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Abstract
Emerging infectious diseases pose serious threat to human population. Studies suggest
that there is correlation between population’s pollution status and emerging infectious
diseases. We propose a delayed SIS model to examine the effects of environmental
contamination on human health, which can lead to the spread of numerous diseases.
A threshold parameter called basic reproduction number has been obtained for the
system. Within the sight of time delay, stability analysis for equilibrium points has
been obtained. The existence of Hopf bifurcation around endemic equilibrium point
pertaining to time delay as a critical parameter is observed. Our study suggests that
pollution can have detrimental effects on the spread of disease. Analytical results are
supported by numerical simulations.

Keywords SIS model · Infectious disease · Time delay · Basic reproduction number ·
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1 Introduction

Mathematical modelling is a vital tool which has helped to analyze and manage the
spread of communicable illness in populace.With the help ofmathematical modelling,
many researchers havebeen successful in predicting the effects of the spreadof diseases
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in populace [1–7]. Different factors such as economic, geographic conditions, media
coverage and so on, have a signinificant role in the transmission of these ailments
[8–11]. Every country on the planet is experiencing the uncontrollable spread and
effects of certain infections caused by agents such as bacteria, virus, fungi, and others,
transmitted through direct or indirect contact with an infected person infected with
diseases such as tuberculosis, AIDS, Dengue fever, and Covid-19, among others. The
effects of these sicknesses bring about the higher rate of demise. Various strategies
like vaccination, isolation, drugs and so forth, have been in regular practice by the
doctors and the organizations to manage the unfold of different ailments. In spite of
all the methods followed in practice, there are few diseases that are an irreplaceable
part of the society, such as lifestyle diseases. Numerous models and demonstrating
methods are accessible in writing [12–15] which helps us to analyze the impacts of
epidemic diseases on populace.
Environmental pollution continues to be a major cause of health danger around the
world. Environmental pollution, which encompasses pollution of the air, water, and
soil, inuences the wellbeing of the populace [11, 16–18]. In [18], authors studied
epidemic model to study the impact of environmental pollution on spread of infectious
diseases. Ecological pressure additionally harms the individuals and they tend to grow
more vulnerable to certain ailments. Toxin exposure during pregnancy has an effect on
newborns, making them more susceptible to illness. Poisonous synthetic substances
existing in the environment as a result of increased contamination cause uncontrollable
illnesses [17, 19, 20], which adds to the quick spread of epidemics. Thus, epidemic
control becomes challenging for authorities, physicians, and health organizations in
the modern society. We investigate a mathematical model that incorporates pollution
since environmental contamination is an important aspect that cannot be overlooked
while investigating disease dynamics.

Time delays are incorporated in a disease transmission model for a wide range of
biological reasons. The delay model is used to describe infectious disease dynamics in
an attempt to gain a better understanding of increasingly complex models [2, 21, 22].
The incubation period is defined as the time between host infection and the onset of
the symptoms. It is known that disease penetrates and transmits invisibly much before
the visible disease symptoms appear, it is difficult to assess health risks and avoid,
identify, and control the epidemic growth. As a result, in order to examine disease
dynamics, the incubation period must be included in the model’s architecture in order
to suggest appropriate disease control techniques [6, 23]. Dengue fever, Chikungunya
virus, Lyme disease, and malaria are examples of vector-borne diseases that have a
seven-day incubation period. Cooke [5] also presented a model for infectious disease
transmission involving a susceptible and infected population. To better understand the
dynamics, the author in [5] included an incubation period in a disease transmission
model. In [18], authors provided detailed dynamical analysis of the disease model.
They demonstrated the impact of environmental pollution on the dynamics of disease.
But they did not include incubation period in their study. Based on the above literature,
we study an SIS model under the effect of pollution incorporating incubation time
delay. We have considered the time period in which the infectious pathogen develops
in the vector before the infected vector infects susceptible persons. The main objective

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

of our work is to establish the role of incubation delay and provide the implication of
the results on disease dynamics of the model under the effect of pollution.
The paper has been organized as follows: A mathematical model with time delay
has been proposed along with its boundedness in Sect. 2. In Sect. 3, the equilibrium
points and threshold parameter (R0) has been obtained. In Sect. 4, we have obtained
local stability of equilibria followed by the direction and stability of Hopf-bifurcation.
Numerical simulations of the model are presented in Sect. 5. The model system is
concluded in Sect. 6.

2 Mathematical model

To examine the effects of contamination and disease we propose an epidemic SIS
model. We start with some assumptions, such as total population is categorized into
subgroups: susceptible and infected. The population under variable N is sub catego-
rized as S, _P and I . Here, S is the susceptible population who aren’t suffering from
pollutants, _P is the population affected by pollution and I is the class of infected
people.
We have considered the following assumptions for our model:

(i) When infectives come into contact with susceptibles, the susceptibles becomes
infected at a rate λ rate.

(ii) Because prenatal exposure to pollution has a variety of negative consequences, it
is anticipated that a fraction m of all infants will enter to the S class, while the
remaining fraction (1 − m) will enter into _P class.

(iii) At a consistent rate θ populace will enter from S into _P .
(iv) Because pollution has a variety of negative effects on stressed people, including a

weakened immune system, it is hypothesised that the transition rate to the infected
class is higher for pollution-affected persons (_P) than for those who are not (S).
Let τ > 0 represent the incubation period of the disease, defined as a fixed time
during which the infectious agents develop in the vector, and it is only after that
time that the infected vector can infect a susceptible individual. Consequently,
proposed mathematical model is as follows :

⎧
⎪⎨

⎪⎩

dS
dt = aM − θ S − λSI + ηξ I − μS
d_P
dt = (1 − a)M + θ S − λ(1 + δλ′)_P I + (1 − η)ξ I − μ_P
dI
dt = λS(t − τ)I (t − τ) + λ(1 + δλ′)_P I − (ξ + φ + μ)I

(1)

All parameters of the model are assumed to be positive. The initial conditions of the
model (1) are as follows:

S(β) = ℘1(β), _P(β) = ℘2(β), I (β) = ℘3(β),

℘1(β) ≥ 0, ℘2(β) ≥ 0, ℘3(β) ≥ 0, β ∈ [−τ, 0], ℘1(0) > 0, ℘2(0) > 0, ℘3(0) > 0

}

(I.C)
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Table 1 Parameter and its meaning

Parameter Meaning

M Newborns recruitment rate

θ Susceptible individuals transfer rate into stressed compartment

λ Disease transmission rate of S

μ Natural mortality rate

φ Disease induced death rate

ξ Infected populace recovery rate

δ Amount which influence transmission rate due to natural contamination

η Proportion of recovered people returned to S

(1 − η) Proportion of recovered people returned to _P

λ′ Measures the impact of contamination on λ

λ(1 + δλ′) Transfer rate to infected class for the people of _P group

where (℘1(β),℘2(β),℘3(β)) εC([−τ, 0],R3),C is theBanach space of continuous
functions.

2.1 Basic properties

This section focuses on the study of positivity and boundedness of solutions, for which
we have the following lemma

Lemma 1 Let S, _P and I be solutions of the model (1) with initial conditions (I .C).
Then S, _P and I are positive for all t ≥ 0.

Proof Assuming that one solution of the system (1) is atleast not positive, then we’ve
the subsequent cases: Case I: there exists t1 such that S(0) > 0, S(t1) = 0, S′(t1) < 0,
_P(t) > 0, I (t) > 0, 0 ≤ t < t1.
Case II: there exists t2 such that _P(0) > 0, _P(t2) = 0, _P ′(t2) < 0, S(t) > 0,
I (t) > 0, 0 ≤ t < t2.
Case III: there exists t3 such that I (0) > 0, I (t3) = 0, I ′(t3) < 0, S(t)> 0, _P(t) > 0,
0 ≤ t < t3.
If Case I holds, then we get S′(t1) = M > 0 which contradicts S′(t1) < 0.
If Case II holds, then we get _P ′(t2) = 0 which contradicts _P ′(t2) < 0.
If Case III holds, then we get I ′(t3) = 0 which contradicts I ′(t3) < 0.
Therefore, due to arbitrariness of S, _P and I , all solutions of the system remain
positive for all t ≥ 0. ��
Lemma 2 The feasible region K defined by

K =
{

(S, _P, I ) ∈ R
3+ : 0 ≤ S + _P + I ≤ M

μ
= A

}

is positively invariant for system (1) and attracts all the solutions starting in the interior
of positive orthant.
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Proof Let W (t) = S(t) + _P(t) + I (t), then

dW

dt
= M − μS − μ_P − (φ + μ)I − λSI + λS(t − τ)I (t − τ)

= M − μS − μ_P − (μ + φ)I

≤ M − μW

⇒ lim
t→∞ sup W ≤ M

μ

which implies

K =
{

(S, _P, I ) : 0 ≤ S + _P + I ≤ M

μ
= A

}

is a positively invariant set of system (1). Hence, lemma is proved. ��
Therefore, in this paper, we consider the dynamics of the model system on the set

K .

3 Existence of equilibria and reproduction number

We find the equilibrium points of (1) in this section. There are only two types of
equilibrium points namely:

(i) E0: Disease-Free Equilibrium Point
(ii) E∗: Endemic-Equilibrium Point

(i) Disease-free equilibrium point:
The solution of the following algebraic equations gives disease-free equilibrium point
E0 = (S0, _P0, I 0) for model system (1).

aM − θ S − λSI + ηξ I − μS = 0 (2)

(1 − a)M + θ S − λ(1 + δλ′)_P I + (1 − η)ξ I − μ_P = 0 (3)

λSI + λ(1 + δλ′)_P I − (ξ + φ + μ)I = 0 (4)

Substituting the value of I 0 = 0 in Eq. (2) gives

S0 = aM

θ + μ
.

Now, substitute the value of I 0 = 0 in equation (3), we get (1−a)M+θ S0−μ_P0 = 0

⇒ _P0 = (1 − a)M(θ + μ) + θaM

μ(θ + μ)
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Hence, the disease-free equilibrium point is

E0 = (S0, _P0, 0) =
(

aM

θ + μ
,
(1 − a)M(θ + μ) + θaM

μ(θ + μ)
, 0

)

(ii) Endemic-equilibrium point : E∗ = (S∗, _P∗, I ∗),
Beforefinding endemic equilibriumpoint E∗,wefirstlyfind the threshold parameter

called basic reproduction number. The parameter R0 helps us to find the number of
secondary infections of the infected and characterize the spread of infectious disease.
The next generation matrix method [4, 24] is used in calculating R0. The matrix F and
V for (1) are given below as:

F =
⎛

⎝
λSI + λ(1 + δλ′)_P I

0
0

⎞

⎠

V =
⎛

⎝
(ξ + φ + μ)I

−(1 − a)M − θ S + λ(1 + δλ′)_P I − (1 − η)ξ I + μ_P
−aM + θ S + λSI − ηξ I + μS

⎞

⎠

Let F be the jacobian of F and V be the jacobian ofV at disease free equilibrium point.

F = [λS0 + λ(1 + δλ′)_P0]
V = [ξ + φ + μ]

R0 is the spectral radius of FV−1 i.e.,

R0 = λaMμ + λ(1 + δλ′)M[(θ + μ) − μa]
μ(θ + μ)(ξ + φ + μ)

Now, we evaluate the endemic equilibrium point E∗ = (S∗, _P∗, I ∗).
From Eq. (2), we get

S∗ = aM + ηξ I

λI + (θ + μ)

Similarly, from Eq. (3) we obtain the value of _P∗

_P∗ = (1 − a)M + θ S∗ + (1 − η)ξ I

λ(1 + δλ′)I + μ

Substitute the values of S∗ and _P∗ in Eq. (4), we get the quadratic equation of I as:

F(I ) = AI 2 + BI + C = 0 (5)

where A = −λ2(1 + δλ′)(μ + φ)

B = −[(λ(1+δλ′)(ξ+φ+μ)(θ+μ)+λμ)−λημξ−λ(1+δλ′)[λM−ξ(θ+μ(1−η))]]
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C = λaMμ + λ(1+ δλ′)M[(θ + μ) − μa] − μ(θ + μ)(ξ + φ + μ) = μ(θ + μ)(ξ +
φ + μ)(R0 - 1)
It is evident from the above expressions that A is always negative. Now it is clear,
by Descartes’s rule of sign, that Eq. (5) always has a unique positive root whenever
R0 > 1. Moreover, Eq. (5) may have more than one positive roots if R0 < 1 and
B > 0 but in the next section we will show that it is not possible.

4 Stability of equilibria

The objective of this section is to study stability analysis of disease-free equilibrium
point as well as of endemic equilibrium point.

4.1 Local stability of disease-free equilibrium point

For the local stability of disease free equilibrium point E0, we prove the following
theorem:

Theorem 3 E0 is locally asymptotically stable for R0 < 1 and unstable for R0 > 1
for all τ ≥ 0.

Proof Analysis for R0 �= 1 The characteristics polynomial equation in variable � is
(−(θ + μ) − �)(−μ − �)(e−�τλS0 + λ(1 + δλ′)_P0 − (ξ + φ + μ) − �) = 0
Clearly, two of the negative eigenvalues of the above equation are −(θ + μ) and −μ

and other root is the solution of f (�) = 0, where f (�) is as follows:

f (�) = e−�τλS0 + λ(1 + δλ′)_P0 − (ξ + φ + μ) = 0

Assume that R0 < 1. To obtain a contradiction, suppose that f has a root δ2 ε C such
that Re(δ2) ≥ 0. Then, �2 = e−�τλS0 + λ(1 + δλ′)_P0 − (ξ + φ + μ), so
Re(�2) ≤ λS0 + λ(1 + δλ′)_P0 − (ξ + φ + μ) = R0 − 1 < 0
which contradicts our assumption. Therefore, in this case, the eigenvalue has negative
real part if R0 < 1.
Now, if R0 > 1, we can see that f (0) < 0 and lim

�→∞ f (�) = +∞ for � ε R which

implies that f has at least one positive root. Hence, E0 is unstable in this case. Hence,
the theorem. ��
Analysis for R0 = 1
We will employ centre manifold theory [3] to investigate the equilibrium point’s
stability behaviour. It is obvious from the value of basic reproduction number that
it is proportional to λ, so let the bifurcation parameter be λ. If R0 = 1, then λ =

λ∗ = μ(θ + μ)(ξ + φ + μ)

aMμ + (1 + δλ′)M[(θ + μ) − μa] , and jacobian martix around disease free

equilibrium point of the system (1) has one of the characteristic values as 0 and the
other characteristic values are negative. Now, Jacobian matrix for the disease-free
point for model system (1) is :
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J =
⎛

⎝
−(θ + μ) 0 ηξ − λS0

θ −μ −λ(1 + δλ′)_P0 + (1 − η)ξ

0 0 λS0 + λ(1 + δλ′)_P0 − (ξ + φ + μ)

⎞

⎠

For λ = λ∗, Jacobian has characteristic value 0 while remaining characteristic values
are negative. Right eigenvector, (v1, v2, v3) is evaluated as

v1 = 1

(θ + μ)

[−aμ(ξ + φ + μ) + ηξ [μa + (1 + δλ′)(θ + μ(1 − a))]
μa + (1 + δλ′)(θ + μ(1 − a))

]

v2 = 1

μ
[

θv1 + (ξ + φ + μ)(1 + δλ′)(θ + μ(1 − a)) + (1 − η)[μa + (1 + δλ′)(θ + μ(1 − a))]
μa + (1 + δλ′)(θ + μ(1 − a))

]

v3 = 1

Similarly, left eigenvector (q1, q2, q3) can be evaluated to be (0, 0, 1).
Using theorem 4.1 as given in [3], the coecients c and d can be calculated as:

c = 
qkviv j
∂2 fk

∂xi∂x j
(E0, λ

∗)

and

d = 
qkvi
∂2 fk
∂xi∂β

(E0, λ
∗)

For model system (1), the values of c and d are as follows:

c = q3v3

[

2v1
∂2 f3
∂S1∂ I

(E0, λ
∗) + 2v2

∂2 f3
∂S2∂ I

(E0, λ
∗)

]

= −(φ + μ)
[
μa(1 + θ) + (1 + δλ′)(1 + θ)(θ + μ) − μa

]

= −
[
μ2a + ημθ − δλ′ημ2a + δλ′ημ2

]
ξ

[
λ∗

μ(μa + (1 + δλ′)[(θ + μ(1 − a)]
]

= −
[
μ2a + ημθ + δλ′ημ2(1 − a)

]
ξ

[
λ∗

μ(μa + (1 + δλ′)[θ + μ(1 − a)]
]

< 0

Similarly,

d = q3v1
∂2 f3
∂S1∂ I

(E0, λ
∗) + q3v2

∂2 f3
∂S1∂ I

(E0, λ
∗) + q3v3

∂2 f3
∂S1∂ I

(E0, λ
∗)

= aMμ + (1 + δλ′)(1 − a)M(θ + μ) + θaM

μ(θ + μ)
> 0

Thus, we can state the below theorem from [3].
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Theorem 4 The disease-free equilibrium changes its stability from stable to unstable
at R0 = 1 and there exists a positive equilibrium as R0 crosses one. Hence, the system
exhibits transcritical bifurcation with bifurcation parameter λ∗ at R0 = 1.

Remark 5 As c < 0 and d > 0, the existence of backward bifurcation is unfeasible
and hence Eq. (5) will not have positive root for R0 < 1.

4.2 Local stability of endemic equilibrium point and Hopf-bifurcation

The system (1) has a positive endemic equilibrium point E∗ = (S∗, _P∗, I ∗), as shown
in the previous section. Here, we investigate the local stability of E∗.

The Jacobian matrix corresponding to (S∗, _P∗, I ∗) is:

Y ∗ =
⎛

⎝
α1 0 α2
α4 α5 α6
0 α8 α9

⎞

⎠ + e−�τ

⎛

⎝
0 0 0
0 0 0

α11 0 α13

⎞

⎠ =
⎛

⎝
α1 0 α2
α4 α5 α6

e−�τα11 α8 α9 + e−�τα13

⎞

⎠

where

α1 = −θ − λI − μ, α2 = −λS + ηξ, α4 = θ, α5 = −λ(1 + δλ′)I − μ,

α6 = −λ(1 + δλ′)P + (1 − η)ξ, α8 = λ(1 + δλ′)I ,
α9 = λ(1 + δλ′)_P − (ξ + φ + μ), α11 = λI , α12 = λS.

The characteristic equation corresponding to the endemic equilibrium point is:

�3 + a2�
2 + a1� + a0 + (b2�

2 + b1� + b0)e
−�τ = 0 (6)

where

a2 = α1 + α5 + α9,

a1 = −(α5α9 + α1α9 + α1α5 − α8α6),

a0 = α1α5α9 − α1α8α6 + α2α4α8.

b2 = α13

b1 = α2α11 + α1α13 + α5α13

b0 = α1α3α13 + α2α5α11

Case 1 When τ = 0
Put τ = 0 in Eq. (6), we get

�3 + c2�
2 + c1� + c0 = 0 (7)

wherec2 = b2 + a2 , c1 = b1 + a1, c0 = b0 + a0
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All roots of Eq. (7) must have negative real parts according to the Routh-Hurwitz
criteria if c2 > 0, c1 > 0, c0 > 0 and c2c1 > c0 holds.

By the above analysis we have the following theorem:

Theorem 6 The endemic point E∗ is locally stable for τ = 0 if following inequalities
hold:

(D1)c2 > 0, c1 > 0, c0 > 0andc2c1 > c0.

Case 2 When τ > 0
We obtain conditions under which the roots of the Eq. (6) will have negative real parts.
Let � = ϕ(τ) + i�(τ) be the eigen value of characteristic Eq. (6),where ϕ(τ) and
�(τ) depends on delay τ . We have already shown that the endemic equilibrium point
E∗ is stable when τ = 0, which implies that ϕ(τ) < 0 for sufficiently small τ . By
increasing τ , the real part of the root of the Eq. (6) reaches the value zero at τ = τ ∗,
i.e., ϕ(τ ∗) = 0, which implies � = i�(τ ∗) for a specific value of τ ∗ > 0. So, we get �
= i�(τ ∗) which is purely imaginary root which means that the Eq. (6) will have root
with positive real part and then E∗ becomes unstable. If such τ ∗ does not exist then
it would mean that Eq. (6) will not have a purely imaginary root for all delay and E∗
will always be stable. Assume � = i� to be root of the Eq. (6) with � > 0. Put � = i�
in (6), separating real and imaginary parts, we get:

−a2(τ )�2 + a0(τ ) = (b2(τ )�2 − b0(τ )) cos(�τ) − b1(τ )� sin(�τ) (8)

−�3 + a1(τ )� = −b1(τ )� cos(�τ) − (b2(τ )�2 − b0(τ )) sin(�τ) (9)

Now, squaring and adding Eqs. (8) and (9), we get

�6 + (a22(τ ) − 2a1(τ ) − b22(τ ))�4 + (a21(τ ) − 2a2(τ )a0(τ ) + 2b2(τ )b0(τ )

−b21(τ ))�2 + (a20(τ ) − b20(τ )) = 0

We can rewrite the above equation as:

�6 + f2(τ )�4 + f1(τ )�2 + f0(τ ) = 0 (10)

where

f2(τ ) = a22(τ ) − 2a1(τ ) − b22(τ )

f1(τ ) = a21(τ ) − 2a2a0(τ ) + 2b2b0(τ ) − b21(τ )

f0(τ ) = a20(τ ) − b20(τ )

Putting k = �2, in Eq. (10), reduces it to the following:

c(k) = k3 + f2(τ )k2 + f1(τ )k + f0(τ ) = 0 (11)

The discussion of the roots of Eq. (11) is similar to the discussion in [21], and we put
forward the following lemma:
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Lemma 7 Following results hold for the Eq. (11):
D2: If f0(τ ) ≥ 0, and � = f 22 (τ ) − 3 f1(τ ) ≤ 0 holds, then Eq. (11) has no positive
roots.
D3: If f0(τ ) ≥ 0, and � = f 22 (τ ) − 3 f1(τ ) > 0 holds, then Eq. (11) has positive root

if and only if k∗ =
− f2(τ ) + √

�

3
and c(k∗) ≤ 0

D4: If f0(τ ) < 0 holds, then Eq. (11) has atleast one positive root.

Furthermore, let us assume that Eq. (11) has positive roots. Without the loss of
generality, we suppose that the Eq. (11) has three positive solutions, say k1, k2 and k3
respectively. Then Eq. (10) has three positive solution �n =

√
kn , where n = 1, 2, 3.

Each positive solution �(τ) of (10) is also defined as the solution of Eqs. (12) and (13)
which are given below. We obtain Eqs. (12) and (13) from Eq. (6) as follows:

sin(�τ) = Im

(
E(�ι, τ )

F(�ι, τ )

)

= b2(τ )ρ5 + (a2(τ )b1(τ ) − b2(τ )a1(τ ) − b0(τ ))�3 + (a1(τ )b0(τ ) − b1(τ )a0(τ ))�

b2(τ )�2 − b0(τ )2 + (b1�)2
(12)

cos(�τ) = −Re(
E(�ι, τ )

F(�ι, τ )
)

= (b1(τ ) − a2(τ )b2(τ ))�4 + (a0(τ )b2(τ ) + a1(τ )b1(τ ))�2 − a0(τ )b0(τ )

b2(τ )�2 − b0(τ )2 + (b1�)2

(13)

From (13), we get

τ (i)
n = 1

�n
cos−1

( (b1(τ ) − a2(τ )b2(τ ))�4 + (a0(τ )b2(τ ) + b0(τ )a2(τ ) − a1(τ )b1(τ ))�2 − a0(τ )b0(τ )

(b2(τ )�2 − b0(τ ))2 + (b1�)2

)

+2 jπ

for n = 1, 2, 3; i = 0, 1, 2, 3, . . .
where b j ’s and a j ’s for j = 0, 1, 2 are considered to be bounded functions of τ , then
±i� are imaginary roots of Eq. (6) for τ = τn
Let us take τ ∗ = min{τn, �0 = �n, n = 1, 2, 3} at τ = τ ∗. Let λ = ϕ(τ) + i�(τ)

be solution of Eq. (6), satisfying ϕ(τ ∗) = 0, �(τ ∗) = �0. Now, we have subsequent
transversality conditions.

Lemma 8 (D5) Let us take U R − V Z > 0, where

U = (3�2 − a1(τ ))(a0(τ ) − a2(τ )�2) − 2a2(τ )�(a1(τ )�
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−�3) + b1(τ )(b0(τ ) − b2(τ )�2)

+2b1(τ )b2�
2 − τ((b0(τ ) − b2(τ )�2)2 + (b1(τ )�)2) (14)

V = 2b2(τ )�(b0(τ ) − b2(τ )�2) − 2a2(τ )�(a0(τ ) − a2(τ )�2)

−(3�2 − a1�(τ))(a1(τ )� − �3) − b21(τ )� (15)

R = b′
2(τ )�2(b0(τ ) − b2�

2) + b1(τ )b′
1(τ )�2 − (a0(τ )

−a2(τ )�2)a′
2(τ )�2 + a′

1(τ )� − �3) (16)

Z = �((b0(τ ) − b2(τ )�2)2 + (b1(τ )�2) + b′
1(τ )�(b0(τ )

−b2(τ )�2) − b1(τ )b′
2(τ )�3 + a′

1(τ )�(a0(τ )

−a2(τ )�2) (17)

+a′
2(τ )�2(a1(τ )� − �3)

then
dRe(λ)

dτ
|τ=τ∗ and U R − V Z have same sign and

dRe(λ)

dτ
|τ=τ∗ > 0.

Proof Differentiate Eq. (6) w.r.t. τ we get,

((3λ2 + 2a2(τ )λ + a1(τ )) + (2b2(τ )λ + b1(τ ))e−λτ

−τ(b2(τ )λ2 + b1λ + b0(τ ))eλτ )
dλ

dτ

+(a′
2(τ )λ2 + a′

1(τ )λ) + (b′
2(τ )λ2 + b′

1(τ )λ)e−λτ

−λ(b2(τ )λ2 + b1(τ ))e−λτ = 0

which implies

(
dλ

dτ

)−1

= (3λ2 + 2a2(τ )λ + a1)eλτ + (2b2(τ )λ + b1(τ )) − τ(b2(τ )λ2 + b1(τ )λ + b0(τ ))

λ(b2(τ )λ2 + b1(τ )λ + b0(τ )) − ((a′
2(τ )λ2 + a′

1(τ )λ)eλτ + (b′
2(τ )λ2 + b′

1(τ )λ)

=
−(

3λ2 + 2a2(τ )λ + a1(τ )

λ3 + a2(τ )λ2 + a1(τ )λ + a0(τ )
) + 2b2(τ )λ + b1(τ )

λ(b2(τ )λ2 + b1(τ )λ + b0(τ ))
− τ

λ − b′
2(τ )λ2 + b′

1(τ )λ

b2(τ )λ2 + b1(τ )λ + b0(τ )
+ a′

2(τ )λ2 + a′
1(τ )λ

λ3 + a2(τ )λ2 + a1(τ )λ + a0(τ )

Put λ = i� in the above expression and simplifying, we get,

(
dλ

dτ

)−1

=
(3�2−a1(τ ))−i(2a2(τ )�)

(a0(τ )−a2(τ )�2)+i(a1(τ )�−�3)
+ b1(τ )+i(2b2(τ )�)

λ(b0(τ )−b2(τ )�2)+i(b1(τ )�)
− τ

i� + b′
2(τ )�2+ib′

1(τ )�

(b0(τ )−b2(τ )�2)+i(b1(τ )�)
+ −a′

2(τ )�2+ia′
1(τ )�

(a0(τ )−a2(τ )�2)+i(a1(τ )�−�3)

Now, we rationalise each term in numerator and denominator and using A(�, τ ) =
|E(i�, τ)|2 − |F(i�, τ)|2 = 0, we get,

(
dλ

dτ

)−1

= U + iV

R + i Z
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where U , V , R and Z are mentioned above in lemma 5 by Eqs. (14), (15), (16) and
(17). Thus, we get,

sign

{
dRe(λ)

dτ
|τ = τ ∗

}

= sign

{

Re[dλ

dτ
]−1
τ=τ∗

}

= sign{UR − V Z}

AsUR − V Z �= 0, then dRe(λ)
dτ

�= 0 for τ = τ ∗. Let us assume that if dRe(λ)
dτ

< 0, then
characteristic equation has positive real parts when τ < τ ∗ which contradicts the local
stability of the endemic equilibrium point. Thus, dRe(λ)

dτ
> 0 is satisfied. Because of

continuity, real part of �(τ) becomes positive for τ > τ ∗ and accordingly stable state
converts to unstable state. Since the loss of stability relates to the root � =i� of the
characteristic equation therefore there will be periodic solutions. Using the previous
analysis, we get the subsequent theorem. ��

Theorem 9 Relating to model system (1), if (D1) holds then we have the following:

(i) The positive equilibrium point (S∗, _P∗, I ∗) is locally stable for all τ ≥ 0, if (D2)
holds.

(ii) The positive equilibrium point (S∗, _P∗, I ∗) is stable for all τ ε [0, τ ∗) and unsta-
ble for τ > τ ∗, if (D3), (D4) and (D5) hold. Also, for τ = τ ∗, the system (1)
undergoes a Hopf-bifurcation at the positive equilibrium point, (S∗, _P∗, 1∗).

4.3 Direction and stability of Hopf-bifurcation

According to the analysis done in the previous section, we obtained certain conditions
under which a given system undergoes Hopf-bifurcation, with time lag (τ ) being a
critical parameter. In this section, we will use the normal form and the center manifold
theory established in [21, 22, 25] to check the direction of Hopf bifurcation and the
stability of the bifurcation periodic solutions. Throughout this section, we will assume
that either (D3) or (D4) holds and UR − V Z �= 0.
If we take v1 = S − S∗ , v2 = _P − _P∗ and v3 = I − I ∗, then the Taylor expansion
up to second order terms for system at E∗ becomes

dv1(t)

dt
= a1v1(t) + a2v3(t)

+a3v1(t)v3(t) (18)
dv2(t)

dt
= a4v1(t) + a5v2(t) + a6v3(t)

+a7v2(t)v3(t) (19)
dv3(t)

dt
= a8v2(t) + a9v3(t) + a10v2(t)v3(t)

+a11v1(t − τ) + a13v3(t − τ) + a14v1(t − τ)v3(t − τ) (20)

where
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a1 = −θ − λI − μ, a2 = −λS + ηξ, a3 = −λ, a4 = θ, a5 = −λ(1 + δλ′)I − μ

a6 = −λ(1 + δλ′)_P + (1 − η)ξ, a7 = −λ(1 + δλ′), a8 = λ(1 + δλ′)I ,
a9 = λ(1 + δλ′)P − (ξ + φ + μ), a10 = λ(1 + δλ′), a11 = λI , a13 = λS

Also, we will write v(t) = (v1(t), v2(t), v3(t))T , τ = τ ∗ + ζ and vt (ω) = v(t + ω)

for ω ε [−τ, 0]. Now, denoted C as C → R3 with |γ | = sup
ωε[−τ,0]

|γ |. Let

Q1 =
⎛

⎝
a1 0 a2
a4 a5 a6
0 a8 a9

⎞

⎠

Q2 =
⎛

⎝
0 0 0
0 0 0
a11 a12 0

⎞

⎠

For γ = (γ1, γ2, γ3)
T ε C, define

Oζ (γ ) = Q1γ (0) + Q2γ (−τ) (21)

Also, Eqs. (18)–(20) can be rewritten as

v(t) = Oζ (vt ) + F(ζ, vt ) (22)

where

F(ζ, γ ) =
⎛

⎝
a3γ1(0)γ3(0)
a7γ2(0)γ3(0)

a14γ1(−τ)γ3(−τ)

⎞

⎠ .

Obviously, Oζ is a one-parameter family of bounded linear operators on C. According
to the Riesz representation theorem, for ω ε [−τ, 0] there is a matrix function of 3 ×
3 and ρ(ω, ζ ) of bounded variation s.t.

Oζ (γ ) =
∫ 0

−τ

dρ(ω, ζ )γ (ω) (23)

for all γ ε C. Now, we can take ρ(ω, ζ ) = Q1κ(ω) − Q2κ(ω + τ) where Dirac delta
function is κ .
Now, γ ε C1 → R3. Define

Z(ζ )γ =
{

γ (ω), ωε[−τ, 0].
∫ 0
−τ

dρ(q, ζ )γ (q), ω = 0.
(24)
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R(ζ )γ =
{
0, ωε[−τ, 0].
F(ζ, γ ), ω = 0.

(25)

Then Eq. (22) can be written as

vt = Z(ζ )vt + R(ζ )vt (26)

For χ ε C1, the adjoint operator Z∗ can be defined as

Z∗χ(q) =
{

−χ(q), qε[0, τ ].
∫ 0
−τ

dρT (t, 0)χ(−t), q = 0.
(27)

and for χ , φ ε C1. Define the form as

(χ, φ) = χ̄T (0)φ(0) −
∫ 0

ω=−τ

∫ ω

q=0
χ̄T (q − ω)dρ(ω)φ(q)dq (28)

where ρ(ω) = ρ(ω, 0). It can be verified that Z∗ and Z(0) are adjoint operators with
respect to this bilinear form„ and ±iσ0 are eigenvalues of Z(0), also they are eigen-
values value of Z∗.
Let p ε C1 be an eigenvector of Z(0) associated with iσ0 such that p(ω) =
(p1, 1, p2)T eiσ0ω. At that point Z(0)p(ω) = iσ0 p(ω) for all ω ε [−τ, 0]. When ω = 0,
we can use (21), (23), (24) and (25) to get

Q1 p(0) + Q2 p(−τ ∗) = iσ0 p(0)

which gives

p2 = (iσ0 − a5)(iσ0 − a1)

1 + a6(iσ0 − a1)

Similarly, assume that the eigenvector p∗ of Z∗ comparing to −iσ0 takes the form
p∗(q) = 1

D (p∗
1, 1, p

∗
2)

T eiσ0ω. Then

QT
1 p∗(0) + QT

2 p
∗(τ ∗) = −iσ0 p

∗(0)

Solving the above equation gives

p∗
2 = −a6(iσ0 + a1)

(a8 + a13iσ0τ ∗ + iσ0)(iσ0 + a1) − a4a7a3 − a3a11eiσ0τ
∗

Now, we will find the value of D to certify that (p∗, p) = 1. By (28), we have

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

(p∗, p) = p̄∗T (0)p(0) −
∫ 0

ω=−τ∗

∫ ω

q=0
p̄∗T (q − ω)dρ(ω)p(q)dq

= 1

D̄
(1 + p1 p

∗
1 + p2 p

∗
2)

−
∫ 0

ω=−τ∗

∫ ω

q=0

1

D̄
( p̄∗

1, 1, p̄
∗
2)e

−iσ0(q−ω)dρ(ω)(p1, 1, p2)
T eiσ0qdq

= 1

D̄
[1 + p2 p̄∗

2

−
∫ 0

ω=−τ∗
( p̄∗

1, 1, p̄
∗
2)ωe

iσ0ωdρ(ω)(p1, 1, p2)
T ]

= 1

D̄
[1 + p1 p̄∗

1 + p2 p̄∗
2

+τ ∗e−iσ0τ∗
( p̄∗

1, 1, p̄
∗
2)Q2(p1, 1, p2)

T ]
= 1

D̄
[1 + p1 p̄∗

1 + p2 p̄∗
2

+τ ∗e−iσ0τ∗
(a1 p1 p

∗
1 + a3 p1 p

∗
2

+a4 p
∗
1a5 + a6 p

∗
2 + a7 p1 p

∗
1 + a8 p2 p

∗
2)]

Hence, for D̄ = 1+ p1 p̄∗
1 + p2 p̄∗

2 + τ ∗eiσ0τ∗
(a1 p1 p∗

1 + a3 p1 p∗
2 + a4 p∗

1a5 + a6 p∗
2 +

a7 p1 p∗
1 + a8 p2 p∗

2), we get (p∗, p) = 1. Now, we will calculate the center manifold
coordinates C0 at ζ = 0. So let us take vt to be the solution of Eq. (26) for ζ = 0. Let
us define

z(t) = (p∗, vt )
(29)

X(t, ω) = vt − zp − z̄ p̄ = vt − 2Re(z(t)p(ω)) (30)

For center manifold C0,

X(t, ω) = X(z(t), z̄(t), ω) (31)

where

X(z, z̄, ω) = X20(ω)
z2

2
+ X11(ω)zz̄ + X02(ω)

z̄2

2
+ · · · (32)

and z, z̄ are the center manifold coordinates C0 in the ways of p∗ and p̄∗ respectively
where X is real if vt is real. From (29) and (30), we get

(p∗, X) = (p∗, vt ) − z(t)(p∗, p) − z̄(t)(p∗, p̄) = 0
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For a solution vt ε C0 of Eqs. (26), (24), (25) and (27) with ζ = 0 gives

z̄(t) = (p∗, v̄t ) = (p∗, Z(0)vt + R(0)vt )

= (Z∗ p∗, vt ) + p̄∗T (0)F(0, vt ) = iσ0z(t) + p̄∗T (0) f0(z, z̄) (33)

where f0(z, z̄) = F(0, X(z, z̄, ω)). Equation (33) is also written as

ż(t) = iσ0z(t) + h(z, z̄) (34)

with

h(z, z̄) = h20
z2

2
+ h11zz̄ + h02

z̄2

2
+ h21

z2 z̄

2
+ · · · (35)

Put (26) and (33) into Ẋ = u̇t − ż p − ¯̇zp, we have

Ẋ =
{
Z X − 2Re( p̄∗(0) f0(z, z̄)p(ω)), ωε[−τ, 0].
Z X − 2Re( p̄∗(0) f0(z, z̄)p(ω)) + f0(z, z̄), ω = 0.

(36)

that is,

Ẋ = Z X + G(z, z̄, ω)

where

G(z, z̄, ω) = G20(ω)
z2

2
+ G11(ω)zz̄ + G02

z̄2

2
+ · · · (37)

Again, we have Ẋ = xz ż + xz̄ ¯̇z on C0. Put Eqs. (29), (30) and (34) into (37) and
comparing coefficients with Eq. (36), we get

(Z − 2iσ0)X20(ω) = −G20(ω) (38)

Z X11 = −G11(ω) (39)

(Z + 2iσ0)X02(ω) = −G02(ω) (40)

As

vt = u(t + ω) = x(z, z̄, ω) + zp + z̄ p̄,

we have

v1(t + ω) = p1ze
iσω + p̄1 z̄1e

−iσω + X (1)
20 (0)

z2

2
+ X (1)

11 (0)zz̄

+X (1)
02 (0)

z̄2

2
+ X (1)

11 (0)z2 z̄ p1
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v2(t + ω) = zeiσω + z̄1e
−iσω + X (2)

20 (0)
z2

2
+ X (2)

11 (0)zz̄ + X (2)
02 (0)

z̄2

2
+ X (2)

11 (0)z2 z̄

v3(t + ω) = p2ze
iσω + p̄2 z̄1e

−iσω + X (3)
20 (0)

z2

2
+ X (3)

11 (0)zz̄

+X (3)
02 (0)

z̄2

2
+ X (3)

11 (0)z2 z̄ p2

and

f0(z, z̄) =
⎛

⎝
U11z2 +U12zz̄ +U13 z̄2 +U14z2 z̄
U21z2 +U22zz̄ +U23 z̄2 +U24z2 z̄
U31z2 +U32zz̄ +U33 z̄2 +U34z2 z̄

⎞

⎠ + · · ·

where

U11 = a3 p1
U12 = a3(p1 + p̄1)

U13 = a3 p̄1

U14 = a3(X
(3)
11 (0)p1 + X (1)

11 (0))

U21 = a7 p2
U22 = a7(p2 + p̄2)

U23 = a7 p̄1

U24 = a7(X
(3)
11 (0) + X (0)

11 (−τ)p2)

U31 = a14 p1 p2e
−2iστ∗

U32 = a14(p1 p̄2 + p2 p̄1)

U33 = a14 p̄1 p̄2e
−2iστ∗

U34 = a14(X
(3)
11 (−τ)p1 + X (1)

11 (−τ)p2)

As p∗(0) = 1
D̄

(p∗
1, 1, p

∗
2)

T , we get

g(z, z̄) = p̄∗(0)T f0(z, z̄)

= 1

D̄
(p∗

1, 1, p
∗
2)

⎛

⎝
U11z2 +U12zz̄ +U13 z̄2 +U14z2 z̄
U21z2 +U22zz̄ +U23 z̄2 +U24z2 z̄
U31z2 +U32zz̄ +U33 z̄2 +U34z2 z̄

⎞

⎠

= 1

D̄
[( p̄∗

1U11 +U21 +U31 p̄∗
2)z

2 + ( p̄∗
1U12 +U22 +U23 p̄∗

2)zz̄ + ( p̄∗
1U13 +U23

+U33 p̄∗
2)z̄

2 + ( p̄∗
1U14 +U24 +U34 p̄∗

2)z
2 z̄].

Now, we compare the coefficients with Eq. (35), we obtain
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h20 = 2

D̄
( p̄∗

1U11 +U21 +U31 p̄∗
2),

h11 = 1

D
( p̄∗

1U12 +U22 +U23 p̄∗
2),

h02 = 2

D̄
( p̄∗

1U13 +U23 +U33 p̄∗
2),

h21 = 2

D̄
( p̄∗

1U14 +U24 +U34 p̄∗
2).

Now, we follow the same procedure as in [22] and we get

X20(ω) = ih20
σ0

p(0)eiσ0ω + i ¯h02
3σ0

p̄(0)e−iσ0ω + O1e
2iσ0ω

and

X11(ω) = −ih11
σ0

p(0)eiσ0ω + i ¯h11
3σ0

q̄(0)e−iσ0ω + O2

where O1 and O2 are both two dimensional vectors such that

(2iσ0 I2 −
∫ 0

−τ0

e2iσ0ωdρ(ω))O1 = (U11,U21,U31)
T and

∫ 0

−τ0

dρ(ω)O2

= −(U12,U22,U23)
T

where

O1 = (O(1)
1 , O(2)

1 , O(3)
1 ), O2 = (O(1)

2 , O(2)
2 , O(3)

2 )

and Yn denotes the n × n identity matrix. Hence,

⎡

⎣
−2iσ0 − a1 0 −a2

−a4 −2iσ0 − a5 −a6
−a11e−2iσ0τ∗ −a8 −2iσ0 − a9 − a13e

−2iσ0τ∗
q

⎤

⎦

⎡

⎢
⎣

O(1)
1

O(2)
1

O(3)
1

⎤

⎥
⎦ =

⎡

⎣
U11
U21
U31

⎤

⎦ (41)

⎡

⎣
a1 0 a2
a4 a5 a8
a11 a8 a9 + a13

⎤

⎦

⎡

⎢
⎣

O(1)
2

O(2)
2

O(3)
2

⎤

⎥
⎦ = −

⎡

⎣
U12
U22
U32

⎤

⎦ (42)

and the specific articulations for O1 and O2 are acquired by solving the above linear
equation.
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Based on the above analysis, we can write each hi j in terms of the parameters of the
system, and we can thus compute the following quantities:

C1(0) = i

2σ0
(h20h11 − 2|h11|2 − 1

3
|h02|2) + h21

2

W2 = − Re[C1]
Re[ν′(τ ∗)] ,

T2 = − Im[C1(0)] + W2 Im[ν′(τ ∗)]τ
σ0

,

β2 = 2Re[C1(0)]

From [21], we can form the subsequent conclusions.

Theorem 10 Suppose that at least one of (D3) or (D4) holds and U R − V Z �= 0.
Then,

(i) The sign of W2 determines the direction of the Hopf bifurcation: if W2 > 0 (W2 <

0), then the Hopf bifurcation is supercritical (subcritical) and the bifurcating
periodic solutions exist for τ > τ ∗ (τ < τ ∗).

(ii) The sign of β2 determines the stability of the bifurcating periodic solutions: if
β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable).

(iii) The sign of T2 determines the period of the bifurcating periodic solutions: if T2 > 0
(T2 < 0), then the period increases (decreases).

5 Numerical simulation

To observe and understand the dynamical conduct, we perform numerical simulations
for the system (1) with the help of MATLAB. We investigate to explore the effect that
natural contamination may have on the spread of illness. Consequently, we conduct a
mathematical investigation to check the effect of pollution associated parameters on
the disease dynamics of system (1).

Figure 1 presents the disease-free equilibriumpoint for the system (1). The paramet-
ric value set considered in the simulation is:M = 10, a = 0.9832, θ = 0.00009,μ = 0.1,
λ = 0.0001, η = 0.0001, δ = 0.001, λ′ = 0.1785, ξ = 0.9875, φ = 0.9541. It can be
seen from Fig. 1 that the trajectories approach E0 (S0 = 98.23, _P0 = 1.768, I0 = 0).
It can easily be calculated that R0 = 0.0049 < 1, for the set of parameters, which also
satisfies the condition of Theorem 3.
Let θ = 0.7, η = 0.9, δ = 0.1, ξ = 0.1 and μ = 0.0001. For these set of parametric
values, we obtain R0 = 9.6552 > 1 and the trajectories approach the endemic equilib-
rium point, which is, (S∗ = 58.83, _P∗ = 15.34, I ∗ = 10.45), as represented in Fig.
2. In order to check the effect of pollution on the disease dynamics of the system (1),
we increase δ from 0.1 to 0.4. It can be seen that for δ = 0.4, R0 = 10.1631, which is
more in comparison with the case when δ = 0.1. Also, the endemic equilibrium point
for δ = 0.4 is S∗ = 14.71, _P∗ = 15.36, I ∗ = 10.47, as shown in Fig. 3. So it can
be concluded that as pollution increases, the number of stressed and infectives also
increases. Therefore, it is important to control pollution in the system.
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Fig. 1 Time series solution of the model when R0 < 1

Fig. 2 Time series solution of the model when R0 > 1 and δ = 0.1

We will now take the parameters to be, M = 250, θ = 0.059865, μ = 0.01. Figure
5a, b shows that the endemic equilibrium point looses its stability and undergoes Hopf-
bifurcation at τ = τ ∗ = 28. Since, we know that the Hopf-bifurcation is supercritical,
there exists periodic solutions for τ > 28 and endemic equilibrium point is unstable.
Now, for the same set of parameters, if we take τ < 28, we observe that the system
is stable around endemic equilibrium point, as shown in Fig. 4a, b. It can be easily
checked that parameters satisfy the conditions of Theorem 9. Again to check the
effect of pollution on the disease dynamics of the model (1), we increase δ. Increase
in transmission rate due to natural contamination (δ) stabilizes the system around
endemic equilibrium point, as represented in Fig. 6a, b but the number of infected and
stressed individuals increases and overall population size decreases. Also, we notice
that by decreasing λ (disease transmission rate), the system stabilizes around endemic
equilibrium point, as shown in Fig. 7a, b. Thus, it is very important to keep check on

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Fig. 3 Time series solution of the model when R0 > 1 and δ = 0.4

Fig. 4 Endemic equilibrium point of the system is stable for τ = 25, δ = 0.001, λ = 0.0001

transmission rate due to natural contamination and disease transmission rate for the
survival and better recovery of the population.

6 Conclusion

An SISmodel is developed to contemplate the impact of environmental contamination
on the spread of epidemic illness. We categorized total populace into three divisions,
which are susceptible populace, stressed populace, and infected populace. Analysis
of the model indicates that there are two types of equilibrium points: (a) disease-free
equilibrium point, and (b) endemic equilibrium point. The disease-free equilibrium
point’s local stability has been proved in Theorem 3, which shows that the system is
stable around disease free equilibrium point if R0 < 1. The existence of endemic-
equilibrium point has been established. We discussed stability analysis for endemic
equilibrium point (E∗) for τ ≥ 0. We have shown that the time delay plays a crucial
role in shaping the dynamics of the system. When τ < τ ∗ the system is stable around
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Fig. 5 Endemic equilibrium point of the system undergoes Hopf-bifurcation for τ = 28, δ = 0.001,
λ = 0.0001

Fig. 6 Endemic equilibrium point of the system is stable for τ = 28, δ = 0.009, λ = 0.0001

Fig. 7 Endemic equilibrium point of the system is stable for τ = 28, δ = 0.001, λ = 0.00005

endemic equilibrium point but it loses its stability and a Hopf-bifurcation occurs at a
threshold value τ ∗ as shown in Theorem 9. The endemic equilibrium point become
unstable for τ > τ ∗. Our model predicts that with the increase in the transmission
rate due to natural contamination (δ), the system becomes stable around endemic
equilibrium point. However, this leads in a population drop and an increase in diseased
persons, which is not beneficial for our society. As a result, our model suggests that
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a healthy community requires a check on the transmission rate produced by natural
contamination (δ) and disease transmission rate (λ).
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