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Abstract
The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological

models for a description of dynamic behavior of biopolymer materials. It was found that the

rheological models of Maxwell-type do not work in the case of modeling of viscoelastic sol-

ids, and the model which significantly better describes the nature of changes in rheological

properties of such media is the modified fractional Kelvin-Voigt model with two built-in

springpots (MFKVM2). The proposed model was used to describe the experimental data

from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the

values of their rheological parameters as a function of pasting time. These parameters pro-

vide a lot of additional information about structure and viscoelastic properties of the medium

in comparison to the classical analysis of dynamic curves G’ andG” and shear creep com-

pliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu

starch pastes, depending on the conditions of pasting process.

Introduction
Biopolymers produced by living organisms can be divided into three main groups [1]: polysac-
charides (cellulose, starch, pectin, chitin, glycogen, inulin), polypeptides (proteins) and nucleic
acids (DNA and RNA). Biopolymers are characterized by significant sensitivity to physical and
chemical factors, therefore, careful examination of their structure and rheological properties
requires the use of non-invasive measurement methods. One of them is the oscillation tech-
nique. It consists in subjecting the material sample to sinusoidal strain or stress and recording
its reaction. This measurement does not affect the structure of the medium—as long as the
amplitude is not too large—and can be used to control the processes taking place in time [2].

The obtained experimental data from dynamic tests in the form of storage modulus G’
(responsible for elastic properties of the material) and loss modulus G” (representing viscous
characteristics of medium) can be described by rheological models. The classical phenomeno-
logical rheological models are composed of two types of elements—spring and dashpot. The
spring element behaves in accordance with Hooke’s law and represents ideal elastic response of
a material to applied stress; while the viscous element obeys the law of Newton and describes
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the energy losses due to viscous dissipation [3–5]. Depending on the number and manner of
combining of these basic elements, in the literature there have been proposed a number rheo-
logical models [3,6–8]. However, their practical use is limited to media with not very complex
rheological properties [9–11], which are certainly not biopolymers. Much more possibilities in
the description of the behavior of such materials provide fractional rheological models, created
on the basis of differential calculus of fractional order 0� α� 1 [12]. Fractional model in
terms of construction differs from a classical model in that the certain standard components as
a spring or dashpot are replaced by Scott-Blair elements (springpots). Each springpot can be
understood as a component having intermediate properties between a purely elastic element
(for which α = 0) and a perfectly viscous element (for which α = 1) [13,14].

Fractional rheological models allow to describe the dynamic behavior of a medium with a
single constitutive equation which contains a certain number of parameters that are the con-
stants determining viscoelastic properties of a given material [15]. The identification of these
values is so-called reverse problem—in the first place, approximation of the experimental data
with trigonometric functions is made, and then rheological parameters of the applied model
are determined. Obtained quantities allow for a comprehensive assessment of the medium
structure [16–19].

In the literature, there are two basic phenomenological models that describe the rheological
behaviors of viscoelastic materials. These are: Maxwell model and Kelvin-Voigt model
[3,20,21]. This division results from the way of connecting the elastic Hooke and viscous New-
ton elements (serial or parallel). Two-element models take into account only a single relaxation
time and a single elastic modulus, which practically excludes the possibility of their use for the
characterization of viscoelastic media in a wide range of oscillation frequencies [6,22,23].

The aim of the study was to propose and compare the new modified forms of Maxwell and
Kelvin-Voig fractional rheological models to improve the description of the dynamic behavior
of biopolymeric materials in the area of viscoelastic plateau and within the scope of the smallest
oscillation frequencies ω. Finding the optimal rheological model whose parameters are simulta-
neously the material constants, allows for a comprehensive assessment of the structure and vis-
coelastic properties of the medium.

Materials and Methods

Kuzu starch pastes
The rheological studies involved 3% (w/v) Japanese kuzu starch pastes (Terrasana, Nether-
lands). Pasting process of aqueous starch suspensions was carried out at 90°C for 15, 30, 45, 60
or 75 min, while stirring with a magnetic stirrer at a constant rotation speed of 300 rpm. After
24 hours, the obtained pastes (Fig 1) were subjected to oscillatory and creep tests by means of
rotary rheometer Physica MCR 301 (Anton Paar, Austria) with a cone-plate configuration
(cone diameter– 60 mm, cone slope– 1°, gap width– 117 μm). Rheological measurements con-
ducted at a constant temperature of 25°C included the determination of storage modulus G'
and loss modulus G” for oscillation frequencies ω in the range of 6.3�10−4 to 450 s-1, and at a
given sinusoidal strain with 3% amplitude, within the linear viscoelastic region. In addition, the
2500-second measurements of shear creep compliance J(t) at a specified constant shear stress
value of 1 Pa, also within the range of linear viscoelasticity, were performed.

Maxwell-type models
The classical Maxwell model (CMM) is composed of serially connected Hooke and Newton
elements (Fig 2a). The total shear stress is equal to shear stresses acting on both elements Eq
(1) and the total shear strain is the sum of the deformations of spring and dashpot Eq (2)
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Fig 1. Sample of 3% (w/v) kuzu starch paste for oscillatory and creep tests.

doi:10.1371/journal.pone.0143090.g001

Fig 2. Maxwell-type models. (a) classical; (b) fractional with one springpot; (c) fractional with two springpots.

doi:10.1371/journal.pone.0143090.g002
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[3,10].

stot ¼ ss ¼ sd ð1Þ

gtot ¼ gs þ gd ð2Þ

where σtot is the total shear stress; σs is the shear stress acting on spring, expressed by Eq (3); σd
is the shear stress acting on dashpot, expressed by Eq (4); γtot is the total shear strain; γs is the
shear strain of spring; and γd is the shear strain of dashpot.

sðtÞ ¼ GegðtÞ ð3Þ

sðtÞ ¼ Z
dgðtÞ
dt

¼ G0
Nt0

dgðtÞ
dt

ð4Þ

where σ(t) is the shear stress; γ(t) is the shear strain;η is the viscosity; τ0 is the characteristic
relaxation time; Ge is the equilibrium modulus; G0

N is the plateau modulus; and t is time.
By differentiating Eq (2) and substituting Eqs (3) and (4), the constitutive equation of the

model (5) is obtained. The stress-strain relation contains a single relaxation time τ0 and two
different elastic moduli Ge and G0

N :

sðtÞ þ G0
Nt0
Ge

dsðtÞ
dt

¼ G0
Nt0

dgðtÞ
dt

ð5Þ

Carrying out Fourier transform of Eq (5) according to the Eqs (6) and (7)

z � f ðtÞ!F
z � f̂ ðoÞ ð6Þ

dmf ðtÞ
dtm

!F ðioÞmf̂ ðoÞ ð7Þ

and knowing that the ratio of obtained stress and strain transforms defines complex modulus
G� Eq (8) [24], the equation describing the value of complex modulus G� as a function of oscil-
lation frequency ω for the classical Maxwell model (CMM) is obtained Eq (9).

G� ¼ ŝðoÞ
ĝðoÞ ð8Þ

G � ðoÞ ¼ iGeG
0
Nt0o

Ge þ iG0
Nt0o

ð9Þ

where f(t) is the original function; f̂ ðoÞ is the Fourier transform of the function f(t); i is the
imaginary unit;m is the order of derivative; and z is the constant.

Separating real and imaginary parts of Eq (9), the equations describing storage modulus G’
Eq (10) and loss modulus G” Eq (11), respectively, are obtained.

G0ðoÞ ¼ GeðG0
Nt0oÞ2

Ge
2 þ ðG0

Nt0oÞ2
ð10Þ

G@ðoÞ ¼ Ge
2G0

Nt0o

Ge
2 þ ðG0

Nt0oÞ2
ð11Þ

Fig 3a shows the experimental values of storage modulus G’, loss modulus G”, tangent of
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Fig 3. The experimental andmodel values of storagemodulusG’, loss modulusG” and tangent of
loss angle δ as a function of oscillation frequencyω, for kuzu starch pastes when temperature and
time of pasting were 90°C and 30min, respectively. (a) the classical Maxwell model (CMM), (b) the
fractional Maxwell model with one springpot (FMM1), (c) the fractional Maxwell model with two springpots
(FMM2).

doi:10.1371/journal.pone.0143090.g003

Fractional Generalizations of Maxwell and Kelvin-Voigt Models

PLOS ONE | DOI:10.1371/journal.pone.0143090 November 24, 2015 5 / 19



loss angle δ and model curves resulting from the classical Maxwell model (CMM) for kuzu
starch pastes which were pasted at 90°C for 30 min. Presented model contains only three rheo-
logical parameters (τ0, Ge, G0

N) and is completely inadequate to describe the obtained experi-
mental data. The simplest classical form of Maxwell model provides a completely different
trend for modeling curves and experimental points.

In order to improve the description of the experimental data, it was proposed to introduce
the fractional Maxwell model with one built-in springpot (FMM1). In this model, the dashpot
has been replaced with a Scott-Blair element (Fig 2b). The behavior of the springpot-type ele-
ment is expressed by Eq (12) [13,14]:

sðtÞ ¼ G0
Nt0

a d
agðtÞ
dta

ð12Þ

where α is the fractional exponent.
By differentiating Eq (2) and substituting Eqs (3) and (12), the constitutive equation of the

model (13) is obtained. The stress-strain relation contains a single relaxation time τ0, two dif-
ferent elastic moduli Ge,G0

N , and fractional exponent α:

sðtÞ þ G0
Nt0

a

Ge

dasðtÞ
dta

¼ G0
Nt0

a d
agðtÞ
dta

ð13Þ

Using Eqs (6), (7) and (8), the equation describing complex modulus G� as a function of
oscillation frequency ω for the fractional Maxwell model with one springpot (FMM1) is
obtained:

G � ðoÞ ¼ GeG
0
Nðit0oÞa

Ge þ G0
Nðit0oÞa

ð14Þ

Separating real and imaginary parts of Eq (14)—with the use of Eq (15) [21]–the equations
describing storage modulus G’ Eq (16) and loss modulus G” Eq (17), respectively, are obtained.

in ¼ cos n
p
2

� �
þ i � sin n

p
2

� �
ð15Þ

G0ðoÞ ¼ Ge
2G0

Nðt0oÞacos a p
2

� �þ GeðG0
NÞ2ðt0oÞ2a

Ge
2 þ 2GeG0

Nðt0oÞacos a p
2

� �þ ðG0
NÞ2ðt0oÞ2a

ð16Þ

G@ðoÞ ¼ Ge
2G0

Nðt0oÞasin a p
2

� �
Ge

2 þ 2GeG0
Nðt0oÞacos a p

2

� �þ ðG0
NÞ2ðt0oÞ2a

ð17Þ

where n is the exponent of imaginary unit.
Fig 3b shows the experimental values of storage modulus G’, loss modulus G”, tangent of

loss angle δ and model curves resulting from the fractional Maxwell model with one springpot
(FMM1). Presented four-parameter model (τ0, Ge, G0

N , α) describes the experimental data with
an error smaller by several magnitude orders in comparison to the classical Maxwell model
(CMM). However, accurate description of the experimental data is still unsatisfactory.

Further expansion of the model by replacing the elastic Hook component with a Scott-Blair
element led to the creation of the fractional Maxwell model with two built-in springpots
(FMM2) (Fig 2c). Additional springpot is associated with equilibrium modulus Ge,
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characteristic (the longest) relaxation time τm and fractional exponent β by the following rela-
tion:

sðtÞ ¼ Getm
b d

bgðtÞ
dtb

ð18Þ

By differentiating Eq (2) according to the rule Eq (19) [10] and substituting Eqs (12) and
(18), the constitutive equation of the model (20) is obtained. The stress-strain relation contains
two relaxation times τ0, τm, two different elastic moduli Ge,G0

N and two fractional exponents α,
β.

da

dta
db

dtb
¼ daþb

dtaþb
ð19Þ

sðtÞ þ G0
Nt0

a

Getmb

da�bsðtÞ
dta�b

¼ G0
Nt0

a d
agðtÞ
dta

ð20Þ

Using Eqs (6), (7) and (8), the equation describing complex modulus G� as a function of
oscillation frequency ω for the fractional Maxwell model with two springpots (FMM2) is
obtained:

G � ðoÞ ¼ GeG
0
Nðit0oÞaðitmoÞb

G0
Nðit0oÞa þ GeðitmoÞb

ð21Þ

Separating real and imaginary parts of Eq (21)—with the use of Eq (15)—the equations
describing storage modulus G’ Eq (22) and loss modulus G” Eq (23), respectively, are obtained.

G0ðoÞ ¼
GeG

0
Nðt0oÞaðtmoÞb A cos ðaþ bÞ p

2

� �
þ B sin ðaþ bÞ p

2

� �h i
A2 þ B2

ð22Þ

G@ðoÞ ¼
GeG

0
Nðt0oÞaðtmoÞb A sin ðaþ bÞ p

2

� �
� B cos ðaþ bÞ p

2

� �h i
A2 þ B2

ð23Þ

where:

A ¼ G0
Nðt0oÞacos a

p
2

� �
þ GeðtmoÞbcos b

p
2

� �
ð24Þ

B ¼ G0
Nðt0oÞasin a

p
2

� �
þ GeðtmoÞbsin b

p
2

� �
ð25Þ

The fractional Maxwell model with two springpot-type elements (FMM2) contains six
parameters (τ0, τm, Ge, G0

N , α, β) which leads to a further increase in the quality of model fitting
(Fig 3c). In the case of this model, relatively good description of loss modulus G” in the range
of intermediate oscillation frequencies ω was achieved. The improvement in the description of
storage modulus G’ for large values of the oscillation frequencies ω was also obtained. On the
other hand, the trend of experimental data and model predictions concerning the tangent of
loss angle δ are fundamentally different.

Kelvin-Voigt-type models
The classical Kelvin-Voigt model (CKVM) is composed of parallel-connected Hooke and New-
ton elements (Fig 4a). In this case, the total shear stress is the sum of shear stresses acting on
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both elements Eq (26), and the shear strain is the same for spring and dashpot Eq (27) [3,10].

stot ¼ ss þ sd ð26Þ

gtot ¼ gs ¼ gd ð27Þ

Substituting Eqs (3) and (4) into Eq (26), the constitutive equation of the model (28) is
obtained. The stress-strain relation contains a single relaxation time τ0 and two different elastic
moduli Ge,G0

N :

sðtÞ ¼ GegðtÞ þ G0
Nt0

dgðtÞ
dt

ð28Þ

Using Eqs (6), (7) and (8), the equation describing complex modulus G� as a function of
oscillation frequency ω for the classical Kelvin-Voigt model (CKVM) is obtained:

G � ðoÞ ¼ Ge þ iG0
Nt0o ð29Þ

Separating real and imaginary parts of Eq (29), the equations describing storage modulus G’
Eq (30) and loss modulus G” Eq (31), respectively, are obtained.

G0ðoÞ ¼ Ge ð30Þ

G@ðoÞ ¼ G0
Nt0o ð31Þ

Fig 5a shows the experimental values of storage modulus G’, loss modulus G”, tangent of
loss angle δ and model curves resulting from the classical Kelvin-Voigt model (CKVM). This
model—Eqs (30) and (31)–describes the experimental data with a much smaller error than the
corresponding classical Maxwell model (CMM), but still it cannot be used because the trends
of model curves and experimental points are fundamentally different.

Fig 4. Kelvin-Voigt-typemodels. (a) classical; (b) fractional with one springpot; (c) fractional with two springpots.

doi:10.1371/journal.pone.0143090.g004
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Fig 5. The experimental andmodel values of storagemodulusG’, loss modulusG” and tangent of
loss angle δ as a function of oscillation frequencyω, for kuzu starch pastes when temperature and
time of pasting were 90°C and 30min, respectively. (a) the classical Kelvin-Voigt model (CKVM), (b) the
fractional Kelvin-Voigt model with one springpot (FKVM1), (c) the fractional Kelvin-Voigt model with two
springpots (FKVM2).

doi:10.1371/journal.pone.0143090.g005
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Therefore, there was an attempt to modify the classical Kelvin-Voigt model (CKVM) by
replacing the dashpot with a Scott-Blair element (Fig 4b). Substituting Eqs (3) and (12) into Eq
(26), the constitutive equation of the fractional Kelvin-Voigt model with one built-in springpot
(FKVM1) Eq (32) is obtained. The stress-strain relation contains a single relaxation time τ0,
two different elastic moduli Ge,G0

N and fractional exponent α:

sðtÞ ¼ GegðtÞ þ G0
Nt0

a d
agðtÞ
dta

ð32Þ

Using Eqs (6), (7) and (8), the equation describing complex modulus G� as a function of
oscillation frequency ω for the fractional Kelvin-Voigt model with one springpot (FKVM1) is
obtained:

G � ðoÞ ¼ Ge þ G0
Nðit0oÞa ð33Þ

Separating real and imaginary parts of Eq (33)—with the use of Eq (15)—the equations
describing storage modulus G’ Eq (34) and loss modulus G” Eq (35), respectively, are obtained.

G0ðoÞ ¼ Ge þ G0
Nðt0oÞacos a

p
2

� �
ð34Þ

G@ðoÞ ¼ G0
Nðt0oÞasin a

p
2

� �
ð35Þ

Replacement of the dashpot with a Scott-Blair element significantly improves a description
of the experimental data by means of the fractional Kelvin-Voigt model with one springpot
(FKVM1) (Fig 5b). Presented four-parameter fractional model (τ0, Ge, G0

N , α) very well cap-
tures the course of storage modulus G’ in the whole investigated range of oscillation frequencies
ω. While in case of loss modulus G” and tangent of loss angle δ a substantial improvement in
description of the experimental data in the range of intermediate values of oscillation frequen-
cies ω, was obtained.

Further modification of the Kelvin-Voigt model by replacing the elastic Hooke element
with another Scott-Blair component allowed to obtain the fractional Kelvin-Voigt model with
two built-in springpots (FKVM2) (Fig 4c). Substituting Eqs (12) and (18) into Eq (26), the con-
stitutive equation of the model Eq (36) is obtained. The stress-strain relation contains two
relaxation times τ0, τm, two different elastic moduli Ge,G0

N and two fractional exponents α, β:

sðtÞ ¼ G0
Nt0

a d
agðtÞ
dta

þ Getm
b d

bgðtÞ
dtb

ð36Þ

Using Eqs (6), (7) and (8), the equation describing complex modulus G� as a function of
oscillation frequency ω for the fractional Kelvin-Voigt model with two springpots (FKVM2) is
obtained:

G � ðoÞ ¼ G0
Nðit0oÞa þ GeðitmoÞb ð37Þ

Separating real and imaginary parts of Eq (37)—with the use of Eq (15)—the equations
describing storage modulus G’ Eq (38) and loss modulus G” Eq (39), respectively, are obtained.

G0ðoÞ ¼ G0
Nðt0oÞacos a

p
2

� �
þ GeðtmoÞbcos b

p
2

� �
ð38Þ

G@ðoÞ ¼ G0
Nðt0oÞasin a

p
2

� �
þ GeðtmoÞbsin b

p
2

� �
ð39Þ
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Presented six-parameter fractional Kelvin-Voigt model (τ0, τm, Ge, G0
N , α, β) with two

springpot-type elements (FKVM2) very well describes the course of storage modulus G’ over
the entire range of oscillation frequencies ω (Fig 5c). Trends in loss modulus G” and tangent of
loss angle δ are also very well described by the model curves, except for a narrow range of the
smallest oscillation frequencies ω.

The above applicability analysis of various forms of Maxwell and Kelvin-Voigt models indi-
cates that it is necessary to propose modifications to these models that allow for a description
of the experimental data on viscoelastic solids in broad range of oscillation frequencies ω.Modi-
fication of fractional rheological models

The two-element rheological models are not able to describe the dynamic behavior of real
materials in a wide range of oscillation frequencies ω with an acceptable accuracy [9]. In order
to improve the description quality of the loss peak on loss modulus curve G” (Figs 3 and 5), the
paper proposes a modification of the fractional Maxwell and Kelvin-Voigt models with two
built-in springpots (FMM2 and FKVM2) by adding to the Eqs (23) and (39) a new component
called the network durability. Rayleigh dimensional analysis indicates that a function describ-
ing the dependence of loss modulus G” from the rest of parameters associated with the phe-
nomenon of energy dissipation must fulfill the following condition:

f ðG@;o;G0
N ;Ge; Z0Þ ¼ 0 ð40Þ

where η0 is the Newtonian steady state shear viscosity.
According to the Fourier principle, all the laws of physics are expressed by dimensionally

homogeneous equations [25]. This makes it possible to write Eq (41), which after substituting
the appropriate units for all variables, takes the form Eq (42).

ðG@Þ�1 � ðoÞa � ðG0
NÞb � ðGeÞc � ðZ0Þd ¼ 1 ð41Þ

ðPaÞ�1 � ðs�1Þa � ðPaÞb � ðPaÞc � ðPa � sÞd ¼ 1 ð42Þ

The dimensional compatibility on both sides of the Eq (42) occurs when:

�1þ bþ cþ d ¼ 0 ^ � aþ d ¼ 0 ð43Þ

Presented problem has three possible solutions under the assumption that the exponent of
oscillation frequency ω takes the value of a = −1 and the remaining exponents are natural num-
bers:

b ¼ 2 ; c ¼ 0 _ b ¼ 1 ; c ¼ 1 _ b ¼ 0 ; c ¼ 2 ð44Þ

The analysis of experimental data has allowed to determine that the best fit to the loss peak
on G” curve is achieved when b = 2 and c = 0.

The network durability D thus obtained characterizes flowing abilities of the imaginary ele-
mentary cells of biopolymer network—units locked by a minimal number of nodes and having
the individual movement ability:

D ¼ ðG0
NÞ2

Z0 � o
ð45Þ

Substituting Eq (45) into Eqs (23) and (39), the equations describing the value of loss modu-
lus G” as a function of oscillation frequency ω for the modified fractional Maxwell model with
two springpots (MFMM2) Eq (46) and the modified fractional Kelvin-Voigt model with two
springpots (MFKVM2) Eq (47), respectively, are obtained. The proposed modified fractional
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models increase the ability to describe both fast and slow processes of energy dissipation.

G@ðoÞ ¼
GeG

0
Nðt0oÞaðtmoÞb A sin ðaþ bÞp

2

� �
� B cos ðaþ bÞp

2

� �h i
A2 þ B2

þ ðG0
NÞ2

Z0 � o
ð46Þ

G@ðoÞ ¼ G0
Nðt0oÞasin a

p
2

� �
þ GeðtmoÞbsin b

p
2

� �
þ ðG0

NÞ2
Z0 � o

ð47Þ

Fig 6 shows the experimental values of storage modulus G’, loss modulus G”, tangent of loss
angle δ and model curves resulting from the seven-parameter (τ0, τm, Ge, G0

N , α, β, η0) modified
fractional models with two built-in springpots: Maxwell-type (MFMM2) (Fig 6a) and Kelvin-
Voigt-type (MFKVM2) (Fig 6b). In the case of MFKVM2, a modification in the form of addi-
tional component called the network durability D allows for a significant improvement in a
description of the experimental data over the entire range of oscillation frequencies ω.

Parameters of fractional rheological models and their limitations
Presented fractional rheological models of Maxwell and Kelvin-Voigt—Eqs (10) and (11); (16)
and (17); (22) and (23); (30) and (31); (34) and (35); (38) and (39); (22) and (46); (38) and
(47)–contain seven rheological parameters (Table 1), which describe a number of viscoelastic
properties of a given material:

• plateau modulus G0
N –represents the power of biopolymer network and its resistance to

aging during time; value of the parameter was determined using the minimum method
[26]–it is based on the assumption that the plateau modulus G0

N corresponds to the value
of storage modulus G’ at the oscillation frequency ω in which the tangent of loss angle δ
reaches a minimum:

G0
N ¼ G0ðoÞtanðdÞ!min ð48Þ

• equilibrium modulus Ge—illustrates the total elasticity of biopolymer network; value of the
parameter was taken as equal to the inverse of the intercept in the equation of line tangent to
the shear creep compliance curve J(t) at endpoint [16];

• characteristic relaxation times τ0 and τm—represent the shortest and the longest time
required to complete stress relaxation in the biopolymer network; values of the parameters
correspond to the inverses of oscillation frequencies ω at which the dynamic curves G’ and
G” intersect themselves;

• fractional exponents α and β–indicate which properties dominate in the material: these
parameters take values from 0 (for perfectly elastic solid) to 1 (for ideal Newtonian fluid);

• Newtonian steady state shear viscosity η0 —characterizes flowing abilities of the elementary
units of biopolymer network; value of the parameter was taken as equal to the inverse of
the slope in the equation of line tangent to the shear creep compliance curve J(t) at end-
point [16].

Thanks to the correlations available in the literature [16,18,22,26–31], it is possible to deter-
mine further indicators characterizing the rheological properties of biopolymer, such as:
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• plateau compliance J 0N– representing the force with which the entanglements of the biopoly-
mer network suppress any kind of long-range configurational rearrangements:

J0N ¼ 1

G0
N

ð49Þ

• steady state compliance Je—being the measure of stored energy in the steady-state flow under
the influence of low stresses:

Je ¼
1

Ge

ð50Þ

Fig 6. The experimental andmodel values of storagemodulusG’, loss modulusG” and tangent of
loss angle δ as a function of oscillation frequencyω, for kuzu starch pastes when temperature and
time of pasting were 90°C and 30min, respectively. (a) the modified fractional Maxwell model with two
springpots (MFMM2), (b) the modified fractional Kelvin-Voigt model with two springpots (MFKVM2).

doi:10.1371/journal.pone.0143090.g006
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• dispersion modulus f–characterizing the molecular weight distributions of the biopolymer:

f ¼ G0
N

Ge

ð51Þ

• coefficient of the network vibration damping k–representing the resistance of biopolymer
network to oscillatory deformations:

k ¼ G0
N � Ge

Ge

ð52Þ

• width of the viscoelastic plateau L–specifying the polydispersity index of the biopolymer:

L ¼ tm
t0

ð53Þ

• cross-linking density ω0—characterizing the structure of biopolymer network:

o0 ¼
1

t0
ð54Þ

• gel stiffness S–representing the degree of fragility, brittleness of gel:

S ¼ G0
Nt0

aþb
2 ð55Þ

Table 1. The list of parameters of the proposed rheological models.

CMM FMM1 FMM2 MFMM2 CKVM FKVM1 FKVM2 MFKVM2

Eqs (10), (11) (16), (17) (22), (23) (22), (46) (30), (31) (34), (35) (38), (39) (38), (47)

G0
N + + + + + + + +

Ge + + + + + + + +

τ0 + + + + + + + +

τm + + + +

α + + + + + +

β + + + +

η0 + +

where: G0
N—the plateau modulus; Ge—the equilibrium modulus; τ0 —the shortest relaxation time; τm—the longest relaxation time; α, β–the fractional

exponents; η0—the Newtonian steady state shear viscosity; CMM—the classical Maxwell model; FMM1—the fractional Maxwell model with one springpot;

FMM2—the fractional Maxwell model with two springpots; MFMM2—the modified fractional Maxwell model with two springpots; CKVM—the classical

Kelvin-Voigt model; FKVM1—the fractional Kelvin-Voigt model with one springpot, FKVM2—the fractional Kelvin-Voigt model with two springpots,

MFKVM2—the modified fractional Kelvin-Voigt model with two springpots; the sign of "+" means the presence of given parameter in the model.

doi:10.1371/journal.pone.0143090.t001
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• average entanglement molecular weightMe—being the average molecular weight between
topological constraints:

Me ¼
rRT
G0

N

ð56Þ

• average molecular weight between cross-linksMc—being the average molecular weight of
biopolymer chains between two consecutive junctions:

Mc ¼
rRT
Ge

ð57Þ

where ρ is density of biopolymer; R is universal gas constant; and T is temperature.
According to the second law of thermodynamics, the dynamically deformable real solids

must be characterized by positive values of energy dissipation and internal work [32]. It means
that the proposed rheological models have physical meaning only when model values of storage
modulus G’ and loss modulus G” are positive in the entire analyzed range of oscillation fre-
quencies ω [33]. This condition is fulfilled when:

0 � Ge � G0
N ^ 0 � t0 � tm ^ 0 � b � a � 1 ^ 0 � Z0 ð58Þ

Statistical evaluation of rheological models
In order to determine the quality of the experimental data description by means of the pro-
posed Maxwell and Kelvin-Voigt rheological models, the statistical evaluation referred to tan-
gent of loss angle δ Eq (59) was performed.

tan d ¼ G@ðoÞ
G0ðoÞ ð59Þ

The analysis was carried out using the statistical indicators, such as [34,35]:

• mean percentage error (MPE):

MPE ¼ 1

N

XN

j¼1

tan dexp; j � tan dmod; j

tan dexp; j

" #
� 100 ð60Þ

• mean bias error (MBE):

MBE ¼ 1

N

XN

j¼1

ðtan dmod; j � tan dexp; jÞ ð61Þ
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• root mean square error (RMSE):

RMSE ¼ 1

N

XN

j¼1

tan dexp; j � tan dmod; j

� �2

2
4

3
5

1
2

ð62Þ

• modelling efficiency (EF):

EF ¼

XN

j¼1

tan dexp; j � tan dexp; ave
� �2

�
XN

j¼1

tan dmod; j � tan dexp; j
� �2

XN

j¼1

tan dexp; j � tan dexp; ave
� �2

ð63Þ

• chi-square test (χ2):

w2 ¼

XN

j¼1

tan dexp; j � tan dmod; j

� �2

N � n
ð64Þ

where tan δexp,j is the experimental value of tangent of loss angle δ; tan δmod,j is the model value
of tangent of loss angle δ; tan δexp,ave is the average experimental value of tangent of loss angle
δ; j is the index of experimental point; N is the number of experimental points; n is the number
of parameters in the model.

Results and Discussion
In order to analyze the accuracy of the experimental data description by the proposed modified
Maxwell and Kelvin-Voigt models, the new rheological studies for kuzu starch pastes were car-
ried out. The obtained results (Fig 6b) revealed that in the oscillation frequency range from
6.3�10−4 to 450 s-1 the biopolymer was located in a hyperelastic physical state called the visco-
elastic plateau region. This area is associated with changes in the position of chain segments of
biopolymer (rotary and sliding movement) in an absence of movement of all macroparticles. It
may result in significant deformations of the material even in the case of small external stresses
[16,22]. In the entire analyzed range of oscillation frequencies ω, the storage modulus G’ (rep-
resenting elastic properties of biopolymer) was greater than the loss modulus G” (characteriz-
ing viscous features of medium).

Table 2 lists the goodness-of-fit indicators for presented in the work rheological models.
The analysis showed that the optimal model for describing the dynamic behavior of biopoly-
mers, such as kuzu starch pastes, is modified fractional Kelvin-Voigt model with two built-in
springpots (MFKVM2). In this case, for pasting time t = 15 min, the mean percentage error
was equal to MPE = 2.12%, and the modeling efficiency has reached the value of EF = 0.995. It
was also confirmed that the rheological models of Maxwell-type do not work in the case of
modeling of viscoelastic solids, that is the media in which elastic properties dominate over vis-
cous properties [36].
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The rheological parameters of Japanese kuzu starch pastes determined on the basis of the
modified fractional Kelvin-Voigt model with two springpots—Eqs (38) and (47)–provide a lot
of additional information about the structure and viscoelastic properties of the biopolymer in
comparison to the classical analysis of dynamic curves G’ and G” and shear creep compliance J
(t). This is particularly important in the field of materials science to design the utility and func-
tional characteristics of products.

Conclusions
The analysis of various types of Maxwell and Kelvin-Voigt rheological models for the descrip-
tion of viscoelastic properties of biopolymers indicated that:

• Maxwell-type rheological models do not work in the case of modeling of viscoelastic solids.
The optimal model for describing the dynamic behavior of kuzu starch pastes is modified
fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). This model can be

Table 2. The goodness-of-fit indicators for rheological models presented in the work, for kuzu starch pastes when the temperature of pasting was
90°C.

t [min] Indicator CMM FMM1 FMM2 MFMM2 CKVM FKVM1 FKVM2 MFKVM2

15 MPE [%] -1.63�106 -1.68�102 -1.21�102 -2.86�102 29.3 21.5 9.34 2.12

15 MBE [–] 2.40�103 9.86�10−2 9.14�10−2 0.326 0.138 -7.16�10−2 -1.45�10−2 -7.40�10−4
15 RMSE [–] 6.37�103 0.301 0.178 0.526 0.650 0.142 3.44�10−2 1.13�10−2
15 EF [–] 1.73�109 -2.87 -0.360 -10.8 -17.0 0.144 0.949 0.995

15 χ2 [–] 4.36�107 0.100 3.71�10−2 0.331 0.455 2.22�10−2 1.38�10−3 1.54�10−4
30 MPE [%] -1.07�106 -1.77�102 -1.73�102 -2.45�102 25.0 13.3 3.59 -1.19

30 MBE [–] 1.29�103 0.111 0.170 0.260 0.141 -4.66�10−2 -5.75�10−3 1.21�10−3
30 RMSE [–] 3.41�103 0.312 0.216 0.395 0.664 0.103 1.84�10−2 1.17�10−2
30 EF [–] -6.60�108 -4.51 -1.64 -7.83 -24.0 0.402 0.981 0.992

30 χ2 [–] 1.25�107 0.108 5.42�10−2 0.187 0.474 1.17�10−2 3.95�10−4 1.65�10−4
45 MPE [%] -1.33�106 -1.60�102 -63.7 -1.33�102 25.1 20.8 1.77 -2.25

45 MBE [–] 1.90�103 0.117 3.91�10−2 0.137 0.134 -6.44�10−2 -3.84�10−3 5.64�10−3
45 RMSE [–] 5.05�103 0.324 0.139 0.238 0.638 0.130 2.12�10−2 1.06�10−2
45 EF [–] -1.44�109 -4.93 -8.78�10−2 -2.19 -22.0 4.70�10−2 0.975 0.994

45 χ2 [–] 2.74�107 0.116 2.25�10−2 6.79�10−2 0.438 1.87�10−2 5.23�10−4 1.34�10−4
60 MPE [%] -1.83�106 -1.34�102 -53.6 -71.3 49.7 38.5 14.2 9.17

60 MBE [–] 2.85�103 0.106 3.53�10−2 6.38�10−2 2.07�10−2 -8.52�10−2 -2.11�10−2 -1.19�10−2
60 RMSE [–] 7.56�103 0.295 0.125 0.158 0.375 0.129 3.17�10−2 1.48�10−2
60 EF [–] -3.97�109 -5.03 -8.77�10−2 -0.725 -8.77 -0.159 0.930 0.985

60 χ2 [–] 6.15�107 9.61�10−2 1.83�10−2 2.98�10−2 0.152 1.85�10−2 1.17�10−3 2.64�10−4
75 MPE [%] 4.48�106 -1.77�102 -1.15�102 -3.19�102 34.9 21.8 1.56 -4.17

75 MBE [–] 5.40�103 0.102 7.17�10−2 0.301 8.76�10−2 -5.86�10−2 2.61�10−3 4.57�10−3
75 RMSE [–] 1.43�104 0.240 0.141 0.445 0.460 0.117 3.51�10−2 7.43�10−3
75 EF [–] 1.38�1010 -2.90 -0.349 -12.3 -13.3 7.61�10−2 0.917 0.996

75 χ2 [–] 2.21�108 6.39�10−2 2.33�10−2 0.237 0.228 1.51�10−2 1.44�10−3 6.62�10−5

where: t–time of pasting; MPE—mean percentage error; MBE—mean bias error; RMSE—root mean square error; EF—modelling efficiency; χ2—chi-

square test; CMM—the classical Maxwell model; FMM1—the fractional Maxwell model with one springpot; FMM2—the fractional Maxwell model with two

springpots; MFMM2—the modified fractional Maxwell model with two springpots; CKVM—the classical Kelvin-Voigt model; FKVM1—the fractional Kelvin-

Voigt model with one springpot, FKVM2—the fractional Kelvin-Voigt model with two springpots, MFKVM2—the modified fractional Kelvin-Voigt model with

two springpots.

doi:10.1371/journal.pone.0143090.t002
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an important tool for specialists in the field of materials engineering, to design the structure
and rheological properties of the media, which have a direct impact on utility and functional
characteristics of products.

• The proposed modification of the fractional Kelvin-Voigt model with two springpots
(MFKVM2), consists in introducing an additional component called the network durability
D into the equation for loss modulus G”. It allowed for a significant improvement in the qual-
ity of experimental data description in the range of the lowest oscillation frequencies ω,
which correspond to slow dissipative processes (Table 2). The proposed modulus D Eq (45)
characterizes the impact of cross-linking on the flowing abilities of imaginary cells of the bio-
polymer network.
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