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Abstract

Essential genes are those that are critical for life. In the specific case of the mouse, they are

the set of genes whose deletion means that a mouse is unable to survive after birth. As

such, they are the key minimal set of genes needed for all the steps of development to pro-

duce an organism capable of life ex utero. We explored a wide range of sequence and func-

tional features to characterise essential (lethal) and non-essential (viable) genes in mice.

Experimental data curated manually identified 1301 essential genes and 3451 viable genes.

Very many sequence features show highly significant differences between essential and

viable mouse genes. Essential genes generally encode complex proteins, with multiple

domains and many introns. These genes tend to be: long, highly expressed, old and evolu-

tionarily conserved. These genes tend to encode ligases, transferases, phosphorylated

proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction net-

works. They are involved with regulating protein-protein interactions, gene expression and

metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication,

cell differentiation, DNA repair and transcription, cell differentiation and embryonic develop-

ment. Viable genes tend to encode: membrane proteins or secreted proteins, and are asso-

ciated with functions such as cellular communication, apoptosis, behaviour and immune

response, as well as housekeeping and tissue specific functions. Viable genes are linked to

transport, ion channels, signal transduction, calcium binding and lipid binding, consistent

with their location in membranes and involvement with cell-cell communication. From the

analysis of the composite features of essential and viable genes, we conclude that essential

genes tend to be required for intracellular functions, and viable genes tend to be involved

with extracellular functions and cell-cell communication. Knowledge of the features that are

over-represented in essential genes allows for a deeper understanding of the functions and

processes implemented during mammalian development.
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Introduction

Essential genes are those whose presence is imperative for the survival of an organism. How-

ever, the complete set of genes that are absolutely vital to sustain life are still unknown for

most organisms [1]. In mammals, knowledge of essential genes is required to understand

development, maintenance of major cellular processes and tissue-specific functions that are

crucial for life. As such, essential genes are the key minimal set of genes needed for all steps of

development. Genes that are not needed for development are termed non-essential or viable

genes. Mammalian essential genes can be identified using experimental techniques [2], which

include single gene knockouts [3–5], conditional knockouts [6, 7], forward genetic screens [8],

RNA interference [9, 10], and transposon mutagenesis [11]. Though these experimental meth-

ods are the gold standard, they are time consuming and expensive. Nevertheless, major pro-

grams are currently underway to systematically knockout every mouse gene and characterise

the resulting phenotypes [12]. An initial set of essential genes has been identified through

these experimental approaches [13, 14].

These recent data offer a valuable resource to help understand which processes are critical

for mammalian development and to discover what makes a gene essential or viable. We

hypothesised that essential and viable genes are distinguishable by various attributes. We ex-

plored a wide range of sequence and functional features of mouse genes in order to character-

ise essential and viable genes in mammals. We have discovered numerous gene and protein

features that vary significantly between essential and viable genes in mouse, some of which

were previously found to be associated with essentiality in E. coli [15, 16], S. cerevisiae [17–19],

mouse [20] and human [21]. These features thus reveal the key genetic functions required for

development in mammals.

Results

Datasets

The Mouse Genome Informatics (MGI) database [22] incorporates published gene data on

mouse knockout phenotypes. We collected a total of 1,271 essential and 4,378 viable mouse

genes from MGI (accessed on 1 November, 2013), based on phenotype annotations of null

alleles of targeted deletion knockout mice. Mutant phenotypes generated from other experi-

mental methods were not included in our dataset, since we could not exclude the possibility

that essential genes might have hypomorphic alleles with viable phenotypes in gene trap, knock-

down, or chemical mutagenesis experiments. We considered a gene as essential if it produced

lethality in either the heterozygous or homozygous state, and did not differentiate between

these two types of genes in the dataset. We defined essential genes as those that are required for

an animal to survive past post-natal day 3. A total of 1,335 genes had both ‘essential’ and ‘viable’

annotations in the MGI database so were individually checked in the literature. We further

manually checked each gene to ensure that our datasets contained only protein-coding genes, to

allow for an analysis of features specific to protein function. This resulted in a total dataset of

1,301 essential and 3,451 viable mouse genes (S1 Data and S2 Data).

The proteins encoded by these essential and viable genes share significant levels of sequence

identity. A protein sequence dataset is considered redundant if it includes a pair of proteins

that are highly similar or homologous. The presence of redundancy is a barrier in using a data-

set effectively as it increases the size of the dataset; also it could potentially create bias towards

any conclusions drawn from the overall analysis using the dataset due to the over-representa-

tion of similar features. This problem can be overcome by removing redundant proteins from

the dataset until all the proteins in the dataset share sequence similarity less than a predefined

Mammalian essential genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0178273 May 31, 2017 2 / 38

Abbreviations: ASP, Average Shortest Path; BN,

BottleNeck; CC, Closeness centrality; CCo,

Clustering coefficient; DCA, Duplicate Common

Ancestor; DMNC, Density of Maximum

Neighbourhood Component; EPC, Edge Percolation

Component; EST, Expressed Sequence Tag; GO,

Gene Ontology; K, Known; KP, Known-Predicted;

MNC, Maximum Neighbourhood Component; MGI,

Mouse Genome Informatics; MRD, Most Recent

Duplication; MW, Molecular Weight; PPI, Protein-

Protein Interactions; PTM, Post-translational

Modification.

https://doi.org/10.1371/journal.pone.0178273


threshold. We therefore used Leaf [23] to remove redundant proteins from our datasets. We

generated four culled or non-redundant essential and viable datasets from our original dataset,

where the sequence similarity between all proteins is less than a threshold of 20%, 40%, 60%

and 80%, respectively (Table 1).

Analysis of genomic features

The functionality of a gene may rely on its inherent sequence features at the genomic level.

Analysing these gene sequence based features may provide valuable insights into their contri-

butions to gene essentiality.

GC content, gene length, and transcript diversity. We anticipated that genomic features

such as gene length and GC content could be indicative of gene essentiality, and determined if

these features differ between our essential and non-essential gene sets. We found that essential

genes tend to be longer in length compared to viable genes (Table 2; Fig 1A). Total gene length

is comprised of individual exon and intron lengths. We therefore also measured these features

in our datasets, finding that essential genes tend to have longer exons and introns than viable

genes (Table 2; Fig 1B and Fig 1C).

We also examined transcript diversity, finding that essential genes tend to have more tran-

scripts than viable genes (Table 2; Fig 1D). To quantify whether or not the number of exons

could differentiate between essential and viable genes, the ranking of the number of exons

Table 1. Numbers of essential and viable proteins/genes in the non-redundant datasets.

Sequence Identity Cut-Off Number of Essential Proteins Number of Viable Proteins

Non-culled (Complete Set) 1301 3451

20% 479 1017

40% 961 2302

60% 1215 3106

80% 1291 3391

https://doi.org/10.1371/journal.pone.0178273.t001

Table 2. Median gene length, GC contents, number of transcripts, number of exons, exon length and intron length for essential and viable genes.

The median value of each feature is reported. p–values are determined from a Mann–Whitney U test. Statistically significant results were evaluated based on

the Bonferroni corrected p–value of 0.0083.

Datasets Gene Sequence Features

Gene Length (bp) GC content (%) No. of transcripts No. of exons Exon length (bp) Intron length (bp)

Non-culled Essential 28913 46.46 4 11 3398 25341

Viable 21629 47.16 2 8 2780 18563

p-value 7.9×10−8 0.009 4.7×10−16 9.4×10−16 1.2×10−22 2.0×10−6

Culled (20%) Essential 22757.5 46.34 4 10 2831 19226

Viable 15931 46.82 2 7 2263 13761

p-value 5.0×10−6 0.091 1.3×10−10 6.3×10−9 2.2×10−10 5.8×10−5

Culled (40%) Essential 28548 46.21 4 11 3368 24928

Viable 20280 46.98 2 8 2632 17667

p-value 1.4×10−8 0.009 1.8×10−15 1.3×10−20 9.1×10−23 3.3×10−7

Culled (60%) Essential 29601 46.22 4 11 3409 25964

Viable 21267 47.08 2 8 2746 18310

p-value 1.4×10−9 0.001 4.5×10−17 2.2×10−18 2.7×10−24 4.1×10−8

Culled (80%) Essential 28936 46.45 4 11 3398 25333

Viable 21574 47.15 2 8 2767 18534

p-value 1.8×10−7 0.013 5.5×10−16 1.2×10−15 1.2×10−22 3.0×10−6

https://doi.org/10.1371/journal.pone.0178273.t002
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from the longest transcript of each gene was analysed. We found that essential genes are likely

to have more exons than viable genes (Table 2; Fig 1E).

Fig 1. Distributions of the (A) total gene length, (B) total length of exons, (C) total length of introns, (D) number of transcripts, (E) number of

exons, and (F) percentage of GC content in essential and viable genes. Here, EN and VN refer to essential and viable genes in the non–culled

dataset. Ex and Vx define essential and viable genes in the culled dataset where all coded proteins share sequence similarity less than x0%. In this

box plot, the top and bottom of the box denote the upper and lower quartiles; the line inside the box denotes the median; and individual points denote the

outliers. Top 5% essential and viable genes with longest gene length (A) and longest introns (F) were excluded from the datasets to make plots more

readable.

https://doi.org/10.1371/journal.pone.0178273.g001
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When the distributions of GC content in essential and viable genes were examined, we

observed that viable genes have a higher percentage of GC content only for the culled dataset

where all coded proteins have a sequence identity < 60%; this observation was not statistically

significant for other culled datasets (Table 2; Fig 1F).

Gene expression. Examining the temporal specificity of gene expression can identify

genes that are active in a particular biological process. We therefore expected that expression

could serve as an important indicator of essentiality, as developmentally essential genes should

be expressed during embryonic development. We obtained mouse gene expression data for

1,301 essential and 3,409 viable genes from the UniGene database [24] covering 13 develop-

mental stages. Essential genes are more highly expressed than viable genes at every stage of

mouse development (Fig 2). However, the χ2 tests with the Bonferroni correction analysis

showed that these differences are not statistically significant at later stages of development

(juvenile and adult), as nearly all genes are expressed at those stages (Table 3). Essential genes

were found to be highly expressed, whereas viable genes are more likely to be found in the

group of genes with zero transcripts present in developmental samples (Fig 3).

Evolutionary age. The evolutionary age of a gene represents the time that has passed

since the gene evolved from its ancestor, either by duplication or speciation. Studies in bacteria

and yeast found essential genes to be evolutionarily more conserved than viable genes [5, 15,

25]. We therefore also expected that gene evolutionary age could be informative for distin-

guishing mammalian gene essentiality.

For mammalian genes that have been duplicated, the evolutionary age reported in millions

of years ago (MYA) of the duplicate common ancestor (DCA) and the most recent duplicat-

ion (MRD) event were collected from the Ensembl (release 75) gene trees. For mammalian

genes without duplicates, the gene age was determined to be that of the singleton common

ancestor (SCA). We observed 16 representative phylogenetic age groups for our mouse genes

(Table 4A). We found ages for 1,276 (98.1%) essential and 3,358 (97.3%) viable genes. The old-

est genes arose approximately 1215 MYA, whereas the youngest genes belong to the class

Fig 2. Frequencies (%) of essential and viable mouse genes in the non-culled datasets that are

expressed at 13 embryonic developmental stages.

https://doi.org/10.1371/journal.pone.0178273.g002
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Murinae arising approximately 25 MYA. We compared the enrichment of essential and viable

genes in different age groups. We found that essential genes tend to be older than viable genes

for both non-culled and culled datasets (Fig 4). We observed that a significantly greater per-

centage of essential genes have evolutionary origins of 1215 and 937 MYA, compared to viable

genes in the non-culled dataset (Table 4B and Table 4C). The majority of the viable genes

arose 400 MYA. Using MRD ages, we found that viable genes are more likely to have ages of

25 and 162 MYA (Table 4B). We further observed a significantly greater percentage of viable

genes that have DCA ages arising at 296, 371, 414 and 535 MYA (Table 4C). We found similar

trends for the culled datasets, which further confirms that genes essential for mouse develop-

ment are more evolutionarily ancient.

Analysis of protein features

Prior research established that different physical, functional and evolutionary properties of

proteins can facilitate the prediction of gene essentiality [15, 18, 20, 26]. Here, we explore a

number of protein properties, obtained from mouse protein sequence data, to test their effi-

cacy at distinguishing essential genes from viable genes in mouse.

Simple sequence features. We found that essential proteins have significantly longer

lengths than viable proteins (529aa versus 452aa (median length); p–value = 1.03×10−21 Mann-

Whitney U test). The distributions of protein lengths between essential and viable proteins

within the non-culled and culled datasets are variable and discriminate between these classes

(Fig 5A). We also found variations in the frequencies of amino acids found in the proteins

encoded by essential and viable genes (Table 5). Proteins encoded by essential genes in the

non-culled dataset tend to have higher proportions of Ala, Asp, Glu, Lys, Gln and Ser. Distri-

butions of Lys residues demonstrated the same trend for all culled datasets. Essential proteins

in the 40%, 60% and 80% culled dataset also had more Asp, Glu and Gln compared to viable

proteins (S3 Data). Viable proteins have more Leu, Cys, Phe, Val and Trp.

Protein average molecular weight, charge, isoelectric point and frequencies of different

amino acid categories were computed using the tool Pepstats [27]. Proteins encoded by

essential genes have a significantly higher average molecular weight (MW) compared to pro-

teins encoded by viable genes (Table 6). Differences for charge, isoelectric point, tiny and

small residues were not statistically significant. Essential proteins were found to have greater

Table 3. Frequencies of essential versus viable mouse genes expressed at different developmental stages in the non-culled dataset. The p-value

for the Bonferroni correction is 0.00385.

Developmental stage Essential (%) Viable (%) p-value

Oocyte 42.0 20.9 3.6×10−36

Unfertilized Ovum 26.3 10.5 5.9×10−36

Zygote 35.3 17.8 2.9×10−29

Cleavage 45.5 23.2 3.0×10−36

Morula 43.6 19.7 2.2×10−46

Blastocyst 59.8 30.4 1.2×10−47

Egg Cylinder 22.4 8.3 6.0×10−35

Gastrula 57.1 29.3 8.1×10−45

Organogenesis 83.8 54.1 1.0×10−30

Fetus 97.3 86.4 4.3×10−4

Neonate 85.0 70.7 5.1×10−7

Juvenile 92.4 87.8 0.14

Adult 95.9 94.1 0.56

https://doi.org/10.1371/journal.pone.0178273.t003
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Fig 3. Gene expression distributions of essential and viable genes in the non-culled dataset across 13 stages of mouse development. Here,

the bin size is 50.

https://doi.org/10.1371/journal.pone.0178273.g003
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proportions of polar (Fig 5B), charged (Fig 5C), basic (Fig 5D) and acidic (Fig 5E) amino

acids. In contrast, proteins encoded by viable genes have significantly higher proportions of

aliphatic (Fig 6A), aromatic (Fig 6B) and non-polar residues (Fig 6C). However, the Mann–

Whitney U test showed that differences of aliphatic (p-value = 0.42) and aromatic (p-value =

0.19) residues between essential and viable proteins in the 20% culled datasets are not statisti-

cally significant (Table 6).

Enzyme class. Almost all cellular processes are dependent on the presence of enzymes.

Enzymatic function thereby could be another indicator of gene essentiality. We extracted the

annotations of the six primary enzyme classes from UniProt [28] and counted the number of

essential and viable proteins belonging to each of these classes (Table 7). In the non–culled

datasets, 29.8% (388/1301) of the total number of essential proteins exhibit enzymatic activity

compared to 27.7% (956/3451) of viable proteins, though this difference is not statistically sig-

nificant. The culled datasets also show variations within each class in the percentage of pro-

teins that function as enzymes (Table 7). Analysis of the enzyme classifications shows that the

proteins encoded by essential genes are rich in transferases and ligases as compared to those

encoded by viable genes. Hydrolases were found to be strongly associated with viable proteins

in the non–culled dataset. No statistically significant differences between the datasets were

observed for oxidoreductases, lyases and isomerases.

Post-translational modifications and transcription. We investigated the frequency of

annotations for four different post-translational modification keywords (‘phosphoprotein’,

‘glycoprotein’, ‘acetylation’ and ‘transcription’) as obtained from UniProt protein annotations.

Protein phosphorylation plays crucial roles in regulating various cellular and metabolic pro-

cesses, such as cell differentiation, cell division, survival etc. Around 30% of all eukaryotic pro-

teins are estimated to be phosphorylated [29]. We found that essential proteins within the

non-culled dataset are significantly more likely to be phosphorylated than viable proteins

(51.42% versus 35.50%, p–value = 8.93×10−15). We observed the same trend for culled datasets

(Table 8).

Table 4. Gene ages. (A) Phylogenetic age groups in million years ago (MYA) retrieved from the Ensembl (release 75) gene trees. (B) Essential versus viable

mouse genes frequencies for different MRD+SCA age groups. (C) Essential versus viable mouse genes frequencies for different DCA+SCA age groups.

These results are observed for the non-culled dataset. Here, the Bonferroni corrected p-value in the Chi-squared test is 0.003125.

A B C

Taxon or Age Group Age (MYA) Essential (%) Viable (%) p-value Essential (%) Viable (%) p-value

Murinae 25 0.63 2.17 3.7×10−4 0.16 0.36 0.27

Rodentia 77 0.00 0.09 0.286 0.00 0.00 0

Sciurognathi 78 0.00 0.06 0.383 0.00 0.00 0

Glires 86 0.24 0.06 0.104 0.00 0.00 0

Euarchontoglires 92 0.55 0.51 0.858 0.00 0.00 0

Eutheria 104 11.60 11.23 0.737 0.39 1.36 4.5×10−3

Theria 162 1.25 2.80 2.3×10−3 0.31 1.24 4.2×10−3

Mammalia 167 3.45 5.03 0.025 0.39 1.13 0.019

Amniota 296 5.41 4.79 0.403 0.70 2.10 1.1×10−3

Tetrapoda 371 1.41 2.56 0.020 0.16 1.13 1.4×10−3

Euteleostomi 400 31.58 41.69 8.3×10−7 10.34 16.58 7.8×10−7

Sarcopterygii 414 1.80 2.74 0.070 0.00 1.36 2.9×10−5

Vertebrata 535 13.48 14.80 0.290 10.42 14.51 6.5×10−4

Chordata 722 4.00 3.25 0.219 5.60 7.94 8.3×10−3

Bilateria 937 15.67 6.08 4.8×10−23 52.72 41.01 7.8×10−8

Opisthokonta 1215 8.93 2.14 6.6×10−25 18.82 11.28 3.1×10−10

https://doi.org/10.1371/journal.pone.0178273.t004
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Greater than 50% of all proteins are glycosylated [30]. Glycoproteins are crucial for protein

folding, solubility and localization [31]. A large number of them are secreted extracellular pro-

teins, or are cell membrane proteins, and they therefore have roles in transport and cell–cell

interactions. Viable protein are significantly more likely to be N-linked glycoproteins than

essential proteins (Table 8).

Acetylated proteins in eukaryotes are those proteins that are post–translationally modified

by the addition of an acetyl group at the N-terminus or on Lys side chains. The acetylation

Fig 4. Proportions of essential and viable genes for different age groups. Here, E and V refer to essential and viable genes. Ages of mouse

duplicates were calculated based on the MRD event (A) or the DCA (B).

https://doi.org/10.1371/journal.pone.0178273.g004
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process is important for gene expression and metabolism. N-acetylated proteins also have vital

roles in regulation of protein–protein interactions [32]. Proteins encoded by essential genes

are more likely to have at least one acetyl group than proteins encoded by viable genes for all

Fig 5. Distributions of (A) length, (B) polar, (C) charged, (D) basic, and (E) acidic residues (%) of proteins encoded by essential and viable

genes. Here, EN and VN refer to essential and viable genes in the non–culled dataset. Ex and Vx define essential and viable genes in the culled dataset

where all coded proteins share sequence similarity less than x0%. Top 2% longest proteins (A) were excluded from the datasets to make plots more

readable. In this box plot, the top and bottom of the box denote the upper and lower quartiles; the line inside the box denotes the median; and individual

points denote the outliers.

https://doi.org/10.1371/journal.pone.0178273.g005
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datasets (Table 8). Essential proteins in all datasets are thus more likely to be associated with

regulating the transcription of genes, since acetylation is used to control gene expression.

Signal peptides. Signal peptides are short peptide sequences (usually 5–60 amino acids

long) located at the N–terminus of a large number of newly synthesized proteins. They control

Table 5. Differences in the frequency of usage of the 20 amino acids between essential and viable

mouse proteins in the non-culled dataset. The p-value for the Bonferroni correction is 0.0025.

Amino acid Essential Viable p-value

A 6.87 6.74 1.1×10−3

C 1.88 2.08 1.9×10−7

D 4.91 4.73 4.1×10−7

E 6.68 6.22 6.5×10−12

F 3.39 3.80 1.8×10−17

G 6.43 6.49 0.28

H 2.48 2.39 5.8×10−3

I 4.06 4.24 3.2×10−4

K 5.67 5.15 3.6×10−14

L 9.31 10.00 2.7×10−21

M 2.19 2.21 0.84

N 3.63 3.50 2.9×10−3

P 5.86 5.72 0.026

Q 4.48 4.25 3.8×10−7

R 5.41 5.38 0.33

S 8.01 7.78 1.4×10−3

T 5.14 5.24 8.4×10−3

V 5.89 6.25 2.7×10−12

W 1.01 1.31 8.8×10−24

Y 2.73 2.83 0.019

https://doi.org/10.1371/journal.pone.0178273.t005

Table 6. Median values of different protein features obtained from Pepstats and the p-values of their distribution calculated using the Mann–Whit-

ney U test. The p-value for the Bonferroni correction is 0.0038.

Datasets Protein Sequence Features

Molecular weight (Da) Aliphatic (%) Aromatic (%) Non-polar (%) Polar (%) Charged (%) Basic (%) Acidic (%)

Non-culled Essential 59146 27.0 10.0 52.1 47.9 25.8 14.0 11.8

Viable 50446 27.8 10.8 53.7 46.3 24.5 13.3 11.0

p-value 3.4×10−21 3.5×10−13 3.7×10−14 4.4×10−27 4.6×10−27 2.3×10−18 2.2×10−15 1.8×10−13

Culled (20%) Essential 48926 28.2 10.5 53.0 47.0 25.8 14.0 11.7

Viable 40327 28.4 10.8 54.0 46.0 24.7 13.4 11.0

p-value 4.1×10−10 0.4 0.2 1.0×10−4 1.0×10−4 7.6×10−5 4.9×10−4 6.4×10−4

Culled (40%) Essential 60212 27.4 10.1 52.1 47.9 26.0 14.0 12.0

Viable 48362 28.0 10.7 53.7 46.3 24.5 13.3 11.0

p-value 3.2×10−21 6.0×10−6 4.1×10−9 1.6×10−20 1.6×10−20 3.7×10−19 5.6×10−12 3.4×10−16

Culled (60%) Essential 60237 27.1 10.1 52.0 48.0 25.9 14.0 11.8

Viable 50058 27.8 10.7 53.8 46.2 24.4 13.2 11.0

p-value 1.4×10−21 3.4×10−11 2.4×10−12 4.9×10−28 5.1×10−28 1.9×10−21 1.9×10−15 4.6×10−17

Culled (80%) Essential 59285 27.0 10.0 52.1 47.9 25.8 14.0 11.8

Viable 50479 27.8 10.7 53.7 46.3 24.5 13.2 11.0

p-value 1.2×10−20 1.2×10−12 1.4×10−14 1.0×10−27 1.1×10−27 3.9×10−19 8.6×10−16 3.4×10−14

https://doi.org/10.1371/journal.pone.0178273.t006
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Fig 6. Distributions of (A) aliphatic, (B) aromatic, and (C) non-polar residues (%) between essential

and viable proteins. Here, EN and VN refer to essential and viable genes in the non–culled dataset. Ex and
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the targeting and translocation of secreted or cell membrane proteins. Signal peptides direct

proteins to different cellular locations (e.g. nucleus, mitochondria, endoplasmic reticulum,

endosome, Golgi apparatus). Signal peptide motifs (computed using UniProt annotation and

SignalP servers[33] are significantly more frequent in proteins encoded by viable genes as

compared to proteins encoded by essential genes (Table 9).

Transmembrane domains. Transmembrane proteins extend through the lipid bilayer

and span from the interior to the exterior of the cell. Transmembrane proteins usually adopt

an α-helical structure while passing through the lipid bilayer once (single-pass proteins) or

multiple times (multiple-pass proteins). Due to this structure, transmembrane proteins can

mediate cellular functions both inside and outside of the cell. Transmembrane proteins are

important for cell-cell communication, maintenance of cell structure, signalling, and ion trans-

port. Many receptor proteins have a number of α-helical transmembrane domains spanning

the cell membrane. Thus, the presence of transmembrane domains in protein encoded by

essential and viable genes could be informative for functional annotation.

We found that the non-culled viable dataset is significantly enriched in transmembrane

proteins (p-value = 1.86×10−15). Approximately 20% of essential proteins are annotated as

transmembrane proteins, whereas the corresponding percentage is 34% for viable proteins.

A total of 10.5% essential proteins consist of a single transmembrane helix, whereas this num-

ber is 17% for viable proteins. Also, 2% of essential proteins have seven transmembrane heli-

ces, compared to 6.5% of viable proteins. Overall, a greater number of viable proteins have

transmembrane domains, and viable proteins have significantly more transmembrane helices

per protein than essential transmembrane proteins.

Vx define essential and viable genes in the culled dataset where all coded proteins share sequence similarity

less than x0%. In this box plot, the top and bottom of the box denote the upper and lower quartiles; the line

inside the box denotes the median; and individual points denote the outliers.

https://doi.org/10.1371/journal.pone.0178273.g006

Table 7. Differences in the frequencies of different enzyme class observed between essential and viable mouse proteins. The Bonferroni corrected

p-valu for the Chi-squared tests is 0.0083.

Datasets Enzyme Classes

Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Non-culled Essential 3.4 13.5 8.1 1.31 0.69 2.9

Viable 3.7 10.1 10.9 1.10 0.67 1.2

p-value 0.59 1.81×10−3 5.88×10−3 0.56 0.92 5.43×10−5

Culled (20%) Essential 6.05 12.94 10.02 2.92 1.46 2.92

Viable 6.00 9.64 12.59 1.18 1.38 1.28

p-value 0.97 0.068 0.18 0.017 0.90 0.027

Culled (40%) Essential 3.95 13.42 9.26 1.77 0.94 3.23

Viable 4.17 9.30 11.56 1.26 0.83 1.26

p-value 0.781 9.2×10−4 0.070 0.26 0.75 1.6×10−4

Culled (60%) Essential 3.46 13.83 8.07 1.40 0.74 3.13

Viable 3.77 9.53 11.59 1.16 0.71 1.19

p-value 0.63 1.1×10−4 1.4×10−3 0.52 0.91 1.4×10−5

Culled (80%) Essential 3.41 13.56 7.90 1.32 0.70 2.94

Viable 3.77 10.06 11.03 1.12 0.68 1.21

p-value 0.56 1.3×10−3 2.7×10−3 0.58 0.94 4.5×10−5

https://doi.org/10.1371/journal.pone.0178273.t007
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Gene ontology terms

Gene Ontology (GO) [34] is the most widely used scheme for classifying gene functions. The

GO consortium provides a set of controlled vocabularies (ontology) to annotate the functional

properties of gene and gene products across all species. Gene functions are annotated by

means of three aspects: (a) molecular function (b) cellular component and (c) biological pro-

cess. Here, we test whether GO term distributions vary between essential and viable genes.

Cellular component. Protein functions are closely related to the locations where they

reside within a cell. Subcellular localisation has been shown to be important for predicting

essential genes in prior studies [15, 18, 35]. As an example, eukaryotic proteins located in the

nucleus carry out essential functions including DNA replication, mRNA synthesis and recom-

bination. Subcellular localisation therefore should be useful in distinguishing mouse essential

genes.

GO terms were extracted from the DAVID v6.8 functional annotation tool [36] by submit-

ting the Ensembl IDs of mouse essential and viable genes. A total of 225 cellular component

GO terms for essential genes and 149 terms for viable genes were retrieved, of which 53 and 82

terms were found significant, utilising the Bonferroni corrected p-value� 0.05 from the func-

tional annotation output of DAVID. Tables 10 and 11 summarise these cellular component

GO terms favoured for essential and viable genes, respectively. Lists of the 50 most enriched

GO terms for each class are listed in S4-S9. A majority of essential genes are intracellular.

Table 8. Frequencies (%) of post-translational and transcription keywords in essential and viable mouse proteins and the corresponding p-values

computed using the Chi-square test. The Bonferroni corrected p-value is 0.0125.

Datasets Keywords

Phosphoprotein Glycoprotein Acetylation Transcription

Non-culled Essential 51.4 21.3 28.9 27.8

Viable 35.5 38.2 12.9 11.5

p-value 8.9×10−15 3.1×10−19 4.5×10−33 1.8×10−36

Culled (20%) Essential 40.5 20.0 30.7 15.9

Viable 29.2 33.2 16.3 7.9

p-value 3.7×10−4 9.9×10−6 1.5×10−8 7.8×10−6

Culled (40%) Essential 52.7 21.1 31.3 21.2

Viable 32.7 38.1 13.6 9.6

p-value 6.3×10−17 1.6×10−14 2.8×10−26 3.5×10−17

Culled (60%) Essential 52.3 21.4 29.7 26.1

Viable 34.6 38.8 12.7 11.1

p-value 1.3×10−16 9.3×10−19 2.3×10−33 1.7×10−29

Culled (80%) Essential 51.5 21.2 28.9 27.7

Viable 35.4 38.4 12.6 11.5

p-value 5.7×10−15 9.5×10−20 1.8×10−33 1.5×10−35

https://doi.org/10.1371/journal.pone.0178273.t008

Table 9. Signal peptide count in essential and viable proteins and the corresponding p–values computed using the Chi–square test.

Datasets Essential Viable %Essential %Viable p-value

Non-culled 213 1004 16.4 29.1 1.2×10−19

Culled (20%) 67 304 14.0 29.9 8.3×10−9

Culled (40%) 151 698 15.7 30.3 8.8×10−14

Culled (60%) 200 941 16.5 30.3 1.8×10−15

Culled (80%) 210 993 16.3 29.3 4.1×10−15

https://doi.org/10.1371/journal.pone.0178273.t009
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Terms most frequently associated with essential genes include: “nucleus”, “transcription factor

complex”, “nucleoplasm”, “nucleolus”, and “intracellular membrane- bounded organelle”.

Fifty-seven percent of total essential genes were found to be present in the nucleus.

Table 10. Top 20 enriched cellular component GO terms associated with essential mouse genes.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-Values

GO:0005634 nucleus 747 57.8 9.7x10-95

GO:0005667 transcription factor complex 104 8.04 1.4x10-50

GO:0005654 nucleoplasm 309 23.8 2.6x10-50

GO:0005737 cytoplasm 682 52.7 9.4x10-46

GO:0043234 protein complex 126 9.7 1.4x10-27

GO:0005829 cytosol 239 18.5 5.8x10-22

GO:0000790 nuclear chromatin 64 4.9 1.3x10-20

GO:0005925 focal adhesion 77 6.0 5.5x10-15

GO:0048471 perinuclear region of cytoplasm 103 8.0 4.9x10-12

GO:0009986 cell surface 97 7.5 5.4x10-12

GO:0005911 cell-cell junction 45 3.5 6.6x10-10

GO:0043025 neuronal cell body 80 6.2 4.9x10-9

GO:0043005 neuron projection 68 5.3 6.9x10-9

GO:0005730 nucleolus 107 8.3 8.3x10-8

GO:0030424 axon 60 4.6 1.1x10-7

GO:0000785 chromatin 31 2.4 5.0x10-7

GO:0030054 cell junction 90 7.0 2.0x10-6

GO:0005694 chromosome 54 4.2 2.7x10-6

GO:0043231 intracellular membrane-bounded organelle 93 7.2 2.9x10-6

GO:0017053 transcriptional repressor complex 20 1.5 3.4x10-6

https://doi.org/10.1371/journal.pone.0178273.t010

Table 11. Top 20 enriched cellular component GO terms associated with viable mouse genes.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-Value

GO:0016020 membrane 1794 52.3 2.9x10-111

GO:0005886 plasma membrane 1298 37.8 2.1 x10-79

GO:0009986 cell surface 297 8.7 1.3 x10-65

GO:0005887 integral component of plasma membrane 426 12.4 8.6x10-62

GO:0043025 neuronal cell body 249 7.3 7.2 x10-54

GO:0005615 extracellular space 503 14.7 4.2 x10-52

GO:0005576 extracellular region 549 16.0 5.3 x10-49

GO:0005829 cytosol 575 16.8 1.1x10-47

GO:0009897 external side of plasma membrane 168 4.9 1.6x10-43

GO:0045202 synapse 221 6.4 5.5x10-42

GO:0030425 dendrite 206 6.0 1.2x10-35

GO:0030424 axon 171 5.0 1.3x10-35

GO:0045121 membrane raft 136 4.0 1.0x10-33

GO:0043005 neuron projection 182 5.3 2.9x10-33

GO:0005737 cytoplasm 1448 42.2 7.6x10-30

GO:0070062 extracellular exosome 692 20.2 8.9x10-30

GO:0016324 apical plasma membrane 145 4.2 1.3x10-26

GO:0030054 cell junction 245 7.1 2.4x10-26

GO:0048471 perinuclear region of cytoplasm 237 6.9 4.7x10-24

GO:0045211 postsynaptic membrane 108 3.1 8.6x10-24

https://doi.org/10.1371/journal.pone.0178273.t011

Mammalian essential genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0178273 May 31, 2017 15 / 38

https://doi.org/10.1371/journal.pone.0178273.t010
https://doi.org/10.1371/journal.pone.0178273.t011
https://doi.org/10.1371/journal.pone.0178273


In contrast, as shown by our analysis of transmembrane helices, many viable genes are

membrane bound. Viable genes were enriched for cellular component terms including “mem-

brane”, “plasma membrane”, “cell surface”, “extracellular region”, “extracellular space” and

“lysosome”. A high percentage of essential (46%) and viable (41%) genes were also found with

the annotation of cytoplasm. Notably, an individual protein can have more than one subcellu-

lar localisation annotation.

Subcellular locations were also analysed using the UniProt annotation and the WoLF PSORT

tool [37]. Table 12 summarises the results of the UniProt analysis. We found that a significantly

higher proportion of viable proteins are localised in plasma membrane (23%), membrane (15%)

and extracellular region (14%), compared to essential proteins. A higher percentage of essential

proteins are found within the nucleus (48%), as compared to viable proteins (23%). The same

trend was also observed for culled datasets.

Subcellular location prediction results from WoLF PSORT are summarised in Table 13.

While the absolute numbers are often different from UniProt, the trends in differences

between essential and viable are similar. In this case, the most significant enrichment for sub-

cellular localisation of essential proteins was the nucleus. We observed that 70% of total essen-

tial proteins are located in the nucleus compared to 49% of viable proteins. The analysis of

WoLF PSORT prediction results further confirmed the tendency for viable genes to be mem-

brane bound (36%) and extracellular (39%). Viable proteins were also enriched for localisation

to endoplasmic reticulum (18%) and lysosome (11%) as compared to essential proteins.

Table 12. Subcellular locations of all essential and viable mouse proteins as annotated in the UniProt database. p–values were computed using the

Chi–square test. Here, the Bonferroni corrected p-value = 0.0041.

Cellular Components Essential Viable %Essential %Viable p-value

Nucleus 627 815 48.2 23.6 8.37×10−43

Cytoplasm 433 1014 33.3 29.4 0.030

Plasma membrane 170 805 13.1 23.3 3.4×10−12

Membrane (excluding plasma) 117 545 9.0 15.8 2.2×10−8

Extracellular 95 504 7.3 14.6 2.6×10−10

Mitochondrion 67 145 5.1 4.2 0.17

Endoplasmic Reticulum (ER) 70 192 5.4 5.6 0.81

Golgi 62 150 4.8 4.3 0.54

Lysosome 10 80 0.8 2.3 5.4×10−4

Peroxisome 5 22 0.4 0.6 0.30

Cell Junction 78 199 6.0 5.8 0.77

Cell Projection 47 130 3.6 3.8 0.81

https://doi.org/10.1371/journal.pone.0178273.t012

Table 13. Subcellular locations of all essential and viable mouse proteins, which were predicted by WoLF PSORT. p–values were computed using

the Chi–square test. Here, the Bonferroni corrected p-value = 0.0056.

Cellular Components Essential Viable %Essential %Viable p-value

Nucleus 921 1712 70.8 49.6 2.2×10−18

Cytoplasm 700 1556 53.8 45.1 1.0×10−4

Plasma membrane 307 1261 23.6 36.5 4.3×10−12

Extracellular 353 1377 27.1 39.9 7.8×10−11

Mitochondrion 321 890 24.7 25.8 0.50

Endoplasmic Reticulum (ER) 183 621 14.1 18.0 3.3×10−3

Golgi 45 156 3.5 4.5 0.11

Lysosome 86 398 6.6 11.5 2.1×10−6

Peroxisome 204 623 15.7 18.1 0.08

https://doi.org/10.1371/journal.pone.0178273.t013
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These analyses of cellular localisations indicate that proteins encoded by essential genes are

commonly located in the nucleus, whereas viable proteins are more likely to be extracellular or

membrane bound. Viable proteins are also more likely to be located in the lysosome.

Biological processes. A total of 1,575 biological process terms were retrieved for essential

genes, with 1,777 terms for viable genes, of which 323 terms for essential and 315 terms for via-

ble datasets were significant meeting the Bonferroni corrected p-value� 0.05. Table 14 lists

the top 20 biological process terms significantly favoured for essential genes. Essential genes

are often involved in developmental processes, as expected (Table 15). Significant enrichment

for processes related to “transcription”, “cell proliferation”, “cell differentiation”, “organ

morphogenesis”, “cell division”, and “DNA replication” is observed in the essential genes data-

set. Biological process terms commonly annotated for viable genes include “inflammatory

response”, “signal transduction”, “ion transport”, “immune response”, “response to drug”,

“response to stimulus”, “behaviour”, “transmembrane transport”, “aging” and “regulation of

apoptotic process” (Table 15).

Molecular function. Analysing the molecular function output generated by DAVID, a

total of 265 terms for essential genes and 105 terms for viable genes were retrieved, of which 75

and 81 terms were significant, respectively (Tables 16 and 17). Essential genes are more likely

to be annotated as being involved in “DNA binding”, “transcription factor activity”, “tran-

scription factor binding”, and “transferase activity”. Viable genes are more likely to have the

annotations of “signal transducer activity”, “ion channel activity”, “hydrolase activity”, “trans-

porter activity”, “calcium ion binding”, “receptor binding”, “SH3 domain binding”, and “lipid

binding”. A higher percentage of essential and viable genes were also found to be annotated as

being involved in “protein binding”, “ATP binding”, “protein kinase binding”, and “protein

kinase activity”.

Table 14. Top 20 enriched GO terms for essential mouse genes that are related to biological processes.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-Value

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 294 22.7 3.3x10-105

GO:0001701 in utero embryonic development 156 12.1 7.2x10-95

GO:0045893 positive regulation of transcription, DNA-templated 202 15.6 6.9x10-84

GO:0006351 transcription, DNA-templated 365 28.2 3.4x10-75

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 217 16.8 5.8x10-75

GO:0007507 heart development 130 10.1 5.3x10-74

GO:0007275 multicellular organism development 255 19.7 1.5x10-71

GO:0006355 regulation of transcription, DNA-templated 398 30.8 1.4x10-69

GO:0010628 positive regulation of gene expression 112 8.7 1.0x10-33

GO:0008284 positive regulation of cell proliferation 132 10.2 1.9x10-33

GO:0043066 negative regulation of apoptotic process 135 10.4 4.3x10-33

GO:0009887 organ morphogenesis 55 4.3 1.7x10-29

GO:0045892 negative regulation of transcription, DNA-templated 131 10.1 3.6x10-29

GO:0006357 regulation of transcription from RNA polymerase II promoter 105 8.1 7.8x10-29

GO:0009952 anterior/posterior pattern specification 55 4.3 1.0x10-28

GO:0001525 angiogenesis 78 6.0 4.6x10-27

GO:0008285 negative regulation of cell proliferation 100 7.7 1.3x10-26

GO:0003007 heart morphogenesis 41 3.2 1.5x10-26

GO:0001568 blood vessel development 42 3.2 2.6x10-25

GO:0001570 vasculogenesis 41 3.2 4.6x10-25

https://doi.org/10.1371/journal.pone.0178273.t014
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Table 16. Top 20 enriched GO terms for essential mouse genes that are related to molecular function.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-

Value

GO:0005515 protein binding 669 51.7 1.6x10-121

GO:0003677 DNA binding 356 27.5 3.2x10-71

GO:0043565 sequence-specific DNA binding 186 14.4 1.1x10-62

GO:0003700 transcription factor activity, sequence-specific DNA binding 206 15.9 4.4x10-51

GO:0003682 chromatin binding 131 10.1 8.0x10-40

GO:0008134 transcription factor binding 108 8.4 5.4x10-37

GO:0001077 transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-

specific binding

94 7.3 3.1x10-36

GO:0000978 RNA polymerase II core promoter proximal region sequence-specific DNA binding 108 8.4 2.3x10-35

GO:0044212 transcription regulatory region DNA binding 86 6.7 6.6x10-35

GO:0046982 protein heterodimerization activity 109 8.4 3.3x10-21

GO:0001228 transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-

specific binding

43 3.3 2.0x10-18

GO:0001085 RNA polymerase II transcription factor binding 31 2.4 5.4x10-17

GO:0019901 protein kinase binding 90 7.0 2.6x10-16

GO:0032403 protein complex binding 79 6.1 7.4x10-16

GO:0003705 transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding 32 2.5 1.9x10-15

GO:0019899 enzyme binding 80 6.2 3.1x10-14

GO:0000979 RNA polymerase II core promoter sequence-specific DNA binding 31 2.4 3.6x10-14

GO:0042826 histone deacetylase binding 38 2.9 1.2x10-12

GO:0000977 RNA polymerase II regulatory region sequence-specific DNA binding 54 4.2 4.6x10-12

GO:0042803 protein homodimerization activity 121 9.4 9.8x10-12

https://doi.org/10.1371/journal.pone.0178273.t016

Table 15. Top 20 enriched GO terms for viable mouse genes that are related to biological processes.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-Value

GO:0006954 inflammatory response 208 6.1 1.2x10-61

GO:0002376 immune system process 219 6.4 3.8x10-61

GO:0007165 signal transduction 427 12.4 2.3x10-38

GO:0042493 response to drug 182 5.3 1.9x10-37

GO:0032496 response to lipopolysaccharide 124 3.6 3.5x10-35

GO:0043065 positive regulation of apoptotic process 158 4.6 8.8x10-29

GO:0045087 innate immune response 170 5.0 1.2x10-24

GO:0007204 positive regulation of cytosolic calcium ion concentration 90 2.6 1.3x10-24

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 327 9.5 1.7x10-24

GO:0042981 regulation of apoptotic process 105 3.1 1.8x10-23

GO:0007568 aging 99 2.9 1.4x10-22

GO:0006955 immune response 141 4.1 5.5x10-22

GO:0006468 protein phosphorylation 212 6.2 8.2x10-22

GO:0006915 apoptotic process 207 6.0 2.8x10-20

GO:0019233 sensory perception of pain 56 1.6 3.4x10-20

GO:0007155 cell adhesion 183 5.3 8.5x10-20

GO:0006811 ion transport 207 6.0 2.5x10-19

GO:0045471 response to ethanol 73 2.1 1.6x10-17

GO:0006816 calcium ion transport 76 2.2 1.1x10-16

GO:0002250 adaptive immune response 74 2.2 3.2x10-16

https://doi.org/10.1371/journal.pone.0178273.t015
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Protein domains

Protein domains are spatially distinct structural and/or functional units of a protein. They

carry out particular functions or interactions, thereby contributing towards the overall func-

tionality of a protein. We obtained domain data for essential and viable mouse proteins by ana-

lysing the functional annotation output of DAVID (Tables 18 and 19). We observed a total of

11 and 30 Pfam domains[38] that are significantly enriched in essential and viable proteins,

respectively. Domains such as homeobox, helix-loop-helix DNA-binding domain, T-box, pro-

tein kinase domain, Zinc finger, and C4 type domain (many of which are found in transcrip-

tion factors) showed enrichment in essential proteins. Domains including 7- transmembrane

Table 17. Top 20 enriched GO terms for viable mouse genes that are related to molecular function.

GO Term ID GO Term Annotation Count % Bonferroni Corrected p-

Value

GO:0005515 protein binding 1242 36.2 3.3x10-93

GO:0004871 signal transducer activity 259 7.6 1.4x10-33

GO:0042803 protein homodimerization activity 293 8.5 1.7x10-30

GO:0005216 ion channel activity 97 2.8 1.2x10-25

GO:0005102 receptor binding 173 5.0 2.5x10-24

GO:0019901 protein kinase binding 170 5.0 2.7x10-19

GO:0004672 protein kinase activity 192 5.6 1.4x10-18

GO:0046982 protein heterodimerization activity 188 5.5 8.1x10-18

GO:0016301 kinase activity 221 6.4 9.6x10-16

GO:0005125 cytokine activity 95 2.8 2.8x10-14

GO:0042802 identical protein binding 215 6.3 3.1x10-14

GO:0043565 sequence-specific DNA binding 198 5.8 4.1x10-11

GO:0008083 growth factor activity 67 2.0 3.1x10-10

GO:0004872 receptor activity 75 2.2 5.4x10-10

GO:0002020 protease binding 58 1.7 6.4x10-10

GO:0019899 enzyme binding 134 3.9 9.1x10-10

GO:0008201 heparin binding 67 2.0 6.7x10-9

GO:0001077 transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-

specific binding

99 2.9 1.9x10-8

GO:0008144 drug binding 54 1.6 4.3x10-8

GO:0004896 cytokine receptor activity 30 0.9 4.7x10-8

https://doi.org/10.1371/journal.pone.0178273.t017

Table 18. Key domains from the Pfam database that are enriched in proteins encoded by essential mouse genes.

Term ID Term Annotation Count % Bonferroni Corrected p-Value

PF00046 Homeobox domain 63 4.9 1.8x10-17

PF00010 Helix-loop-helix DNA-binding domain 28 2.2 4.7x10-7

PF07714 Protein tyrosine kinase 29 2.2 5.0x10-5

PF00110 Wnt family 11 0.9 8.7x10-5

PF00907 T-box 10 0.8 3.7x10-4

PF00008 EGF-like domain 19 1.5 7.1x10-4

PF00105 Zinc finger, C4 type (two domains) 14 1.1 7.6x10-3

PF00688 TGF-beta propeptide 10 0.8 8.7x10-3

PF00104 Ligand-binding domain of nuclear hormone receptor 14 1.1 0.012

PF00019 Transforming growth factor beta like domain 12 0.9 0.018

PF00069 Protein kinase domain 49 3.8 0.019

https://doi.org/10.1371/journal.pone.0178273.t018

Mammalian essential genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0178273 May 31, 2017 19 / 38

https://doi.org/10.1371/journal.pone.0178273.t017
https://doi.org/10.1371/journal.pone.0178273.t018
https://doi.org/10.1371/journal.pone.0178273


receptor, SH2, ion transport, Fibronectin type III domain (fn3), and SH3 (many of which are

found in membrane proteins) were more frequently found in viable proteins. Although viable

proteins were annotated with having protein kinase and zf-c4 domains, these domains were

more frequently found within essential proteins.

Protein-protein interactions

Protein-protein interactions (PPI) are intrinsic to almost all biological processes. Since the

majority of proteins interact with each other to expedite accurate functionality, knowledge

about their interactions is crucial to understand the molecular mechanisms of cellular processes.

A prior study found significant differences in PPI network properties between the essential and

viable genes of S. cerevisiae and E. coli [39]. Network-based attributes were also found to be fun-

damental to elucidate proteins activities within the cell [21]. We therefore expected that the

study of PPI networks could be an indicator of essentiality of mouse proteins.

Mouse protein-protein interaction data was obtained from the I2D database [40]. The PPI

data was examined with the intention of learning whether essential PPI networks differ in

Table 19. Key domains from the Pfam database that are enriched in proteins encoded by viable mouse genes.

Term ID Term Annotation Count % Bonferroni Corrected p-Value

PF00001 7 transmembrane receptor (rhodopsin family) 162 4.7 4.2x10-41

PF00017 SH2 domain 56 1.6 2.2x10-14

PF07714 Protein tyrosine kinase 65 1.9 1.1x10-12

PF00520 Ion transport protein 53 1.5 2.6x10-10

PF00018 SH3 domain 49 1.4 2.4x10-8

PF00069 Protein kinase domain 121 3.5 4.8x10-8

PF00104 Ligand-binding domain of nuclear hormone receptor 28 0.8 4.1x10-6

PF13895 Immunoglobulin domain 32 0.9 6.5x10-6

PF00105 Zinc finger, C4 type (two domains) 26 0.8 4.2x10-5

PF10613 Ligated ion channel L-glutamate- and glycine-binding site 15 0.4 5.6x10-5

PF00060 Ligand-gated ion channel 15 0.4 5.6x10-5

PF01582 TIR domain 16 0.5 1.2x10-4

PF00211 Adenylate and Guanylate cyclase catalytic domain 16 0.5 1.2x10-4

PF00619 Caspase recruitment domain 17 0.5 1.9x10-4

PF02931 Neurotransmitter-gated ion-channel ligand binding domain 23 0.7 4.1x10-4

PF02932 Neurotransmitter-gated ion-channel transmembrane region 23 0.7 4.1x10-4

PF00229 TNF(Tumour Necrosis Factor) family 14 0.4 7.6x10-4

PF00020 TNFR/NGFR cysteine-rich region 15 0.4 1.2x10-3

PF00041 Fibronectin type III domain 49 1.4 1.3x10-3

PF00045 Hemopexin 16 0.5 1.7x10-3

PF00102 Protein-tyrosine phosphatase 21 0.6 2.2x10-3

PF00433 Protein kinase C terminal domain 18 0.5 2.3x10-3

PF00595 PDZ domain (Also known as DHR or GLGF) 45 1.3 5.2x10-3

PF00413 Matrixin 15 0.4 6.2x10-3

PF01471 Putative peptidoglycan binding domain 14 0.4 0.011

PF00005 ABC transporter 24 0.7 0.014

PF00019 Transforming growth factor beta like domain 19 0.6 0.019

PF00130 Phorbol esters/diacylglycerol binding domain (C1 domain) 24 0.7 0.021

PF00230 Major intrinsic protein 10 0.3 0.031

PF00664 ABC transporter transmembrane region 14 0.4 0.042

https://doi.org/10.1371/journal.pone.0178273.t019
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their network properties from their viable counterparts. We analysed both known and pre-

dicted mouse PPIs to ensure high quality PPIs. Two PPI networks namely Known (K) and

Known-Predicted (KP) were constructed from all mouse PPIs. After removing self and dupli-

cate interactions, the network of proteins encoded by essential genes (essential-K) contained

3,988 protein nodes and 8,074 interactions; the network of proteins encoded by viable genes

Fig 7. Degree distributions of essential and viable proteins involved in the Known (A) and Known-Predicted (B) protein-protein interaction

(PPI) networks.

https://doi.org/10.1371/journal.pone.0178273.g007
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(viable-K) included 4,879 protein nodes and 9,624 interactions. The network essential-KP

consisted of 12,001 nodes and 73,426 interactions, whereas the corresponding numbers are

11,686 and 75,040 for the viable-KP network. We computed 9 network properties for each

essential and viable protein to recognise their importance in each of the PPI networks. 403

(30%) essential and 1,622 (47%) viable proteins has no PPI interactions in the network K. For

KP network, these numbers were 61 (4.69%) and 371 (10.75%), respectively. Hence, essential

proteins are more likely to participate in PPIs than viable proteins.

Our results demonstrated that essential proteins have more interactions (higher degrees)

than viable proteins in both K and KP interaction networks (Fig 7, Table 20). The mean degree

of essential proteins was higher than viable proteins for K (10.5 versus 6.4) and KP (57.7 versus

28.0). The Average Shortest Path (ASP) length is an indicator of a protein node’s efficiency in

transporting information in a PPI network The ASP length of essential proteins is significantly

shorter than the ASP length of viable proteins (Fig 8A, Table 20). The betweenness centrality is

an indicator of the centrality of a protein node in the PPI network. The betweenness centrality

of essential proteins in each of the interaction networks is significantly higher than that of via-

ble proteins (Fig 8B, Table 20). We also found significantly higher clustering coefficient values

for essential proteins in K and KP networks compared to viable proteins. Essential proteins

tend to have significantly high closeness centrality than viable proteins (Fig 8C). This differ-

ence was statistically significant for both networks (Table 21).

We wanted to identify protein nodes with large number of interactions (hubs) in the PPI

network. We used the Hub object Analyser (Hubba) [41] to explore four additional network

properties including: BottleNeck (BN), Edge Percolation Component (EPC), Maximum

Neighbourhood Component (MNC) and Density of Maximum Neighbourhood Component

(DMNC). These properties define probable hubs in the PPI network. Our investigation dem-

onstrated that essential proteins tend to have high BN values in both K and KP networks (Fig

9). We further found that EPC and MNC of essential proteins are significantly higher than that

of viable genes (Table 21). Although essential proteins exhibited high DMNC in the K net-

work, the same trend was not observed for the KP network.

Housekeeping and enriched genes. Housekeeping genes are expressed at similar levels

under all conditions, as they are required to maintain basic cellular functions [42]. In contrast,

many genes are expressed only in certain conditions or environments, such as in individual tis-

sues. We used the Pattern Gene Database [43] to test whether lethal and viable genes are also

likely to be housekeeping or tissue-specific genes. Table 22 shows that viable genes are signifi-

cantly more likely to be housekeeping or tissue enriched genes.

Discussion

Understanding what makes a gene essential shows which cellular, developmental and tissue-

specific processes are crucial for mammalian development. Our non-culled dataset contained

a total of 1,301 essential and 3,451 viable mouse genes, which were obtained from the MGI

Table 20. p-Values of the distributions of PPI network features between essential and viable datasets.

p-values were computed using Mann–Whitney U test.

PPI Network Features Known (K) Network Known-Predicted (KP) Network

Degree 8.2×10−16 4.1×10−63

Average shortest path length 8.56×10−26 1.15×10−260

Betweenness centrality 1.89×10−15 3.21×10−12

Clustering coefficient 9.7×10−4 1.2×10−39

Closeness centrality 1.33×10−28 5.77×10−266

https://doi.org/10.1371/journal.pone.0178273.t020
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database. We included only targeted deletion null mouse phenotypes in our analysis. A lengthy

literature search corrected numerous inaccurate annotations within this database, giving accu-

rate gene lists to analyse. The presence of multiple copies of similar proteins could bias the

analysis; we thereby removed redundant proteins from our dataset to generate non-redundant

Fig 8. Length of ASP (A), Betweenness centrality (B) and Closeness centrality of essential and viable proteins in the Known and Known-Predicted PPI

networks.

https://doi.org/10.1371/journal.pone.0178273.g008
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or culled datasets. Comparing culled and non-culled datasets showed whether redundancy

affects particular gene properties, though in general all sets follow similar trends.

We studied a wide range of gene and protein properties ofMus musculus genes, representa-

tive of different aspects of mouse biology, so that we could quantify their abilities to differenti-

ate essential genes from viable genes. Our investigation focused on features that are attainable

from existing databases and web-based tools. These properties fall into three categories: (1)

genomic properties, which are based on gene sequence data. This group also included features

such as evolutionary age and gene expression; (2) protein sequence properties, determined

from protein sequence, including amino acid composition, enzyme class, post-translational

modifications, signal peptides and transmembrane domains; (3) functional properties, which

facilitate biological interpretations of gene functionality. These include GO annotations and

PPIs. In total, we identified 75 features that show significant differences between essential and

viable genes. These features, expressing different traits of mouse biology, are interrelated.

Many (e.g. gene length, protein length, evolutionary age, gene expression, nuclear localization,

PPI) are in broad agreement with those of previous studies on yeast [16–18] and bacteria [14,

15], but have not been verified in mammals. In addition to previously evidenced features, we

found a number of important novel features that are strongly associated with essential genes,

summarised in Table 23.

Mouse essential genes are more likely to be longer in length, and have more transcripts

than viable genes. Essential genes also tend to exhibit more exons and have a longer exon

length. These results are in agreement with a prior study which showed that longer genes with

a large number of exons tend to exhibit a higher degree of alternative transcripts compared to

smaller genes with fewer exons [44]. Essential genes thus tend to encode complex proteins,

having multiple domains and diverse cellular or tissue specialisations [45]. Essential genes also

tend to have a significantly longer length of introns and a lower GC content. Intron and exon

length is known to vary inversely with GC content [46, 47]. GC content is also correlated with

gene length [48] and recombination [49] in mammalian genomes.

Essential genes are expressed in greater proportions at the earlier stages of mouse develop-

ment (pre-organogenesis stages) as compared to viable genes. Mouse genes that are expressed

at early stages of development are more likely to be essential, as their disruption could affect

downstream developmental events. We found that essential genes show a higher level of gene

expression during development. This result is supported by previous studies that showed that

highly expressed genes are likely to be essential and to evolve slowly [50, 51].

Essential genes tend to have older evolutionary origins than viable genes and thus are evolu-

tionarily more conserved [5, 25], consistent with a previously reported observation that essen-

tial and highly expressed genes evolve more slowly than viable genes [52]. Overall, this analysis

Table 21. Distributions of four network properties: BottleNeck (BN), Edge Percolation Component (EPC), Maximum Neighbourhood Component

(MNC) and Density of Maximum Neighbourhood Component (DMNC) between essential and viable proteins. The Bonferroni corrected p-value in the

Mann Whitney U test is 0.0125. Here, mean rank indicates which protein group holds higher values for a network property.

Network Network Properties

BN EPC MNC DMNC

Known (K Essential (Mean Rank 1522 1520 1486 1442

Viable (Mean Rank 1287 1288 1304 1326

p-valu 1.0×10−17 4.6×10−13 5.6×10−10 7.2×10−5

Known-Predicted (KP Essential (Mean Rank 2468 2683 2685 2147

Viable (Mean Rank 2037 1950 1949 2166

p-valu 9.1×10−39 3.1×10−68 2.4×10−69 0.641

https://doi.org/10.1371/journal.pone.0178273.t021
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indicates that older mouse genes are more likely to be indispensible for fundamental cellular

processes. Essential genes might be undergoing positive selection to retain their functionality,

giving a lower mutation rate.

Fig 9. BottleNeck (BN) of essential and viable proteins in the Known (A) and Known-Predicted (B) protein-

protein interaction (PPI) networks.

https://doi.org/10.1371/journal.pone.0178273.g009

Table 22. Frequencies of housekeeping and tissue enriched genes.

Essential Viable p-Value

Housekeeping 152 (11.7%) 562 (16.3%) 2.6 x 10−4

Tissue Enriched 445 (34.2%) 1511 (43.8%) 4.4 x 10−6

https://doi.org/10.1371/journal.pone.0178273.t022
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Numerous features derived from protein sequences differ between essential and viable gene

products. We find that proteins encoded by essential genes tend to be longer in length and have

greater molecular weight than proteins encoded by viable genes. This result is consistent with a

prior study which stated that functionally essential proteins are more evolutionarily conserved

and conserved proteins are, in general, longer in length [53]. Longer proteins contain more pos-

sible domains to mediate diverse cellular functionalities [45] and multiple protein–protein

interactions, and our analysis with GO terms and protein domains supports this observation.

Essential proteins were found to have Ala, Asp, Glu, Lys, Gln and Ser residues in greater

proportions. In contrast, viable proteins have higher proportions of Cys, Phe, Ile, Leu, Val and

Trp. Cys can also form disulphide bonds, which are more common in extracellular proteins. A

high Leu content is known to correlate negatively with the likelihood of being essential [20].

The enrichment of Lys in essential proteins agrees with our findings that they are likely to be

more acetylated, as proteins are often acetylated on lysine residues [54]. The enrichment of

acetylated proteins in essential datasets implies that they are involved in regulating protein-

protein interactions, gene expression and metabolic processes [55].

Essential proteins are likely to have more polar, charged, basic and acidic amino acids,

whereas viable proteins have more aliphatic, aromatic and non–polar residues, because viable

proteins are more likely to be membrane proteins. Viable proteins also tend to have Src Homol-

ogy 2 (SH2), Src Homology 3 (SH3) and ion transport domains. This further establishes the

propensity of viable proteins being membrane–bound, as these evolutionary conserved protein

domains are common constituents of membrane proteins. Signal peptide motifs are found to be

more frequent in viable proteins, as they are more likely to be secreted.

Proteins encoded by essential genes are more likely to function as ligases or transferases,

consistent with results from a recent study [14]. Our analysis of GO biological process annota-

tions reveals that proteins encoded by essential genes are often involved in regulating DNA

replication, DNA repair and transferase activity, consistent with these proteins functioning as

ligases and transferases. The enrichment for hydrolases in viable datasets is logical, as hydro-

lases are less critical to cellular function. Ligases also perform more complex chemistry than

hydrolases, which may indicate their essentiality.

Table 23. Summary of characteristics likely to be associated with essential or viable genes.

Essential Gene Tendencies Viable Gene Tendencies

More complex proteins, with greater length, more long

introns and exons, and more transcripts

Simpler, shorter gene structure

Higher expression levels at all stages before juvenile Lower expression levels at all stages before

juvenile

Older evolutionary age Younger evolutionary age

Transferase or ligase enzyme activity Hydrolase enzyme activity

Phosphorylated and acetylated proteins N- glycosylated proteins

Intracellular proteins Secreted proteins

Nuclear proteins Extracellular and membrane-bound proteins

Involved in developmental processes, such as:

morphogenesis, proliferation, transcription,

differentiation and cell division

Involved in extracellular interactions, such as:

responses to stimuli, immune system, aging,

signal transduction and transport

DNA binding functions Transport functions

Central positions in protein-protein interaction

networks

Peripheral positions in protein-protein interaction

networks

Less likely to be housekeeping or tissue enriched

genes

More likely to be housekeeping or tissue enriched

genes

https://doi.org/10.1371/journal.pone.0178273.t023
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Essential proteins are more likely to be phosphorylated, as phosphoproteins have critical

roles in almost all cellular processes, including cell differentiation, gene transcription and cell

division [56], confirmed by biological process GO terms. A greater number of N-glycosylated

proteins in the viable datasets indicates the propensity of viable proteins to be membrane–

bound or extracellular [57] and have a longer in vivo lifetime [58]. N-glycosylation can also aid

folding of complex proteins [59]. Essential proteins are more likely to be engaged in control of

gene transcription in the nucleus, as shown by GO and UniProt annotations and also by the

presence of the zinc finger, C4 type (zf–C4) domain. Most occurrences of the zf–C4 domain

are found within the DNA–binding regions of many nuclear receptors that function as tran-

scription factors, which are enriched in the essential gene dataset.

Transmembrane proteins are common in the viable datasets, shown by various data, such

as GO annotations, amino acid preferences and predicted number of transmembrane helices,

consistent with their roles in cell communication, transport and signal transduction. These

functions therefore appear to be less critical during mouse development.

Subcellular localisation has been recognised as a significant attribute for identifying essen-

tial genes in bacteria and yeast [15, 16, 18, 35]. We found that proteins encoded by mouse

essential genes are more likely to be intracellular. The majority of these proteins are located in

the nucleus. This is expected, because almost one third of eukaryotic nuclear proteins are

encoded by essential genes and are responsible for carrying out vital cellular processes like

DNA replication, DNA repair and transcription [60, 61]. Our analysis of GO biological process

annotations further confirms this result. Proteins encoded by viable genes tend to be secreted

(extracellular), as shown by the enrichment of signal peptide cleavage sites, fibronectin type III

(fn3) domain and signal transducer activity. The fn3 protein domain is an evolutionarily con-

served domain that is generally found in animal proteins, especially in extracellular proteins.

Its main function is to mediate cell–cell signaling or interactions. These results agree with a

recently reported study [14], which also showed the tendency of essential genes to encode

nuclear proteins and viable genes to encode extracellular or membrane-bound proteins.

Unsurprisingly, GO data analysis shows that essential genes are more likely to be involved

in developmental processes. These include the development of embryo, tissue, heart, nervous

system, brain, lung, respiratory tube and blood vessel. Essential genes are enriched in T-

box domains, which are vital for heart development [62]. We observed a significant enrich-

ment of essential genes in cell morphogenesis, cell division, cell proliferation, DNA replication,

cell differentiation, DNA repair and transcription, all crucial processes for growth. The pres-

ence of homeobox domains further confirms their vital role in morphogenesis. In contrast,

viable genes were associated with inflammatory response, apoptosis, behaviour and immune

response, which are processes unlikely to be required in utero. Unlike viable genes, essential

genes tended to participate in activities such as protein binding, DNA binding, transcription

factor binding, transcription, and ATP binding. Viable genes were linked to transport, ion

channels, signal transduction (with SH2 protein domains), enzyme binding, receptor binding,

and lipid binding, consistent with their location in membranes and involvement with commu-

nication with other cells. A recently published study by Dickinson et al [14], analysed GO

terms for 410 essential and 1143 viable genes. Of these, only 89 essential and 297 viable genes

are also present in our datasets. Dickinson et al. also found the tendency of essential genes to

participate in cell differentiation, cell proliferation, transcription and DNA binding. Confirma-

tion of a consistent set of GO annotations with a different gene dataset adds strong support to

our conclusions regarding the functions of essential and viable genes. Viable genes are more

likely to be housekeeping or tissue enriched.

The correlation between PPI networks and gene essentiality has already been established in

bacteria [15, 16, 39], yeast [15, 35, 39, 63–65], fly [66] and human [21, 67]. Proteins that are
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highly connected in the PPI (hubs) tend to be essential and evolve slowly [68, 69], and their

absence disrupts cell viability [70]. Shorter ASP length and high values of closeness centrality

and clustering coefficient show that essential proteins can quickly transfer information to

other reachable protein nodes in the PPI network.

We conclude that mammalian essential genes are significantly different from non–essential

genes based upon a number of features. Our manually curated datasets allowed for a large

number of statistically significantly differing features to be identified. The interdependency of

various features implies that multiple aspects of biology unite to determine whether a gene is

essential or non–essential in mammals. The features we have identified as strongly associated

with mouse essential genes can be compared to characteristics of essential genes in other

organisms to gain insights into the evolution of essential functions. The wide variety of features

we have identified associated with essential and non-essential genes will allow for improve-

ments in predicting whether a gene is essential. Due to the genome similarities between mice

and humans, future analyses may facilitate the identification of human genetic disease candi-

dates and potential therapeutic targets.

Methods

Datasets

To construct the datasets for the current research, the phenotype information of knockout

mice was collected from the MGI database [22] (http://www.informatics.jax.org/phenotypes.

shtml, accessed on 1 November 2013). We included only null alleles of mouse genes that have

known phenotypes resulting from single gene targeted (knockout) deletions, because muta-

tions generated by other methods may not have created complete loss of function alleles, and

thus a viable hypomorphic allele could be associated with a gene that produces a lethal null

allele. Genes were included in the essential dataset if they produced lethality in either the

homozygous or heterozygous state on any strain background, and were not separated further

within the dataset. The phenotype of a mouse gene was marked as essential or lethal if it is

associated with any essentiality annotation in the MGI (including prenatal, perinatal and post-

natal annotations). The term ‘prenatal essentiality’ is a valid Mammalian Phenotype Ontology

term which is defined in MGI as death of the mice anytime between fertilization and birth,

whereas, ‘perinatal essentiality’ is defined as death any time between embryonic day E18.5 and

postnatal day 1. We used 18 phenotypic annotations to classify a single-gene knockout pheno-

type as nonessential or viable (S10 Data). Since the majority of these terms refer to processes

or tissues present only after birth, homozygous knockouts of these genes are evidence of a via-

ble phenotype. We manually checked the literature for phenotypes of knockouts of genes for

viability that were linked to the “adipose tissue”, “abnormal skin morphology” and “abnormal

skin physiology” terms, as these could be applied to embryos.

Our knockout datasets contained some ambiguous entries that have been annotated as both

essential and viable in the MGI database. We manually checked phenotypes of these over-

lapped entries against the published literature and labelled them either as essential or viable.

Each MGI gene symbol and identifier was further mapped to its corresponding Ensembl gene

ID (http://www.ensembl.org) [71], UniGene expression clusters ID (http://www.ncbi.nlm.nih.

gov/unigene) [24] and UniProt protein ID (http://www.uniprot.org/uniprot/) [28]. For some

instances there were multiple UniProt protein IDs that correspond to one gene. For some of

these cases, only one protein had the longest length and we included that in our dataset. For

others, two or more protein IDs were found to have longest length. In these cases, to avoid bias

due to annotation quality we included the longest length protein ID in our dataset that was
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marked as ‘reviewed’ in the UniProt annotations. Mouse protein sequences in FASTA format

were downloaded from UniProt.

Non-redundant datasets. Redundancy was removed from our original essential and via-

ble datasets by submitting the essential and viable protein sequences in FASTA format to Leaf

[23] (http://leaf-protein-culling.appspot.com/). This gave four sets of non-redundant essential

and viable proteins with protein pairs showing the maximum sequence similarities of 20%,

40%, 60% and 80% respectively. Protein sequences with <20% identity are structurally very

different implying functional differences [72, 73] so we therefore did not generate non-redun-

dant datasets by removing proteins with <20% sequence identities.

Gene and protein sequence based features

We collected a number of gene and protein sequence based features to distinguish essential

and viable phenotypes. Table 24 summarizes the sequence and functional attributes collected

and the corresponding tools that were used to extract them.

Genomic properties

Gene sequence properties. Features including gene length (in base pair), % of GC con-

tent, number of transcripts, number of exons, lengths of exons and introns were retrieved

from the Ensembl BioMart data mining tool [74] (http://www.ensembl.org/biomart/

martview/) with the Ensembl release 75 dataset of theMus musculus genes by submitting the

Ensembl gene IDs. For genes with multiple transcripts, the longest length transcript was

assessed. A gene’s exon number and the total exon length were calculated considering its lon-

gest transcript. The intron length of a gene was calculated by subtracting its total exon length

from the corresponding gene length.

Gene expression. Raw expression data of mouse essential and viable genes were obtained

from the NCBI UniGene database [24] as expressed sequence tag (EST) clusters using Uni-

Gene IDs. We retrieved EST clusters from 13 developmental stages: oocyte, unfertilized ovum,

zygote, cleavage, morula, blastocyst, egg cylinder, gastrula, organogenesis, fetus, neonate,

Table 24. Sequence and functional features and corresponding bioinformatics tools.

Features Bioinformatics Tools

Genomic features: gene length, % of GC content, number of

transcripts, number of exons, length of exon and intron

Ensembl BioMart [74]

Gene expression UniGene [24]

Evolutionary age Ensembl gene trees [75]

Protein sequence features: protein length, molecular weight, protein

charge, isoelectric point, amino acid composition

Pepstats [27]

PPI network features I2D database (v2.3) [40],

Cytoscape (v3.1.1) [76]

Enzyme class UniProt [28]

Keywords: Glycoprotein, Phosphoprotein, Acetylation, Transcription UniProt

Transmembrane domains UniProt

Subcellular localization UniProt, WoLF PSORT [37]

Signal peptide SignalP 4.1 [33], UniProt

Gene Ontology terms: biological process, cellular component,

molecular function

DAVID (v6.8) [77]

Protein Domain DAVID (v6.8)

https://doi.org/10.1371/journal.pone.0178273.t024
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juvenile and adult. Since the total number of ESTs for a particular gene varies greatly between

different developmental stages, we corrected the raw data to get gene expression in the form of

transcripts per million (TPM). Eq 1 was used to estimate a TPM for the ith gene at jth develop-

mental stage.

TPMj
i ¼ ðNumber of ESTs for ith gene=Total ESTs in jth stageÞ � 106 ð1Þ

Evolutionary age. Evolutionary ages of mouse protein coding genes were determined by

analysing the Ensembl (release 75) gene trees [75]. These gene trees represent the evolutionary

processes by which genes diverged from their common ancestors. Ensembl runs a orthology

and paralogy gene prediction pipeline that uses the TreeBeST method from the TreeFam

methodology [78] to generate rooted phylogenetic trees. This pipeline merges tree topologies

with the corresponding species trees inferred from the NCBI taxonomy and generates Ensembl

genes trees with the tree internal nodes being annotated for duplication or speciation events.

Gene evolutionary ages were extracted from these Ensembl genes trees. We assigned two

evolutionary ages to a mouse gene of our datasets: the age of the MRD event and the age of the

evolutionarily most distantly related species, i.e., the age of the DCA that has an identified

homolog to that gene.

Protein sequence properties. We retrieved the length of our essential and viable protein

sequences by querying the UniProtKB database with their UniProt IDs. A script in Python was

developed to compute the percentage frequencies of each of the 20 amino acid residues within

protein sequences.

Pepstats (http://emboss.bioinformatics.nl/cgibin/emboss/pepstats) is a EMBOSS suite pro-

gram [27] which outputs a report comprising statistics of a number of properties about a

FASTA formatted protein sequence. These attributes include: molecular weight, number of

residues, charge, isoelectric point, and amino acid composition. This program groups amino

acids into nine categories: Tiny (A, C, G, S and T); Small (A, B, C, D, G, N, P, S, T and V); Ali-

phatic (I, L and V); Aromatic (F, H, W and Y); Non-polar (A, C, F, G, I, L, M, P, V, W and Y);

Polar (D, E, H, K, N, Q, R, S, T and Z); Charged (B, D, E, H, K, R and Z); Basic (H, K and R)

and Acidic (B, D, E, Z). We used Pepstats to evaluate these sequence properties for our essen-

tial and viable protein sequences. The program was run with the default parameters setting. A

Python script was written to extract features values from the output file generated by Pepstats.

Enzyme class. Primary EC numbers of mouse proteins were obtained from the definition

lines (DE) of UniProtKB annotations by submitting UniProt IDs.

Post-translational modifications. Three post-translational modification (PTM) key-

words ‘Glycoprotein’, ‘Phosphoprotein’ and ‘Acetylation’ were collected from the UniProtKB

database for each protein of our datasets. The UniProt annotation ‘Glycoprotein’ is used for

N–glycosylation sites.

We also collected information about the keyword ‘Transcription’. It is a keyword in the

biological process category representing proteins involved in regulating the process of

transcription.

Signal peptides. Protein signal peptides were predicted using the SignalP program v4.1

(http://www.cbs.dtu.dk/services/SignaP/) [33]. This program uses artificial neural network

(ANN) and hidden Markov model (HMM) algorithms to predict the amino acid composition

and the cleavage site position of the signal peptide. A script in Python was written to extract

the HMM probabilities generated by SignalP which is considered as the measure for signal

peptide prediction.
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Transmembrane domains. We extracted the total number of transmembrane domains in

each mouse protein by querying the UniProtKB database. Transmembrane helices are anno-

tated in the UniProt feature table line (FT) as TRANSMEM. UniProt also outputs the informa-

tion about the transmembrane domain locations in a protein sequence.

Subcellular location. Protein subcellular localizations were predicted from sequence data

using the WoLF PSORT program (http://wolfpsort.org/) [37], chosen as it can make predic-

tion on any protein sequence. WoLF PSORT predicts subcellular locations on the basis of

known sorting signals, functional motifs and sequence features, such as amino acid composi-

tion. It outputs a report covering predicted locations with different confidence levels. We

found prediction scores for six subcellular locations: nucleus, cytosol, plasma membrane,

mitochondria, Golgi apparatus, peroxisome, and extracellular. We assigned a score of zero to a

subcellular location if no prediction is made. We further collected information about all these

six subcellular locations from the UniProtKB database. This feature is annotated as SUBCEL-

LULAR LOCATION in the UniProt data file and is found in the comment lines (CC). The

value of a subcellular location was set to 1 if found; otherwise, it was set to 0.

Gene ontology terms

GO terms were obtained by using the ‘Functional Annotation’ tool of the web based applica-

tion DAVID v6.8 (https://david.ncifcrf.gov/home.jsp) [36]. It integrates gene functional anno-

tations with intuitive graphical displays to facilitate biological interpretations of any list of

genes encoded by human, rat, mouse, or fly genomes. This program systematically associates a

query gene list to their corresponding GO terms and highlights only the most pertinent terms

among all along with their statistics. We extracted all possible GO terms for which the statisti-

cal test supported in DAVID has a p-value�0.05.

Protein-protein interactions

Mouse PPI data was downloaded from the Interologous Interaction Database (I2D) v2.3 [40]

which is an integrated repository of known, experimental and predicted PPIs for human,

mouse, rat, fly, yeast and worm genomes. To obtain high quality PPI data, we analysed all

known and predicted mouse PPIs. The data obtained from the I2D database were imported

into Cytoscape (v3.1.1) [76] to visualize and analyze PPI network as a graph. In this case, we

removed all self-loops and duplicate edges. The ‘network analyser’ plugin of Cytoscape was

further used to determine network properties including degree, the length of average shortest

path, betweenness centrality, clustering coefficient, and closeness centrality. We further deter-

mined four other network properties including BN, EPC, MNC and DMNC by using a web-

based service called Hub Object Analyzer (Hubba) (http://hub.iis.sinica.edu.tw/Hubba/) [41].

This system deciphers and visualizes hubs from the user-provided PPI networks. Query pro-

teins are ranked in Hubba based on their topological features. Hubba also generates a subgraph

for the top n ranked (n� 100) hub along with their identifier.

PPI networks are usually characterized as undirected graphs. As an example, let G = (V, E)
be an undirected graph representing a PPI network. In the graph G, nodes V represent pro-

teins and edges E = {(a,b) | a,b 2 V} correspond to observed interactions between protein a
and protein b. Graph topological feature are defined as:

Degree. The most elementary property of a protein a is its degree or connectivity, which

is the number of interactions a has to the other proteins in the network.

Average shortest path length (ASP). The shortest path measures the path with the mini-

mum number of edges between proteins a and b. The ASP length therefore refers to the aver-

age over all shortest path length between all protein pairs.
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Betweenness centrality (BC). The betweenness centrality (BC) of a protein node a corre-

sponds to the ratio of shortest paths passing through a[79, 80] and is computed as follows:

BCðaÞ ¼
X

b6¼c6¼a2V

sbcðaÞ
sbc

ð2Þ

Here, σbc denotes the number of shortest paths between proteins b and c; and σbc(a) denotes

the number of shortest paths between b and c to that go through protein node a.

Clustering coefficient (CCo). The clustering coefficient (CCo) of protein a (Eq 3) mea-

sures the ratio of the number of connections between all nodes within the neighborhood of a
to the maximum number connections that could possibly present between them [81]

CCoðaÞ ¼
2ebc

ðkaðka � 1ÞÞ
ð3Þ

Here, ebc denotes the number of connections between all neighbors b and c of a, and ka
denotes the degree of a.

Closeness centrality (CC). The closeness centrality (CC) of the protein a corresponds to

the reciprocal of the sum of average shortest path length between a and all the other nodes

within the network [82] (Eq 4). It measures how close a protein node is to all the other nodes

in the PPI network.

CCðaÞ ¼
1

P
b6¼adða; bÞ

ð4Þ

Here, d(a, b) is the length of the average shortest path between proteins a and b.

BC, CCo and CC of each protein node are represented by a value between 0 and 1 where an

isolated protein node has a value of 0 for these properties.

Bottleneck (BN). Let, Tr be the shortest path tree derived from G considering protein

node r 2 V as the root node. Protein b 2 V is a bottleneck node if at least n/4 nodes have their

shortest path to r through b in Tr. The BN score of the protein node b is defined to be the num-

ber of nodes r for which b is a bottleneck node in Tr [83].

Edge percolation component (EPC). G' is a graph which is constructed n times from G
by randomly removing a subset of edges. It is possible that proteins a and b are connected in G
but not in G'. The EPC score [84] of the protein node a is computed using the following equa-

tion.

EPCðaÞ ¼
X

b6¼a2V

P
for each G0

(
a and b are connected in G0 1

else 0

n
ð5Þ

Maximum neighborhood component (MNC). The MNC of a protein a refers to the size

of the maximum connected component of the subnetwork induced by the neighborhood of a
[41].

Density of maximum neighborhood component (DMNC). The DMNC for the protein

a is calculated using the following equation:

DMNCðaÞ ¼
EM
Ne

ð6Þ
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Here, EM denotes the number of edges and N denotes the number of protein nodes of

DMNC(a); e is a constant which is equal to 1.7.

Housekeeping and tissue specific genes. Assignments of genes as housekeeping or tissue

specific were taken from the Pattern Gene Database (http://bioinf.xmu.edu.cn/PaGenBase/

index.jsp) [43].

Statistical analysis

Statistical tests were carried out throughout using the statistics software package SPSS v20.

First, the normality of different features was assessed, as many significant statistical tests

including parametric tests depend upon normal data. All sequence features were tested for

normality using a one sample Kolmogorov–Smirnov Test (K–S test). If a sequence property

showed a normal distribution, a two-sample t–test with unequal variance analysis was used.

The t–test was applied to test the null hypothesis that two samples of independent observations

come from identical normal distributions with equal means. Statistical significance was deter-

mined at the 0.05 level. The statistical significance of each property was determined using the

two-tailed nonparametric Mann–Whitney U test when the samples did not show normal dis-

tribution. The Chi–squared (χ2) test was also carried out to check whether the frequencies of a

particular feature in essential and viable gene differ from each other. We then applied the Bon-

ferroni correction to calculate corrected p-values.
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