, GSE59654, GSE59743; Validation:

GSE47353).

2.2 Defining vaccine response endpoint
Vaccination response was calculated from the fold change in antibody

titer post-vaccination compared with pre-vaccination. Titers were

measured at days 0 and 28 by hemagglutination inhibition assay in

the discovery data and at days 0 and 70 by virus neutralization assay

in the validation data. A titer of half the first dilution was assigned to

samples in which the first dilution was negative and the largest dilu-

tion was reported if it was positive. High and low responders were

defined as the top and bottom 30%, respectively, of the maximum ad-

justed fold change as defined by Tsang et al. (2014).

2.3 Data preprocessing
The discovery datasets were initially quantile normalized across

arrays, and the processed validation data was used as provided.

Following array normalization, each study went through several

preprocessing steps independently in order to mitigate batch effects.

First, probes were mapped to Entrez Gene IDs using the

Bioconductor tool AnnotationDbi (Pages et al., 2015), and probes

were collapsed to unique genes by choosing the probe with max-

imum average expression. Next, genes located on the X and Y

chromosomes were removed to avoid selection of sex-linked genes

that may be confounded with vaccine response. The log fold change

between day 7 and 0 was calculated for each gene, and the 1000

genes with the largest fold change magnitudes in the discovery data-

sets were selected as the initial feature set. The gene fold changes

were standardized by subtracting the mean and dividing by the

standard deviation. Finally, the pre-processed data from SDY63,

SDY404 and SDY400 were combined to form the discovery data

and SDY80 was used as the validation data.

The data for the additional case studies were downloaded from

GEO using the Bioconductor R package GEOquery (Sean and

Meltzer, 2007). The coefficient of variation was calculated for each

gene and the 500 genes with largest variation were selected as the

initial feature set.

GSE45291: The classifier was built to distinguish the 292 samples

from subjects with SLE from the 20 control samples at baseline

(time 0).

GSE37250: The classifier was built to distinguish the 195 samples

from subjects with active tuberculosis from the 167 samples with la-

tent tuberculosis.

GSE57338: The classifier was built to distinguish the 82 samples

from subjects with idiopathic dilated cardiomyopathy from the 95

samples with ischemic heart disease.

2.4 Network-constrained logistic regression
Network-constrained logistic regression was performed as described

by Sun and Wang (2012). To account for pairs of connected genes

that were expected to have similar magnitude but potentially oppos-

ite effects on response, the adaptive regularization procedure

described in Section 3.4 of Sun and Wang (2012) was performed.

Briefly, the signed Laplacian matrix was first calculated for each

network by setting the uvth entry in the following way (Equation 1),

luv ¼

1 if u ¼ v and du 6¼ 0;

�susv=
ffiffiffiffiffiffiffiffiffiffi
dudv

p
if u and v are connected;

0 otherwise:

8>><
>>: (1)

where du and dv are the degrees of genes u and v and su and sv are

the signs of the coefficients for genes u and v estimated by
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correlation with the response variable during each round of cross

validation. The model was then fit to minimize the objective func-

tion (Equation 2)

�1

n

Xn

i¼1
½yi log ðpðxiÞÞ þ ð1� yiÞ log ð1� pðxiÞÞ� þ PðhÞ (2)

where response yi is 0 for low responders or 1 for high responders

and xi is a vector of gene expression values for subject i. The penalty

function took the form

PðhÞ ¼ ka
Xp

j¼1
jhjj þ

1

2
kð1� aÞ

Xp

u¼1

X
u�v

suhuffiffiffiffiffi
du

p � svhvffiffiffiffiffi
dv

p
 !2

(3)

where u � v indicates the set of node pairs which are connected to u

in the network. The first term is the L1 penalty that results in model

sparsity and the second term is the network constraint in Laplacian

quadratic form that results in smoothness of coefficients over the

network.

2.5 Fitting models
Lasso and Elastic Net Logistic Regression were performed using

the glmnet R package v2.0.2 (Friedman et al., 2010). Network-

constrained logistic regression was performed using the pclogit R

package v0.2 (Sun and Wang, 2012). 200 values of the tuning par-

ameter lambda were chosen and 20 values of alpha were used in

the interval [0,1]. Five-fold cross validation was performed to

choose the optimal values of lambda and alpha. The cross-

validation procedure was repeated 50 times for robustness to dif-

ferent splits of the discovery data. Cross-validation folds were bal-

anced by study, response endpoint and gender for the flu

vaccination case study and by response endpoint in the additional

case studies. The parameters (lambda, alpha) were chosen by se-

lecting the best model (Lasso: most sparse; Elastic Net and

LogMiNeR: least sparse) with cross validated error within one

standard error of the minimum.

2.6 Calculating Biological Interpretability
The mean-rank gene set enrichment test (Michaud et al., 2008) was

performed using the absolute value of the model coefficients to rank

the genes. The test was performed using the geneSetTest function in

the limma R package v3.24.15 (Ritchie et al., 2015). Gene sets for

KEGG, Reactome, and GO were downloaded from the Molecular

Signatures Database v5.1 (Subramanian et al., 2005). Gene sets for

BTM (Li et al., 2013) and CELLS (Abbas et al., 2005) were obtained

from the original publication. Only sets which had at least 15 genes

overlapping with the gene expression feature set were used. False

discovery rates were obtained using the method of Benjamini and

Hochberg (1995).

2.7 Prior knowledge networks
Networks were defined for Reactome, GO, BTM and CELLS by

connecting all pairs of genes within each gene set. The KEGG net-

work incorporated pathway topology and was built using the

KEGGgraph R package v1.26.0 (Zhang and Wiemann, 2009).

ImmuneGlobal and ExpOnly_ImmuneGlobal networks were ob-

tained from ImmuNet and edges were restricted to those with confi-

dence of at least 0.1 (Gorenshteyn et al., 2015). The STRING

network incorporated all experimental evidence from the STRING

database v10.0. The processed LINCS L1000 gene signatures gener-

ated as part of the Broad Institute Connectivity Map (Lamb et al.,

2006) were obtained from the Enrichr downloads page (Chen et al.,

2013), and a network was created by connecting all pairs of genes

within each gene set.

2.8 Identifying potential drug interactions
The nearly 8000 sets included in the LINCS L1000 signatures were

filtered to the drug response gene sets that were significantly en-

riched and reversed the signature of high vaccine response. These

drug response gene sets contained genes which were significantly

altered in the same direction upon treatment with the drug in the

original dataset and when comparing low–high responders. To limit

the number of false positives, we only considered gene sets that were

significantly enriched (FDR < 0.001) in at least 50% of the cross

validation runs.

2.9 Visualizing significantly enriched gene sets
The distance between each pair of gene sets which were significantly

enriched in at least 10% of the 50 runs was calculated using the

Jaccard distance. The minimum spanning tree was calculated for

this network. This tree was then visualized in Cytoscape (Shannon

et al., 2003, 2013) and the MultiColoredNodes plugin (Warsow

et al., 2010) was used to color each node according to the prior

knowledge network that led to its enrichment.

3 Results

3.1 Lasso and elastic net models are minimally

interpretable
Systems vaccinology seeks to use high-throughput profiling of im-

mune responses to vaccination in order to gain insights into the

underlying biological mechanisms that lead to protection (Pulendran

et al., 2010). Such approaches may be especially useful for improv-

ing the response to influenza vaccination, which is an important

public health tool, but fails to induce an antibody response in a sig-

nificant fraction of individuals (Sasaki et al., 2011). To better under-

stand why some individuals successfully generate antibody

responses, while others fail to do so, we recruited healthy young

adults (21–30 years old) over three vaccination seasons and meas-

ured vaccine-specific antibody titers immediately prior to and 28

days post-vaccination with the seasonal trivalent inactivated influ-

enza vaccine. Genome-wide transcriptional profiling of blood sam-

ples prior to and 7 days post-vaccination was carried out for a

subset of these individuals with strong and weak antibody responses.

To quantify the strength of the vaccine response, we used the ad-

justed Maximum Fold Change endpoint proposed by Tsang et al.

(2014). This endpoint adjusts the maximum fold change in antibody

titer for correlations with baseline titers and defines high and low

vaccine responders as the top and bottom 30th percentile, respect-

ively (see Section 2.2).

To predict the antibody response to influenza vaccination, we

first applied standard Lasso logistic regression to the transcrip-

tional profiling data (Tibshirani, 1996). The gene expression pro-

files were filtered to retain the 1000 genes which changed most 7

days post-vaccination (see Section 2.3). These profiles served as

the discovery data to find a predictive signature to classify high

and low vaccine responders. The models built from 50 runs of 5-

fold cross validation on these discovery data were subsequently

validated on an independent cohort from the NIH Center for

Human Immunology (Tsang et al., 2014). In total, we trained our

model on 18 high and 17 low responders and validated our model

on 11 high and 10 low responders (Supplementary Table S1). The

Lasso models fit the discovery data with a median accuracy of
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86% (Fig. 1A), but predicted response with poor accuracy in the

validation data (Fig. 1B).

In order to understand what biological factors were able to dis-

criminate high and low responders in the discovery data, we tested

whether any gene sets were enriched among the predictive genes

using a mean-rank gene set test (Michaud et al., 2008) on the model

coefficients (see Section 2.6). The gene set libraries used to test en-

richment included KEGG (Kanehisa and Goto, 2000) and Reactome

(Croft et al., 2014; Milacic et al., 2012) pathways, blood transcrip-

tional coexpression modules (BTM) (Li et al., 2013), gene ontology

(GO) terms (Ashburner et al., 2000), and blood cell subset signa-

tures (CELLS) (Abbas et al., 2005). On average, the models were

significantly enriched (FDR < 0.05) for less than one gene set from

four out of five gene set libraries tested (Fig. 2A). The Lasso models

were enriched for an average of four GO terms including catabolic

process and cellular catabolic process. These results show that Lasso

logistic regression is predictive on the discovery data and interpret-

able in terms of GO terms, but does not validate well in an inde-

pendent cohort.

The explicit goal of Lasso regression models is to reduce the

number of features (genes) in the model, which may not be prefer-

able when trying to interpret the underlying biology. In fact, the

Lasso models chose only five genes on average, which may explain

why these models do not validate and are minimally interpretable.

In order to improve model accuracy and interpretability, we next

fit Elastic Net logistic regression models (Zou and Hastie, 2005).

The Elastic Net promotes a grouping effect that tends to include a

larger number of relevant genes and was previously used to predict

influenza vaccine response accurately from transcriptional profiles

(Furman et al., 2013). The Elastic Net models fit the discovery

data with a median accuracy of 94% (Fig. 1A) and successfully

predicted response in the validation data with a median accuracy

of 69% (Fig. 1B). The hyperparameter controlling the trade-off be-

tween Lasso (alpha ¼ 1) and ridge (alpha ¼ 0) constraints favored

the ridge constraint (Fig. 1C). Accordingly, the average number of

genes used to predict vaccine response with Elastic Net (88) was

much higher than for Lasso (5). However, when we tested whether

any gene sets were enriched among these predictive genes, on aver-

age, the models were significantly enriched (FDR < 0.05) for less

than one gene set from four out of five gene set libraries tested

(Fig. 2A). Two GO terms, on average, were enriched using Elastic

Net including positive regulation of metabolic process and peptid-

ase activity.

In order to test whether these models of vaccination response were

more accurate than expected by chance, we permuted the class labels

in the discovery set and retrained the Lasso and Elastic Net models.

The validation accuracy after permuting class labels was 50%, which

was significantly lower (P ¼ 0.03, two-sided t-test) than Elastic Net

but not significantly different from Lasso (P ¼ 0.66, two-sided t-test),

suggesting that the Elastic Net models were indeed fitting real differ-

ences in vaccination response and not noise (Fig. 1B). The difference

in model accuracy was due to higher sensitivity using Elastic Net com-

pared with Lasso (Supplementary Figs S3A, B, S4A and B). Overall,

we found that Elastic Net models can predict vaccination response

from transcriptional changes 7 days post-vaccination, but the genes

underlying the predictions cannot be easily interpreted in terms of

existing pathways or coexpression modules.

A D

B E

C F

Fig. 1. The classification accuracy of models from 50 runs of 5-fold cross val-

idation. Discovery (A) and Validation (B) accuracies for the Lasso (L1) and

Elastic Net (EN) models. (C) The optimal value of the tuning parameter alpha

[0,1] controlling the trade-off between the L1 and L2 constraints. Discovery

(D) and Validation (E) accuracies for the network-constrained (LogMiNeR)

models. (F) The optimal value of the tuning parameter alpha [0,1] controlling

the trade-off between the L1 and network constraints

A B

Fig. 2. The number of significantly enriched gene sets (FDR < 0.05) in multiple

gene set libraries (rows) for L1 and EN models (A) or network-constrained

(LogMiNeR) models (B). The diagonal in the dashed box indicates models for

which the same gene set library was used for prior knowledge and enrich-

ment testing. Bars represent mean and whiskers represent one standard

error
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3.2 Network-constrained models improve

interpretability
We next investigated whether biological interpretability could be

improved by models that select different sets of genes. Prior work

suggested that high-dimensional data often contain additional pre-

dictive genes beyond the ones chosen by standard machine learning

methods. For example, iterative feature removal can lead to multiple

mutually exclusive subsets of genes that predict equally well and im-

plicate different pathways (O’Hara et al., 2013).

We hypothesized that including prior knowledge directly into

our modeling framework would improve interpretability by limiting

the search space of the models according to known biological rela-

tionships. To test this, we coded prior knowledge in the form of

gene–gene networks where edges represented associations between

two genes. The type of association depended on the prior knowledge

source (e.g. membership in the same pathway for KEGG). Multiple

gene networks, representing a range of association types, served as

prior knowledge to fit multiple models (Supplementary Table S2;

see Section 2.7). All the gene set libraries used to test enrichment

(KEGG, Reactome, BTM, GO, CELLS) were converted to networks

and used as prior knowledge. Since existing databases are likely in-

complete, we included additional prior knowledge networks derived

from Bayesian integration of functional interactions from multiple

evidence sources (ImmuneGlobal) or gene expression only

(ExpOnly_ImmuneGlobal) (Gorenshteyn et al., 2015) as well as

protein–protein interactions with experimental evidence in the

STRING database (Jensen et al., 2009). The nine networks varied in

edge density from 0.1% (KEGG) to 11.5% (GO) but all networks

were filtered to contain the same set of genes used as input to the

Lasso and Elastic Net models (Supplementary Table S2). A network

constraint was added in addition to the Lasso constraint so that

model coefficients would be smoothed over the network (Li and Li,

2008; Sun and Wang, 2012). The constraint is motivated by the as-

sumption that genes closely connected in the prior knowledge net-

work should contribute similarly to prediction. Connected genes are

coerced to have model coefficients with similar magnitudes by

penalizing the squared difference between coefficients. At the same

time, we allow for the sign of the coefficients to vary. Thus we allow

for anticorrelated genes, such as two gene products in a pathway

where one negatively regulates the other, to contribute similarly to

prediction but in opposite directions (see Section 2.4).

We applied this approach to the influenza vaccination data and

found that the network-constrained models maintained similar pre-

dictive discovery accuracies as the Elastic Net models. Furthermore,

the validation accuracies were predictive and not significantly differ-

ent from Elastic Net (P � 0.05, two-sided t-test) (Fig. 1D and E).

Each network-constrained model achieved a median discovery ac-

curacy of at least 90% while maintaining a median validation accur-

acy of at least 62%. Interestingly, even when the prior knowledge

networks were rendered biologically meaningless by gene label per-

mutation, the network-constrained models retained similar valid-

ation accuracies, AUROC, sensitivities and specificities to the

Elastic Net models (Supplementary Figs S1D, E, S2C, D, S3C, D,

S4C and D). The subjects correctly classified as high or low re-

sponders in the validation dataset were consistent and did not de-

pend on the source of prior knowledge. On average, the

hyperparameter controlling the trade-off between model sparsity

(alpha ¼ 1) and network smoothness (alpha ¼ 0) favored the net-

work constraint (Fig. 1F). This indicates that the network constraint

was enforced and consequently the magnitude of model coefficients

was smooth over the network (see Section 2.5). Taken together,

these results indicate that any of the network-constrained models

are equally valid predictors of vaccination response, and are com-

parable with models built using Elastic Net.

In order to test whether network-constrained models improve in-

terpretability compared with Lasso and Elastic Net, we again quan-

tified interpretability as the average number of significantly enriched

gene sets for each model. On average network-constrained models

selected a comparable number of genes (45–150 depending on the

network) to Elastic Net (88). Yet, in contrast to both the Lasso and

Elastic Net models, the network-constrained models were highly en-

riched for known pathways and gene sets (Fig. 2B). For every gene

set library, interpretability was better using a network-constrained

model compared with using either standard Lasso or Elastic Net

models. As expected, each prior knowledge network produced a

large number of enriched gene sets based on that same network (e.g.

using GO as prior knowledge leads to nine enriched GO sets).

However, enrichment on the Reactome gene set library was greatest

using the KEGG network as the prior knowledge source. Even

though the accuracy of network-constrained models was similar

when gene labels were permuted, the models built from permuted

networks were minimally enriched for all gene set libraries tested

(Supplementary Fig. S5B). In fact, the levels of enrichment using bio-

logically meaningless networks closely mirrored the Elastic Net

method. Thus, the network-constrained models are not only accur-

ate, but also interpretable in terms of existing pathways, coexpres-

sion modules, GO terms, and blood cell subsets.

Although network-constrained models tend to choose more in-

terpretable genes, individual genes that are not associated with any

gene set libraries were still included in the predictive models. 240 of

the 1000 genes used as the initial feature set were not present in any

of the selected gene set libraries. All of these genes were used in at

least one network-constrained model, and seven were consistently

selected in at least 50% of cross-validation runs. One such gene,

JCHAIN, is a positive predictor of high response in 72% of runs.

JCHAIN encodes the joining chain for multermeric IgA and IgM

antibodies and is highly expressed in antibody secreting cells (ASCs)

(Nakaya et al., 2011) suggesting an increase in circulating ASCs or

antibody production 7 days post-vaccination in high responders.

Thus, this method is able to identify novel predictive genes that are

not annotated in existing gene set libraries.

3.3 Multiple models provide context-specific insights
We next asked whether the gene sets enriched by Lasso, Elastic Net,

and network-constrained methods were context-specific or shared

across multiple methods or prior knowledge networks. We defined

‘consistently enriched’ gene sets for each model as those that were

significantly enriched (FDR < 0.05) in at least 10% of cross valid-

ation runs. Only a single gene set, GO peptidase activity, was con-

sistently enriched regardless of the method used. (Supplementary

Fig. S8). Of the 65 gene sets consistently enriched by any method 16

(25%) were enriched by two or more different methods. Although

there were some shared insights, 49 (75%) gene sets were context-

specific (i.e. consistently enriched by only one method).

Our results show that using different networks as prior know-

ledge leads to many predictive models that highlight context-specific

as well as shared aspects of the underlying biology of vaccination re-

sponse. Thus, we propose this approach, which we term

‘LogMiNeR’ (Logistic Multiple Network-constrained Regression),

as a new framework for systems immunology studies. In contrast

with previous methods, LogMiNeR fits multiple models, each using
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different sources of prior knowledge, to gain a broader understand-

ing of the underlying biology.

LogMiNeR allows for the interpretation and visualization of

multiple models simultaneously (Fig. 3). To visualize the results of

LogMiNeR, gene sets were arranged by set similarity resulting in

tightly connected groups of related gene sets. The gene sets identified

by multiple models (25%) were annotated to processes such as inter-

feron signaling, transcription factor activity, and metabolic regula-

tion. In addition, lymphoid and specifically B cell signature genes

were enriched by multiple models and were positive predictors of a

successful vaccination response. The B cell enrichment was driven

primarily by TNFRSF17, also known as B cell maturation antigen

(BCMA). Other shared insights were only found by a subset of the

methods. For example, the Reactome interferon alpha/beta signaling

pathway positively predicted vaccine response and was only consist-

ently enriched when the Reactome, KEGG or STRING networks

were used as prior knowledge. (Supplementary Fig. S7). The many

context-specific gene sets identified by only a single model (75%)

were mainly found using the KEGG pathway network and included

sets involved in inflammatory/stress response, signal transduction,

lipid metabolism, and hemostasis. Overall, LogMiNeR allowed us

to find both shared and context-specific insights into the influenza

vaccination response which were dependent on the input prior

knowledge network.

To further demonstrate the utility of LogMiNeR and the influ-

ence of the prior knowledge network, we applied this framework to

identify drug interactions with the potential to negatively affect vac-

cine response (see Section 2.8). We hypothesized that if high vaccine

responses were characterized by specific changes in gene expression,

and if drug treatment caused the opposite changes in gene expres-

sion in model cell lines, then that drug has the potential to negatively

impact a proper vaccine response. This is similar to the computa-

tional approach for drug repositioning suggested by Sirota et al.

(2011) and provides a straightforward method to identify drugs that

might interfere with a successful influenza vaccination response. To

accomplish this analysis, we applied LogMiNeR using a drug re-

sponse network built from the Library of Integrated Network-based

Cellular Signatures (LINCS) L1000 dataset (Lamb et al., 2006). The

validation accuracy was predictive and was not significantly differ-

ent than Elastic Net (P � 0.05, two-sided t-test). Out of the nearly

8000 drug response signatures tested, we identified seven consist-

ently and significantly enriched (FDR < 0.001) drug response gene

sets representing six distinct drugs (Supplementary Table S3). One

of the six drugs, GDC-0980, is an mTOR inhibitor, suggesting that

individuals taking mTOR inhibitors may have less effective re-

sponses to the seasonal influenza vaccination. The other drugs are

kinase inhibitors specific to EGFR (gefitinib), MET/VEGFR2 (foreti-

nib), MEK (AZD-8330, selumetinib) and Akt (A443654). Notably,

these compounds target growth factor receptors (EGFR, VEGFR2,

MET) or members of the Ras-ERK or PI3K-mTOR signaling path-

ways which lead to cell survival, proliferation, and motility

(Mendoza et al., 2011). Together, these results suggest potential

drug interactions that may adversely affect vaccine response as well

as highlight the importance of cell growth, proliferation and motility

to generating a successful antibody response upon influenza

vaccination.

3.4 LogMiNeR improves interpretability on additional

datasets
In order to assess whether the results we obtained on the influenza

vaccination data were generalizable to other datasets with larger

sample sizes, we tested LogMiNeR on classification of publicly

available gene expression data from an autoimmune disorder (SLE

versus healthy), a bacterial infection (latent versus active TB), and a

non-immune mediated disease (ischemic heart disease versus dilated

cardiomyopathy) (see Section 2.1). In all three additional datasets

tested, the accuracy of the network-constrained models was similar

Fig. 3. Overview of the gene sets (nodes) arranged by Jaccard distance on a minimum spanning tree. Only gene sets significantly enriched (FDR < 0.05) by at

least one model were included. We further limited the visualization to the sets consistently enriched in at least 10% of the runs. Groups of context-specific (solid

ellipses) or shared (dashed ellipses) gene sets with similar annotations were manually identified
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to the non-network methods (Supplementary Figs S11A, B, S12A, B,

S13A and B).

The classification of SLE versus healthy subjects from peripheral

blood was performed with nearly perfect accuracy (98–99%) re-

gardless of which method was used. Although this highly accurate

prediction suggests a strong signal in the data, the standard Lasso

and Elastic Net methods were only enriched for an average of two

GO terms—negative regulation of biological process and cell–cell

signaling (Supplementary Fig. S11C). Using LogMiNeR with the

STRING network, we found enrichment of the Reactome pathways

cytokine signaling in immune system and, more specifically, inter-

feron alpha/beta signaling (Supplementary Fig. S11D).

We next tested for enrichment of gene set libraries on models clas-

sifying latent versus active tuberculosis. The number of enriched sig-

natures was similar for all methods, with the exception of GO sets

which were more highly enriched with LogMiNeR (Supplementary

Fig. S12C and D). Regardless of the method used, the Reactome path-

ways immune system and cytokine signaling in immune system were

consistently and significantly enriched. In addition, LogMiNeR led to

enrichment of GO terms beyond those shared by all methods includ-

ing response to external stimulus and defense response which were

positive predictors of active tuberculosis.

Finally, we applied LogMiNeR to classify patients with ischemic

heart disease or dilated cardiomyopathy from transcriptional profiling

data of heart tissue (GSE57338). This dataset is different from the

others in that the samples are not from peripheral blood tissue and do

not characterize an immune-mediated disease. Both Lasso and

Reactome network-constrained models are enriched for multiple gene

sets above background (Supplementary Fig. S13C and D). The enrich-

ments of the Lasso models are more consistent across runs and include

innate immune sets such as the KEGG toll-like receptor signaling

pathway, Reactome innate immune system and BTM regulation of

antigen processing and presentation and immune response (M5.0).

Thus, we suggest that Lasso and Elastic Net be used alongside of

LogMiNeR as they can provide additional insights.

Our results demonstrate that LogMiNeR can be successfully

applied to additional datasets and leads to models that are similarly

accurate, but have the potential to expand the interpretability of

standard logistic regression approaches.

4 Discussion

We propose LogMiNeR as a new framework for analyzing

classification-based studies that leads to increased biological inter-

pretability. A series of case studies using multiple transcriptional

profiling datasets demonstrate that LogMiNeR leads to many accur-

ate models that are biologically interpretable. In contrast, the appli-

cation of standard classification methods to these same data

produces models that are no more accurate, but are often severely

limited in interpretability.

Our primary case study focused on understanding influenza vac-

cination responses. Specifically, we sought to use transcriptional

profiling data from post-vaccination blood samples to predict

whether individuals would have high or low vaccine responses as

determined by antibody titers. Lasso models were not predictive

above random on an independent validation dataset and few gene

sets were consistently enriched by either standard classification

method (Lasso or Elastic Net logistic regression). Elastic Net models

were validated in an independent study and associated an increase in

B cell signature genes, specifically TNFRSF17 (BCMA), 7 days post-

vaccination with increased vaccination response. The expression of

BCMA 7 days post-vaccination is a known positive predictor of

antibody response to both yellow fever vaccine 17D (Querec et al.,

2009) and inactivated influenza vaccine (Li et al., 2014; Nakaya

et al., 2011; Obermoser et al., 2013). LogMiNeR models were simi-

larly predictive to Elastic Net and expanded interpretability by iden-

tifying over 60 consistently and significantly enriched gene sets not

found by standard classification methods. LogMiNeR allowed us to

identify known components of the vaccination response that were

not identified using Lasso or Elastic Net logistic regression. For ex-

ample, we identified gene sets involved in interferon signaling to

positively predict a successful influenza vaccination response.

Interferon signaling has previously been reported 1–3 days post-

immunization (Bucasas et al., 2011; Li et al., 2014; Tsang et al.,

2014), and it is possible that the network constraint helped enrich

for this signal at later time points as well. We also identified 6 drugs

from a library of nearly 8000 drug response profiles whose expres-

sion patterns suggested a potential negative effect on vaccination re-

sponse in our cohort of young adults. We speculated that one such

drug, the mTOR inhibitor GDC-0980, may negatively impact vac-

cination response. Although mTOR inhibitors were reported to im-

prove immune responses to influenza vaccination in the elderly

(Mannick et al., 2014), these inhibitors reportedly decreased the re-

sponse to pandemic influenza vaccination in a cohort of young

adults receiving solid organ transplants (Cordero et al., 2011), sug-

gesting that the effect may be age-dependent. Furthermore, the drugs

we identified were all inhibitors of growth factor receptors or mem-

bers of the Ras-ERK or PI3K-mTOR signaling pathways (Mendoza

et al., 2011). This finding points to greater cell growth and prolifer-

ation in high vaccine responders. Whether these signatures are a pri-

mary cause leading to response or a by-product of B cell

proliferation and migration, such as an increase in circulating plas-

mablasts (Tsang et al., 2014), will require further study. Thus,

LogMiNeR helped us identify known components of the vaccine re-

sponse as well as generate new hypotheses about how drugs might

affect response to seasonal influenza vaccination.

We also applied LogMiNeR to three larger datasets, each con-

taining hundreds of samples, as case studies of disease classification.

We found that all LogMiNeR models were similarly accurate, but

had the potential to expand interpretability of standard logistic re-

gression approaches. For example, when we classified SLE versus

healthy samples from peripheral blood, LogMiNeR, but not stand-

ard approaches, resulted in models that were enriched for the inter-

feron alpha/beta signaling pathway. This finding is consistent with

many previous observations that individuals with SLE have a strong

interferon signature in their peripheral blood (Rönnblom and

Eloranta, 2013). In two other datasets the significantly enriched

gene sets were similar whether or not network knowledge was incor-

porated. The LogMiNeR models classifying individuals with latent

versus active TB were enriched beyond general immune system path-

ways to include more specific sets that positively predicted active TB

including response to external stimulus and response to stress. On

the other hand, Lasso models classifying ischemic heart disease

versus dilated cardiomyopathy were more consistently enriched than

LogMiNeR models. Notably, this dataset profiled heart tissue in a

non-immune-mediated disease whereas many of our prior know-

ledge sources were, by design, blood tissue or immune-specific.

Because Lasso and Elastic Net can provide additional insights, we

suggest that non-network-constrained methods be used alongside

LogMiNeR.

Interpretability was increased by each individual network-

constrained model while maintaining model accuracy. Others have

also reported this increased interpretability of network-constrained
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regression approaches (Chuang et al., 2007; Li and Li, 2008;

Rapaport et al., 2007). The novelty of our approach is that we fit mul-

tiple models using different sources of prior knowledge. When calcu-

lating interpretability, we noticed that the largest number of enriched

sets obtained with LogMiNeR tended to come from the network that

corresponds to the same gene set library. On the flu vaccination data,

the most enriched KEGG pathways are identified when a KEGG net-

work is used as prior knowledge. In cases where this does not hold,

the network is similar to the gene set library. For example, we found

that the KEGG network led to the most enriched Reactome sets, likely

because both are pathway databases and share many edges in the net-

work. These results suggest that the prior knowledge networks given

as input to LogMiNeR should be chosen based on the context used to

interpret the models. On all four datasets tested, the accuracy of

LogMiNeR was similar to Elastic Net models. These findings are con-

sistent with a survey evaluating eight network-based methods applied

to prognostic biomarker discovery which concluded that incorporat-

ing prior knowledge does not significantly improve classification ac-

curacy. Surprisingly, LogMiNeR was similarly accurate to Elastic Net

models even when gene labels in the network were permuted. This

may be explained in part by the selection of a similar number of genes

regardless of gene label permutation or by biases from isolated nodes

in our prior knowledge networks.

LogMiNeR can be viewed as a hybrid approach between single-

gene methods and gene set methods, which calculate set activity and

are able to reduce the signal-to-noise ratio (Levine et al., 2006).

Each gene in LogMiNeR has its own weight, but these weights are

coerced to be similar for genes connected in the prior knowledge

network. We demonstrated that LogMiNeR not only improved in-

terpretability on gene sets but also led to identification of predictive

genes which were not annotated in existing gene set libraries. Thus,

LogMiNeR models have the freedom to discover novel predictive

genes while at the same time using prior knowledge to improve in-

terpretability in terms of what is already known. Although we eval-

uated unweighted networks in this study, LogMiNeR could also be

adapted to weighted networks. Furthermore, this method is not lim-

ited to gene expression data and can be applied whenever logistic re-

gression is appropriate and prior knowledge networks exist.

In summary, we present a new framework, LogMiNeR, to per-

form classification while increasing interpretability. We used

LogMiNeR to identify B cell-specific genes and mTOR signaling as

predictive signatures of human influenza vaccination responses and

show that using multiple prior knowledge networks can expand in-

terpretability across many datasets. This framework could provide

insights in systems biology studies which focus on finding predictive

signatures that are interpretable in terms of prior biological

knowledge.
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