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Genetic heterogeneity and evolutionary history of high-grade
ovarian carcinoma and matched distant metastases
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Hamed AlHusaini3, Osama AlOmar4, Ismail A. Al-Badawi4, Fowzan S. Alkuraya5,6 and Khawla S. Al-Kuraya1

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian carcinoma, associated with
poor clinical outcome and metastatic disease. Although metastatic processes are becoming more understandable, the genomic
landscape and metastatic progression in HGSOC has not been elucidated.
METHODS: Multi-region whole-exome sequencing was performed on HGSOC primary tumours and their metastases (n= 33
tumour regions) from six patients. The resulting somatic variants were analysed to delineate tumour evolution and metastatic
dissemination, and to compare the repertoire of events between primary HGSOC and metastasis.
RESULTS: All cases presented branching evolution patterns in primary HGSOC, with three cases further showing parallel evolution
in which different mutations on separate branches of a phylogenetic tree converge on the same gene. Furthermore, linear
metastatic progression was observed in 67% of cases with late dissemination, in which the metastatic tumour mostly acquires the
same mutational process active in primary tumour, and parallel metastatic progression, with early dissemination in the remaining
33.3% of cases. Metastatic-specific SNVs were further confirmed as late dissemination events. We also found the involvement of
metastatic-specific driver events in the Wnt/β-catenin pathway, and identified potential clinically actionable events in individual
patients of the metastatic HGSOC cohort.
CONCLUSIONS: This study provides deeper insights into clonal evolution and mutational processes that can pave the way to new
therapeutic targets.
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BACKGROUND
High-grade serous ovarian cancer (HGSOC) is the most frequent
and leading cause of death from gynaecologic cancers,1 with a
10-year survival of <30%, despite efforts over the last three
decades to change the outlook of this highly lethal disease.2

HGSOC is a heterogeneous cancer with a high rate of relapse
and metastasis. HGSOC is typically diagnosed at advanced
stages after dispersing to multiple sites, ensuing exceptionally
poor prognosis with ~80% of patients relapsing despite initial
responses to surgery and chemotherapy,3 of which many relent
to treatment-resistant disease.4

As most cancer-related deaths are due to metastatic disease,
prevention of metastasis is of great clinical priority, currently
achieved via earlier ablative surgery with systemic neoadjuvant or
adjuvant therapy.5 Due to the lack of distinct anatomical barriers
in the peritoneal cavity, HGSOC metastases characteristically result
in early and widespread disease at distal peritoneal sites, with
exfoliating HGSOC cells transported via the physiological perito-
neal fluid, and disseminating within the abdominal cavity.6

In 66% of cases, HGSOC occurs bilaterally and often
synchronously, affecting both ovaries.7 However, origins and
relatedness of the HGSOC tumours present in each ovary remain
unclear. It is debated whether they are independent primary
tumours from multifocal oncogenesis, arising spontaneously
from a similar genetic background, clonally related due to
tumorigenesis initiating from one ovary and then metastasising
to the contralateral ovary, or two metastases.8 Although some
studies have revealed clonal relationships between the two
tumours in patients,9,10 limited information is available on the
genomic landscape spurring both bilateral and unilateral HGSOC
evolution and metastatic processes.
Deep spatial and longitudinal sequencing studies of primary

tumours and matched metastases can successfully establish the
history of somatic and genetic events, allowing the dissemina-
tion and establishment of the new founding tumour cells at
distant sites by increasing metastatic potential.11,12 Like tumour
evolution, many competing models of metastasis exist, some of
which include the linear progression model, where metastases

www.nature.com/bjc

Received: 8 September 2019 Revised: 30 January 2020 Accepted: 5 February 2020
Published online: 26 February 2020

1Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; 2Department of Pathology, King Faisal
Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; 3Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, P.O.
Box 3354, Riyadh 11211, Saudi Arabia; 4Department of Obstetrics and Gynaecology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi
Arabia; 5Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia and 6Department of Anatomy and Cell Biology,
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
Correspondence: Fowzan S. Alkuraya (falkuraya@kfshrc.edu.sa) or Khawla S. Al-Kuraya (kkuraya@kfshrc.edu.sa)
These authors contributed equally: Tariq Masoodi, Sarah Siraj, Abdul K. Siraj

© The Author(s) 2020 Published by Springer Nature on behalf of Cancer Research UK

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-020-0763-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-020-0763-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-020-0763-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-020-0763-4&domain=pdf
mailto:falkuraya@kfshrc.edu.sa
mailto:kkuraya@kfshrc.edu.sa


arise from late-occurring advanced clonal subpopulations;
parallel progression, suggesting early metastatic seeding and
the independent acquisition of primary tumour mutations, with
widespread disease at an early time point, and metastasis cross-
seeding, where clones from distinct metastatic sites, not present
in the primary tumour, can disseminate to a new metastatic
site.13,14

As various models of tumour evolution and metastatic
progression in cancer can have diverse clinical implications for
the clinical diagnosis, prognosis and treatment of the patient,15,16

such as the need for systemic adjuvant therapy in patients
displaying parallel metastatic progression to counteract early
systemic spread of tumour cells, understanding these models is of
great clinical significance.17 Given the low survival and high
recurrence rate, there is a potential need to report and understand
the metastatic evolution of HGSOC. Next-generation sequencing
has identified the landscape and potential therapeutic targets in
primary ovarian cancer, and the genome of primary ovarian
cancer has been well established.18 Far less analysis has been
performed on ovarian metastases due to the difficulties in
accessing metastatic tissues, particularly in distant metastasis;
thereby, a number of important clinical and biological queries
remain unanswered.
In this study, to examine the variation in mutational con-

cordance and metastatic progression of HGSOC, we use exome-
wide sequence analysis of multiple tumour regions of paired
primary and metastatic tumours to reveal the dynamic mutational
evolutionary process, similarities and differences between primary
HGSOC and its metastatic progression, potentially revealing novel
molecular targets or markers, and contributing to decisions in
personalised therapy for patients with metastatic disease in
HGSOC. We also attempted to identify cancer driver genes or
molecular pathways specific to these metastases that might offer
the opportunities for personalised therapy for this subset of
patients with very poor outcome.

METHODS
Patients and tumour samples
We collected a total of 33 tumour regions with the correspond-
ing normal, whole blood and metastatic tumour (three spleen,
two liver, two contralateral ovary and one brain) from six
patients with high-grade serous ovarian carcinoma from King
Faisal Specialist Hospital and Research Centre. The clinical
characteristics of the ovarian cancer cohort are provided in
Table 1.

Whole-exome sequencing
For each tumour region (n= 33) and matched germline (n= 6),
whole-exome sequencing (WES) was performed using SureSe-
lectXT Target Enrichment (Agilent) on Illumina NovaSeq 6000.
Further, target capture sequencing using SureSelect DNA Design
at a median depth of 3048× (range 2470–3862) was performed to
validate all putative somatic variants (Supplementary Table S1).

Statistical analysis
All statistical analyses were executed on IBM SPSS Statistics (v.21).
Where relevant, Mann–Whitney U test was utilised to compare
continuous variables, Chi-Square test for categorical variables and
Spearman’s rank correlation tests were used to determine
associations. For all the statistical tests performed, p < 0.05 was
considered statistically significant.
Complete ‘Materials' and ‘Methods' are described in the

Supplementary Methods.

RESULTS
Overview of the HGSOC cohort
To elucidate the relationship between primary HGSOC and its
distant metastatic tumours, we performed multiregional WES
(median coverage of 196×) on 33 tumour regions, resected from
15 primary tumours and 18 metastatic tumours from six patients
(total of 4–6 tumour regions/patient; primary ranging 1–3 regions/
patient and metastases ranging 1–4 regions/patient). WES results
from all tumour regions were further validated using deep-targeted
capture sequencing at a median coverage of 3048× and validation
rate of 92.4%. Three patients (OVA_047, OVA_365 and OVA_378)
were diagnosed with synchronous bilateral HGSOC, whereas the
remaining three (OVA_003, OVA_013 and OVA_048) were identified
with unilateral HGSOC. All patients, excluding (OVA_378) developed
metachronous distant metastases, post chemotherapy, after a
median of 18 months (ranging 10–22 months) from primary
diagnosis. Four of these patients (OVA_003, OVA_013, OVA_047
and OVA_365) had intra-abdominal metastases (two of the liver and
two of the spleen), except for one patient (OVA_048), who had
incurred brain metastasis. Hence, primary HGSOC (with synchro-
nous contralateral HGSOC, where relevant) and metastatic tumours
were obtained at two separate time points. In addition, 80% of
these patients were of young age (<50 years). Contrarily, one
patient (OVA_378) presented synchronous metastasis of the spleen
at primary diagnosis; therefore, all samples from this patient
were obtained during the initial debulking surgery; however,
contralateral HGSOC from this patient was not available for study.
This patient was of older age (55 years). Upon primary diagnosis,
all patients underwent initial debulking surgery, followed by the
standard chemotherapeutic protocol of a carboplatin regimen
(Table 1).

Genomic architecture of primary HGSOC and matched metastatic
tumours
We identified a median of 156 somatic mutations (ranging 95–181),
including SNVs (single-nucleotide variants) and indels (small
insertions and deletions), and a median of 97 copy number variants
(CNVs) (ranging 25–153) in primary tumour regions, whereas
metastatic tumour regions had a median of 151 somatic mutations
(ranging 77–286) and 74.5 copy number variants (ranging 27–179).
The events (mutations and CNVs) were categorised as clonal
(ubiquitous presence in all tumour cells) or subclonal (partially
present in all tumour cells) (Supplementary Table S2). In order to

Table 1. Clinical characteristics of HGSOC patients.

S.N. Sample Age Histopathology pT pN pM Stage FIGO grade Family history Site of metastasis

1 OVA_003 60 Serous T1 N0 M1 Stage IV Grade 2 Negative Spleen

2 OVA_013 49 Serous T2 N0 M1 Stage IV Grade 2 Negative Liver

3 OVA_047 42 Serous T3 N0 M1 Stage IV Grade 3 Negative Spleen

4 OVA_048 48 Serous T1 N0 M1 Stage III Grade 3 Negative Brain

5 OVA_365 44 Serous T3 N0 M1 Stage IV Grade 3 NA Liver

6 OVA_378 55 Serous T3 N1 M1 Stage IV Grade 3 NA Spleen
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further corroborate the true status of mutations, private and
branch mutations were evaluated across all sampled regions using
Integrative Genomics Viewer (IGV) software, where mutations
were manually retrieved if they reached ≥1% variant allele
frequency (VAF), but had not been called by the variant-calling
software (see Supplementary Methods). Across all sampled
primary-metastasis pairs, a total of 619 (51.8%) mutations and

244 (28.6%) CNVs were shared between primary tumours and their
corresponding metastases; 238 (19.9%) mutations and 308 (36.2%)
CNVs were private to primary tumours, with 338 (28.3%)
mutations and 300 (35.2%) CNVs private to metastases (Fig. 1a,
b; Supplementary Fig. S1). Overall, the mutation and CNV burden
did not differ significantly between primary and metastatic
tumours (p > 0.05, Mann–Whitney U test); however, using
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contingency tables, we found significant differences between the
proportions of CNVs and mutations shared and specific to either
primary HGSOC or metastatic tumours (p= 0.0026, Chi-squared
test). Upon stratification, we found a significantly higher propor-
tion of shared mutations compared with shared CNVs pre-
dissemination (p < 0.001, Chi-squared test), whereas, following
dissemination, a significantly higher proportion of primary- and
metastatic-specific CNVs were observed compared with tumour-
type-specific mutations (primary-specific: p < 0.001; metastatic-
specific: p= 0.0009; Chi-squared test). Thus, we indicate an
increased mutational rather than CNV-based role during tumor-
igenesis and progression, whereafter this is reversed post
dissemination, with increased chromosomal instability through
CNVs rather than mutational involvement observed following
dissemination in primary HGSOC and metastatic tumours, possibly
contributing to therapy resistance and tumour maintenance.
We further investigated the distribution of driver events in the

multiple tumour regions sampled from each patient. All patients
harboured oncogenic and/or tumour-suppressor gene driver
events (median 3, range 2–8 mutations and median 264, range
113–301 genes involving CNVs). The only recurrent driver
mutation was TP53, which was shared between HGSOC primary
and metastatic tumours, observed in four patients (OVA_003,
OVA_047, OVA_048 and OVA_378) as clonal, except for one case
(OVA_003) that became subclonal in the metastasis. Patient
OVA_047 had a higher driver mutation rate of 35%, with a
clonal TP53 mutation in addition to subclonal copy number loss
in primary tumours. Other mutations included KDM5C (1/6,
OVA_013), FLNA (1/6, OVA_378), RGS7 (1/6, OVA_047) and SPRY2
(1/6, OVA_365), which were also clonal in both primary and
metastatic tumours. Whereas, mutations in the BCOR gene
(OVA_047) were consistently subclonal in primary and meta-
static lesions. Other genes, such as BCORL1 (OVA_003), CASP3
(OVA_047), CHD2 (OVA_013), FAT3 (OVA_365) and LZTR1
(OVA_378), were heterogeneous, having differing clonality in
the primary versus the metastatic tumours. Despite the lack
of identifiable recurrent mutations specific to either primary
or metastatic tumours, single subclonal mutations in CITTA
(OVA_048), DCC (OVA_048) and FAT1 (OVA_048) were all specific
to primary tumours. On the other hand, clonal mutations in
ARNT (OVA_047), NTRK1 (OVA_048), MYH9 (OVA_047) and PPARG
(OVA_047), and subclonal mutations in ITGAV (OVA_047)
and PTPRT (OVA_003) were all specific to metastatic tumours
(Figs. 1c and 2).
In contrast, copy number deletions in NOTCH2 (3/6), NRAS (3/

6), RAF1 (3/6), MPL (2/6) and PIK3CB (2/6) were found recurrent
and specific to primary tumours, whereby deletions in IRF4 (2/6),
MUC4 (2/6), RARA (2/6), STAT3 (2/6), STAT5B (2/6) and TAF15 (2/6)
were found recurrent and only specific to metastatic tumours.
The most commonly recurring CNVs (≥3 patients) were typically
deletions shared by both primary and metastatic tumours
spanning p11–q26 on different chromosome regions (Supple-
mentary Table S3). CNV events were slightly more clonal
compared with subclonal, with a median of 56% (range
2–91%) being clonal and 44% (range 9–98%) as subclonal,
indicating an initial role in tumorigenesis and disease progres-
sion in the primary tumour; however, this difference was not
statistically significant (p > 0.05, Mann–Whitney U test). Further-
more, early occurring CNVs tended to be deletions, with 87%
(range 0–100%) of all losses identified as clonal compared with
13% (range 0–100%) of gains (p > 0.05, Mann–Whitney U test).
Clonal CNVs were found with a median of 18.0 Mbp (range
0.0–191) compared with 13.0 Mbp (range 0–161) as subclonal
(p < 0.05, Mann–Whitney U test significant). Although the total
number of CNVs were lower in metastases (median 74.5,
range 27–179), compared with primary tumours (median 97,
range 25–153, p > 0.05, Mann–Whitney U test), the number of
driver mutations did not differ considerably between the

tumour types. Metastatic tumour mutations were slightly more
clonal (proportion = 69.0%) compared with primary tumours
(proportion = 60.0%, p > 0.05).

Analysis of pathways associated with the HGSOC metastatic
process
To identify putative pathways associated with the HGSOC
metastatic process, using ingenuity pathway analysis (IPA), we
analysed all metastatic-specific mutations and CNVs affecting
driver genes, absent in all primary regions but present in at least
one matched metastatic region. Despite HGSOC primary tumours
metastasising to distinct organ sites, such as the brain, liver and
spleen, patients displayed convergence at selected pathways.
Pathway analysis of metastatic-specific events revealed significant
enrichment for genes associated with various pathways (p <
0.0001) (Supplementary Table S4), amongst which three patients
(OVA_048, OVA_365 and OVA_378) converged at the previously
identified Wnt/β-catenin signalling pathway in leukaemia, mela-
noma, breast and gastrointestinal cancers.19

Evolutionary history and tumour clonal architecture between
primary HGSOC and metastasis
To ascertain the clonal architecture and evolutionary dynamics
from tumorigenesis to metastatic sites, phylogenies were mapped
spatially and temporally for each HGSOC tumour and the
corresponding distant metastasis tumour, based on mutational
cancer cell fractions (CCFs) from both SNVs and Indels20 (Fig. 3,
Supplementary Fig. S2). Putative driver genes, based on The
Cancer Genome Atlas—Ovary,18 and other large genomic
studies21–23 and parallel events converging at the same gene
were also detailed on each phylogenetic tree. Despite indepen-
dent evolution of subclones arising from a single ancestral clone,
parallel events between the primary and metastatic tissues show
convergence of somatic mutations in distinct branches on the
same gene.24 Three patients (OVA_047, OVA_048 and OVA_378)
had evidence of parallel evolution, with MUC16, PREX1, RYR2 and
driver gene FLNA. We also analysed the parallel evolution of CNVs,
by mirrored subclonal allelic imbalance (MSAI),25 where only
patient OVA_047 showed MSAI events, with parallel deletions in
chromosomes 7 and 18.
We identified a total of 44 mutation clusters in six

patients, with a median of ~7 (ranging 2–10) distinct clusters
per patient. All sampled regions from all six patients had various
sharing of mutations from 4.3 to 87.4% of all clustered
mutations indicating a clonal relationship. We further identified
the relatedness of each ovarian tumour to its contralateral
tumour, in synchronous bilateral HGSOC cases with available
tumour tissues (OVA_047 and OVA_365), establishing a primary-
to-metastasis ancestral relationship, where the primary tumour
in one ovary was seeded in the other after a period of time, with
the majority of somatic mutations although shared with the
primary tumour, also further diversified upon migration.
All patients demonstrated at least one driver, such as TP53,

BCORL1, CHD2, FAT3 and SPRY2 mutation in their common
ancestral clone, followed by further subclonal acquisition of driver
events as the tumour progressed in three patients (OVA_047,
OVA_048 and OVA_378).
Furthermore, we sought to identify the patterns of progression

towards metastasis from primary HGSOC, whilst determining
whether a subclone may have arisen from a tumour region at low
cellular prevalence before becoming dominant in a distant region.
We found several SNVs with increasing/decreasing CCFs during
metastatic dissemination, possibly due to selection pressures or
the effect of treatment at the metastatic tumour site. Lower CCFs
in some metastatic regions showed sensitivity to treatment.
Therefore, clusters showing lower CCFs in the primary tumour,
but a higher CCF in their metastasis counterpart, might contain
important chemotherapeutic-resistant mutations.
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Most of our patients were diagnosed with metachronous
metastatic disease after a latency period of 10–22 months, apart
from one patient (OVA_378), who was diagnosed with synchro-
nous metastasis, at the same time as the primary tumour;
however, no significant difference was observed between
metachronous and synchronous metastatic progression types. In
fact, most clonal diversity in our cases emerged at the primary

HGSOC site, where metastatic divergence within the primary
tumour occurred after a median of 77.8% (range 4.3–87.4%) final
molecular time at the primary tumour (based on phylogenetic
analysis of all clustered mutations in genomic regions consistent
across all sampled regions), followed by unidirectional mono-
clonal or polyclonal seeding to regional and distant sites. Regional
metastasis to the contralateral ovary in both patients (OVA_047
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and OVA_365) occurred late (≥ 50%26), after the accumulation of
the majority of primary tumour diversity, at a final molecular time
of 76.7% in the primary tumour of OVA_047 and 78.9% in
OVA_365 (Fig. 3). In addition, the direction of metastasis and the
original primary tumour amongst the tumour pair was also
established, by comparing tumour sizes in cm3, with larger
tumours having more tumour cells, and more likely to have
established themselves earlier than smaller-sized tumours.
Apart from two patients (OVA_047 and OVA_048), all patients

exhibited linear metastatic progression26 patterns in their distant
metastases. Despite the fact that patient OVA_378 also demon-
strates linear progression, all sampled regions were treatment
naive, where the primary and synchronous metastatic tumours
continued to clonally expand in parallel converging on driver gene
FLNA in late clonal expansions irrespective of therapeutic
pressures. Since previous studies have shown carboplatin treat-
ment having limited blood–brain barrier (BBB) penetration (2.6%)
and subsequently minimal therapeutic effect in brain metastases,
despite its ability to penetrate abnormal BBB,27 the evolutionary
processes in the brain metastasis (OVA_048) were less likely to
be affected or shaped by the carboplatin treatment, with all
metastatic clones reaching near 100% CCFs. Interestingly, one
patient (OVA_003) acquired all somatic mutations in the meta-
static tumour from the primary tumour, with no further clonal
expansion, even after 20 months, post therapy. Furthermore,
amongst the primary tumour clones that had disseminated to the
spleen, advanced subclones had been completely eradicated by
treatment, whereas residual clones remained partially resistant,
with reduced CCF only in selected metastatic regions. Although
two patients (OVA_013 and OVA_365) incurred late disseminating
metastases of the liver, both had highly treatment-resistant
ancestral clones with further clonal expansions post metastatic
dissemination, all reaching near 100% CCF at metastatic sampling,
albeit limited clonal expansion was observed in OVA_013
compared with the multiple diverging clonal expansions in
OVA_365. Possibly, further subclones in OVA_013 may have been
too small to discriminate, or this was due to an earlier detection of
metastasis at 16 months (OVA_013) compared with 22 months
(OVA_365) post therapy. Therefore, if patient OVA_013 was
sampled at a further time point, eventual clonal expansions may
have produced similar divergent subclones as seen in patient
OVA_365.
The two remaining patients (OVA_047 and OVA_048) incurred

early dissemination of only the main ancestral primary tumour
clone, which was therapy-resistant, to distal organs during the
development of the primary tumour, where only 4.3% (OVA_047)
and 41.3% (OVA_048) of clustered mutations were shared with
their matched distant metastases, from which primary and
metastatic tumours evolved in parallel. Both patients only carried
a single TP53 mutation in their disseminating clone. Despite early
or late dissemination to distant metastases, both synchronous
bilateral HGSOC primary tumours showed equivalent molecular
timing for dissemination to their contralateral ovaries.
Like previous reports, most of our patients also demonstrated

abundant concordant mutations between primary and metastatic
tumours, with only a small number of metastatic-specific
mutations.28 To further confirm whether metastatic-specific SNVs
in our cohort occurred prior to (early) or following (late)
dissemination, we investigated the presence of metastatic-
specific mutations in the primary tumour, to see if they were
present at a low frequency. Using Bayesian hypothesis testing and
deepSNV, the significance of each mutation frequency was
assessed.29 Upon analysis, all VAFs were reported significant by
deepSNV in metastatic tumours relative to the matched primary
tumours, apart from a mutation of KIAA1429 gene in patient
OVA_013 and a mutation of BEGAIN gene in patient OVA_048
(Supplementary Table S5, p < 0.05). This suggests that most
metastatic-specific mutations evolved post dissemination to the

metastatic sites. However, this does not exclude the possibility of
some of these mutations existing in the primary tumour at a
frequency lower than our detectable range.
Interestingly, regardless of the type of metastasis (regional or

distant), or the metastatic progression model (early/parallel or
late/linear), all metachronous metastases had disseminated prior
to diagnosis of the primary tumour, which was also confirmed by
the occurrence of the contralateral ovarian tumour present in
synchronous bilateral HGSOC tumours at diagnosis. At this time
point, the distant metastasis may have survived treatment and
avoided detection, by comprising only a selected number of
tumour cells containing all disseminated primary clones with
resistant components, which then continued growing rapidly,
acquiring further clones until subsequent diagnosis of distant
metastasis.

Differential selection from primary HGSOC to metastasis
Ongoing selection during HGSOC evolution can help in identifying
evolutionary constraints, eventually dictating the evolutionary
routes of this tumour and metastasis. We sought to further
estimate positive selection via a dN/dS ratio, which parallels
substitution rates at nonsynonymous sites to those at synon-
ymous sites. Thus, we account for the trinucleotide context of
each mutation, and determine the enrichment of protein-altering
mutations compared with the background mutation rate.30

Positive selection (dN/dS >1) was observed, when considering
all exonic missense mutations in primary tumours, but not
metastatic regions. Positive selection was also observed in all
exonic nonsense mutations in both primary and metastatic
tumours. However, upon temporal dissection, positive selection
was only observed in clonal and subclonal nonsense mutations of
metastatic and primary tumours, respectively. Clonal nonsense
mutations were found depleted in the primary tumours compared
with the metastasis, whereas depletion of nonsense subclonal
mutations was observed in metastasis by comparing it with
primary tumours. Contrarily, despite depletion in clonal mutations
being observed, positive selection was observed in all exonic
missense and nonsense subclonal mutations, from primary
tumours (Supplementary Table S6, Supplementary Fig. S3). This
suggests that mutations may be shaped by positive selection after
tumorigenesis over various stages between primary HGSOC and
metastasis.

Dynamic mutational spectra and signatures from primary HGSOC
to metastasis
Varying subclones and patterns of trinucleotide signatures are the
result of alternating mutational stresses over tumour history. It is
particularly important to understand the effect of these muta-
tional processes that shape the evolution between HGSOC and
metastasis, to potentially inform clinical strategies to limit tumour
adaptation and metastatic progression. Published mutational
signatures were used to analyse primary and metastatic tumour
SNVs. We identified several signatures within the primary-
metastasis tumour pairs, of which the most prominent were
signature 1 (3/6, 50%), involving the endogenous spontaneous
deamination of methylated cytosines correlating with patient age
at the time of cancer diagnosis; signature 3 (6/6, 100%), associated
with failure of DNA double-strand break repair by homologous
recombination; signature 4 and/or 29 (5/6, 83%), associated with
tobacco carcinogens; signature 6 and/or 15 (5/6, 83%), two of the
four signatures related to defective mismatch repair (MMR);
signature 30 (3/6, 50%), of unknown aetiology (Fig. 4; Supple-
mentary Figs. S4, S5 and S6). Signature 3 (homologous recombi-
nation deficiency) was significantly correlated with increased
mutational burden (Spearman’s rank correlation, rho =82.9%, p=
0.042), and showed consistent contribution of SNVs across primary
and metastatic tumours in all six patients. Furthermore, signature
3 only generated higher proportions of subclonal SNVs in both
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primary and metastatic tumours, upon temporal dissection
(Primary: Spearman’s rank correlation, rho=82.9%, p= 0.042;
Metastasis: Spearman’s rank correlation, rho=94.3%, p= 0.005)
(Fig. 4; Supplementary Figs. S4, S5 and S6).

Clinical relevance of genomic alterations from primary HGSOC to
metastasis
Clinically actionable events occurring early in molecular time,
which are present in all sampled regions, may present robust
therapeutic targets for patients with metastatic disease. Hence,
immune checkpoint inhibitors and poly ADP-ribose polymerase
(PARP) inhibitors may be suitable for the treatment of both
primary HGSOC tumours and metastases in our cohort, via

antitumour synthetic lethality, due to the sustained involvement
of defective DNA repair pathways over both tumour types.31,32

Subclonal events can further inform the clinician about potential
prognostic or diagnostic factors, and/or resistance to certain
therapies, increasingly so in patients exhibiting parallel metastatic
progression, where the primary tumour varies considerably from
the metastasis. Using the TARGET database (v3), we were able to
establish potentially clinically actionable events for individual
cases in our metastatic HGSOC cohort. We identified clinically
actionable genes in all of our six cases, with a median of two
(range 1–6) actionable genes per patient, with a total of nine
actionable genes across the cohort, including genes NFKBIA, IGF1R,
MYC, MCL1, PIK3CA, ALK, CCND2, CCND3 and CDK6 (Fig. 5).
Recurrently actionable genes in the cohort included deletions in

the NFKBIA gene (3/6 cases), amplifications of IGF1R (2/6 cases)
and MYC (2/6 cases). These alterations in NFKBIA and MYC are
shown to potentially be prognostic in some cancer types. On the
contrary, amplifications in IGF1R may predict sensitivity to IGFR1-R
inhibitors. Similarly, amplifications in CCDND3, CCDN2 and CDK6,
may be targetable by CDK4/6 inhibitors. Amplifications in ALK may
be targeted with ALK inhibitors such as crizotinib. Whereas,
mutations in PIK3CA are possibly targetable by PI3K, AKT and
MTOR inhibitors, whilst also possibly predicting resistance to anti-
RTK therapy (e.g., cetuximab), anti-EGFR tyrosine kinase inhibitors,
trastuzumab and lapatinib. Similarly, amplifications in MCL1 may
predict resistance to anti-tubulin chemotherapy.
Case OVA_003 presented three actionable genes, whereby

mutated PIK3CA and amplifications in MYC were shared between
primary HGSOC and metastatic tumours, but deletions in NFKBIA
were specific to the primary tumour. Case OVA_013 exhibited a
single actionable amplified CCDN2 gene in its distant metastatic
tumour, with no actionable genes found shared between primary
and metastatic tumour, or found specific to the primary tumour.
Similarly, case OVA_047, also did not present any actionable genes
shared between primary and metastatic tumour, or specific to the
primary tumour or contralateral ovary metastasis, with only a single
actionable deleted NFKBIA gene in its metastatic tumour. Case
OVA_048 also presented with a single actionable deleted NFKBIA
gene in its metastatic tumour, but also had a single actionable IGF1R
amplification in its primary tumour, whereas no actionable genes
were shared between the primary HGSOC and metastatic tumours.
Interestingly, although case OVA_365 did not present any primary
tumour-specific or shared actionable genes, it did present with one
shared actionable IGF1R amplification between its contralateral
ovary and distant metastasis, with an additional four actionable
gene amplifications in MYC, ALK, CCND3 and CDK6, specific to its
distant metastatic tumour. Lastly, case OVA_378 presented a single
shared actionable MCL1 amplification between its primary and
metastatic tumour, with no additional actionable genes specific to
either primary HGSOC, or its corresponding distant metastasis.
Furthermore, as metastatic-specific events, in three patients

(OVA_048, OVA_365 and OVA_378) converged at the Wnt/β-catenin
signalling pathway, the metastatic lesions in these patients may
potentially benefit from targeting this pathway. Depleted RARA may
be targeted using oral retinoids, such as acitretin; depleted SRC
using Src-tyrosine kinase inhibitors, such as bosutinib; SMO with
smoothened inhibitors or hedgehog pathway antagonists, such as
vismodegib RARA, SRC and SMO, can also be used as diagnostic,
prognostic and/or therapy-response biomarkers in cancer.

DISCUSSION
Understanding the complete genomic background of HGSOC
tumours will guide targeted therapies, paving the way for the use
of precision medicine in this highly lethal cancer. In the limited
samples studied, we observed that the majority of the primary
tumour genome was seeded at metastatic sites, including most
driver and passenger mutations. However, the only recurrent
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clonal driver mutation shared between primary and metastatic
HGSOC was TP53. Interestingly, a higher driver mutation rate of
35% was observed in patient OVA_047 with a clonal TP53
mutation in addition to subclonal copy number loss in primary
tumours, contributing to the prevalent instability in HGSOC as
previously reported.33,34 Other clonal mutations observed in both

primary and metastatic tumours were seen in KDM5C and SPRY2
genes suggesting their sustained involvement in tumour initiation
and maintenance or progression. Although previous studies35–37

have suggested TP53 as the most potentially targetable gene to
be used as a biomarker, and in the development of specific
targeted drugs for HGSOC, biallelic inactivation of TP53 is required
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in order to reach clinical significance, where our cohort only
presented single mutations. In contrast, we reported a total of
nine actionable genes across the cohort, including genes
NFKBIA, IGF1R, MYC, MCL1, PIK3CA, ALK, CCND2, CCND3 and
CDK6. Only three genes, including MCL1 (OVA_378), MYC and
PIK3CA (OVA_003), were found to be clinically actionable in both
primary HGSOC and metastatic tumours. Furthermore, other
suitable agents for the treatment of both primary HGSOC
tumours and metastases in our cohort may include immune
checkpoint and PARP inhibitors, due to the sustained involve-
ment of defective DNA repair pathways over both tumour
types.31 Metastatic-specific events, in three patients (OVA_048,
OVA_365 and OVA_378) converging at the Wnt/β-catenin
signalling pathway, also indicate the potential use of targeted
therapies, such as oral retinoids, e.g., acitretin, Src-tyrosine
kinase inhibitors, e.g., bosutinib and smoothened inhibitors or
hedgehog pathway antagonists, such as vismodegib, for the
treatment of metastatic lesions in these patients. RARA, SRC and
SMO can also potentially be used as diagnostic, prognostic and/
or therapy-response biomarkers in cancer.
As expected with evolutionary bottlenecking, there were

slightly more clonal metastatic mutations (median proportion=
69.0%) compared with primary mutations (median proportion=
60.0%, p > 0.05).38,39

All our primary HGSOC tumours followed Darwinian-based
branching evolutionary patterns during tumorigenesis, with
divergence of subclones from a common ancestral clone, leading
to the coexistence of subclones, congruent with a previous study
identifying branched evolution with metastatic cross-seeding.14

Other studies have also reported neutral evolution40,41 in primary
ovarian cancer. During tumorigenesis, early tumour growth is
inevitably vulnerable to external pressures and microenviron-
mental niches, such as the immune system, nutrient deprivation
and anatomical barriers,42,43 where fitness gained through the
acquisition of driver mutations, and subsequent selective sweeps
to generate multiple subclones, as well as driver CNVs, allow the
tumour to overcome such obstacles.44

Upon metastasis, a clone or multiple clones from the primary
tumour, migrate to a distant site to form a new colony often
generating a founder effect, where previous cancer studies have
shown varying degrees of genetic divergence between metastatic
and primary clones, where due to evolutionary bottlenecking, there
can be overall reduced genetic variability in the new population.45,46

In spite of three patients (OVA_003, OVA_365 and OVA_378) having
metastases at other sites, such as brain (OVA_003), contralateral
ovary (OVA_378), spleen and lower chest wall (OVA_365), for the
purpose of this study metastatic cross-seeding could not be explored
as tumour tissue from these sites was not available for study.
Metastatic clones can disseminate early (before primary tumour
diversification) or late (after primary tumour diversification) in
metastases.47 Metastatic divergence occurred after a median of
~78% final molecular time of the primary tumour based on
phylogenetic analysis of all clustered mutations (Fig. 5). Hence, the
majority of our cases supported the linear progression model (4/6
patients) of metastasis, in which the primary tumour cells diversified
over a period of time, gaining several mutations and CNVs including
driver events (e.g., TP53, FAT3 and BCORL1) before achieving
metastatic potential to migrate and colonise distal sites.48 Linear
progression models have overall less heterogeneity and more
sharing of mutations between primary and metastatic tumours, as
seen in our patients.49 Therefore, targeting trunk alterations in this
patient population seems highly desirable. In contrast, two patients
demonstrated parallel progression models where dissemination
occurred early, including only a single driver TP53 mutation in their
disseminating clone, with extensive primary and metastatic tumour
diversification occurring post metastatic seeding; hence, very limited
mutations were shared between primary and metastatic tumours, as
seen in a previous HGSOC study.50 This suggests that the metastatic

potential of a tumour cell is not dependent on a complex repertoire
of mutations, where few alterations can suffice for dissemination and
ectopic survival, with most somatic evolution occurring at the
metastatic site due to extensive adaptation to the new microenvir-
onment.13 Due to the higher genetic divergence between primary
and metastatic tumour, the usage of the primary tumour in these
cases to predict therapeutic strategies in metastatic disease may
therefore be inapt. No distinct clinicopathological characteristics
were found between the two groups of patients that could explain
the difference in progression models discerned. Ideally, larger studies
will be required to get a complete understanding and explicate the
reasons for the types of metastatic progression patterns observed
in HGSOC.
We also found that signature 3 (homologous recombination

deficiency) was significantly correlated with increased mutational
burden. Concurring with previous studies, the majority of HGSOC
genomes corresponded with deficiencies in homologous recom-
bination and other DNA mismatch repair pathways;51 hence, the
resulting intratumour heterogeneity is caused by a collective
dysregulation of apoptosis and DNA repair processes.14,52

Despite the need to be validated in a larger study, the overall
data indicates that various mutational processes have ongoing
important roles during HGSOC evolution and metastatic pro-
gression, with mostly greater heterogeneity amongst patients
than across different evolutionary stages, except signature 3,
which indicates consistent relative contribution over time (Fig. 4;
Supplementary Figs. S4, S5 and S6).
Our analysis also identified metastatic-specific events asso-

ciated with gene enrichment in genes related to the regulation
of the Wnt/β-catenin pathway. Interestingly so, since gene
expression data from TCGA ovarian cancer also found involve-
ment of disrupted Wnt/β-catenin pathways in tumours with poor
prognosis, we suggest a possible role of Wnt/β-catenin in ovarian
cancer.53 With several clinical associations between altered Wnt/
β-catenin pathways, patient outcome and drug resistance have
also been observed. Our findings support that targeting Wnt/β-
catenin pathway might be an important therapeutic target in
metastatic HGSOC.
In order to clearly map this genetic complexity, larger studies

with more metastatic tumour samples are needed despite the
difficulties of obtaining or accessing metastatic tumours. Despite
the limited number of available samples, this study shows that
such effort has a significant clinical implication, providing deeper
insights into clonal evolution and mutational processes that can
pave the way to new therapeutic targets.
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