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Adoptive transfer of functional SARS-COV-2-specific immunity
from donor graft to hematopoietic stem cell transplant
recipients

To the Editor:

Immunocompromised recipients of allogeneic hematopoietic stem

cell transplant (HCT) are at increased risk of severe COVID-19.1 Dur-

ing the first year of a successful HCT, circulating T-cells arise from

donor CD34+ cells and can react to antigens exposed to the donor

through natural infection or vaccination before transplantation. There-

fore, donor pathogen exposure or vaccination pre-graft can be benefi-

cial to the recipient when mounting cellular and humoral response to

augment immune reconstitution and control post-HCT natural infec-

tion or increase vaccination responses.2

Here, we present evidence of transfer and expansion of

SARS-CoV-2-specific adaptive immunity from three matched unre-

lated donors (MUDs), vaccinated with licensed COVID-19 vaccines to

unvaccinated and vaccinated recipients. The 10/10 matched (with

permissive HLA-DPB1 locus mismatch) MUDs and their recipients did

not have COVID-19 history nor developed active infection through

study completion (d + 180). All three recipients engrafted and

achieved full donor chimerism (>95%)3 by d + 30.

The patient from MUD/R1 pair (Table 1S) was a 29-year-old

Hispanic male, with body mass index of 40.07 kg/m2, hypertension,

diabetes, diagnosed with Philadelphia like B-cell acute lymphoblastic

leukemia, with cytokine receptor-like factor 2 rearrangement. The

mRNA-1273 vaccinated MUD donor was a 33-year-old male. The

recipient underwent a myeloablative HCT soon after CD-19 CAR

T-cell therapy, while in second complete remission (CR2) with nega-

tive measurable residual disease (MRD), using fractionated total body

irradiation with etoposide. He received GVHD prophylaxis of tacroli-

mus and sirolimus (tacro/siro). He developed grade 1 skin GVHD

around d + 24, which resolved with topical therapy. He did not

receive a COVID-19 vaccine because prior to HCT, the patient was

unstable and not ambulatory.

Patient from MUD/R2 pair was a 74-year-old Caucasian male

with history of hypertension, diagnosed with acute myeloid leukemia

with deletion Y and SRSF2 mutation, who was in CR1 with negative

MRD after receiving hypomethylating agent and venetoclax. The

BNT162b2 mRNA vaccinated MUD donor was a 30-year-old female.

The recipient underwent reduced intensity HCT using fludarabine and

melphalan conditioning (FM), with tacro/siro GVHD prophylaxis in

combination with itacitinib JAK-1 inhibitor (NCT04339101). He devel-

oped mild chronic GVHD of skin and liver around d + 180. He

received a single JNJ-78436735 vaccine dose pre-HCT (d-145).

Patient from MUD/R3 pair was a 65-year-old Caucasian female

with hypertension and myelodysplastic syndrome/myeloproliferative

neoplasm associated with JAK2, ASXL1, and SRSF2 mutations. The

BNT162b2 mRNA vaccinated MUD donor was a 33-year-old male.

The recipient underwent reduced intensity HCT using FM, followed

by tacro/siro with itacitinib for GVHD prophylaxis. She received the

BNT162b2 mRNA COVID-19 vaccine pre- (d-74) and post-HCT

(d + 112 and d + 133). On d + 165, the patient received tixagevi-

mab co-packaged with cilgavimab for COVID-19 prophylaxis.

All three MUD donors (Figure 1) developed SARS-CoV-2-specific

neutralizing antibodies (NAbs), following vaccination with either the

BNT162B2 vaccine or the JNJ-78436735 (Table 1S). Serum levels of

receptor-binding domain (RBD)- and Spike (S)-specific antibodies were

also similar in the three donors. Low levels of Nucleocapsid (N)-specific

IgG were detected in donors from MUD/R1 and MUD/R2 pairs. IgM

levels were minimal since all donors received the first vaccine injection

>2 months before graft collection. Functional SARS-CoV-2-specific

T-cells were mainly CD137+CD3+CD4+, and higher levels were mea-

sured in pair 2 donor compared to the other two donors. N-specific

T-cells were detectable in pair 1 and 2 donors, analogously to their

respective humoral response pattern, which may indicate undocumented

exposure to SARS-CoV-2, in these subjects. S-specific IFN-γ had compa-

rable levels in all three donors.

SARS-CoV-2-specific CD137+ T-cells were detected early post-

HCT in all three recipients and expanded during immune reconstitu-

tion (Figure 1A,B).

MUD/R1 pair patient, who did not receive COVID-19 vaccine,

had measurable functionally activated S-specific CD137+CD3+CD4+

T-cells early post-HCT (d + 30). They subsequently declined and

then gradually expanded to levels comparable to those of the

donor by d + 150 when patient's lymphopenia resolved. S-specific

IFN-γ was detectable starting d + 60 and markedly increased

through d + 150.

Frequencies of both S- and N-specific donor derived CD137+-

CD3+CD4+ T-cells were 3–5 times lower in the MUD/R2 recipient

than in the donor, by d + 30. However, during immune reconstitution,

they steadily increased, and by six months post-transplant, they sur-

passed levels detected in the donor blood draw. Moreover, low but

measurable levels of S-specific CD137+CD8+ T-cells were detected

in the MUD/R2 pair, which peaked by study end in the recipient.

T-cells were actively producing high levels of S-specific IFN-γ, though
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the patient remained lymphopenic, and at times also leukopenic

until d + 150.

S-specific CD137+CD3+CD4+ T-cells were detectable early

post-HCT in the recipient of the MUD/R3 pair. T-cells consistently

expanded from the donor graft during immune reconstitution, and

further increased when post-transplant COVID-19 vaccine was

administered. S-specific CD137+CD3+CD8+ and N-specific

CD137+CD3+CD4+ T-cells proliferation peaked at around three

months post-HCT vaccination. Very high levels of S-specific IFN-γ

and modest levels of S-specific IL-4 were detected after the first

post-HCT COVID-19 vaccine dose.

Functionally activated SARS-CoV-2-specific T-cells were charac-

terized for their memory phenotypes (Figure 1S). Most of the S- and

N-specific CD137+CD3+CD4+ were central memory T-cells (TCM)

expressing high levels of CD28 and minimal levels of CD45RA. S- and

N-specific CD137+CD3+CD4+ T-cells exhibited stable phenotypes,

with modest increasing levels in TCM for S-specific CD137+CD3+-

CD4+ T-cells in all three MUD/R pairs. For MUD/R pair 2 and

3 patients, frequency of S-specific CD137+ CD3+ CD8+ T-cells was

at some time points ≥0.2%, consequently memory phenotype could

be measured9. Persistent levels of less differentiated effectors T-cell

subsets (TEMRA) with expansion plasticity phenotypic signature

(CD45RA+ CD28�) were detected in the CD8 arm of functionally acti-

vated S-specific T-cells.

Antibody-mediated SARS-CoV-2 specific immunity was detected

in all three MUD/R pairs (Figure 1A,C). Transfer of donor-derived

SARS-CoV-2 specific humoral immunity can be surmised for MUD/R1

pair, since no COVID-19 infection nor vaccination was reported for

the patient. Declining levels of S- and RBD- IgG binding antibodies

were measurable through 6 months post-HCT. Transfer of N-IgG and

low levels of SARS-CoV-2 specific NAbs was detectable only

on d + 30.

In MUD/R2 and MUD/R3 pairs in whom recipients received pre-

HCT SARS-CoV-2 vaccines, early post-HCT detection of adaptive

humoral immunity was probably of both donor and recipient origin. In

recipient of MUD/R2 pair, lymphopenia resolution (Figure 1B) may

F IGURE 1 Longitudinal SARS-CoV-2-specific adaptive humoral and cellular profiles in each donor/recipient (MUD/R) HCT pair. Description
of the immunological assays used is provided in the Supporting Information. Panels A show the levels of Spike (S)- and Nucleocapsid (N)-specific
CD137+ T cells/μl (right y-axes) measured by multiparameter cytofluorimetry in peripheral blood mononuclear cells (PBMC); and SARS-CoV-2-

neutralizing antibodies, as serum dilution that neutralized 50% of the SARS-CoV-2 pseudo virus (pv NT50, left y-axes). Panels B show S-, N-, and
membrane (M)-specific interferon (IFN)γ and interleukin (IL)4 spots/106 PBMC (right y-axes), measured by ELISPOT; left y-axes, white blood cells
and lymphocyte, k/μl. Panels C show serum concentrations of S-, receptor-binding domain (RBD)-, N-specific IgG and IgM measured using
indirect ELISA, and expressed as endpoint titers; left y-axes, as specified for panels A. For A, B, and C panels, x-axes show post-HCT blood draw
day for R; pre-HCT blood draw day for D is reported in Table 1S. Arrows indicates, HCT (day 0); dotted lines, lower limit of the normal range
(0.5/4.1 k/μl) for lymphocyte (Lymph) counts; solid lines, lower limit of the normal range (4–11 k/μl) for white blood cells (WBC) counts; syringe
symbol, approximate post-HCT day of BNT162b2 vaccination (exact days are reported in Table 1S); purple antibody symbol, administration of
tixagevimab co-packaged with cilgavimab long-acting antibody (LAAB) combination at day +165 post-HCT
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have led to the expansion of donor-derived SARS-CoV-2-specific

B-cells with consequent increase in S- and RBD-IgG binding titers and

NAbs levels by d + 150. In MUD/R3 pair, post-HCT COVID-19

vaccination of the recipient greatly boosted both S- and RBD-IgG

binding titers and NAbs which peaked by d + 150. Low titer levels of

SARS-CoV-2-specific IgM antibodies were also detectable following

COVID-19 vaccination. Subsequent administration of tixagevimab/

cilgavimab at d + 165 did not further increase levels of SARS-CoV-2

adaptive humoral immunity in the recipient.

To our knowledge, this is the first reported evidence of donor-

derived SARS-CoV-2 immune transfer, expansion, and vaccine boost-

ing in HCT recipients. Substantial SARS-CoV-2-specific IFN-γ was

measurable in all three HCT recipients. In contrast, IL-4 levels

remained minimal which was indicative of a polarized Th1 response,

associated with protection from severe COVID-19.4 Memory phe-

notype for both S- and N-specific CD137+ T-cells showed elevated

frequencies of TCM, which can home to lymph nodes, where they

help B cells undergo affinity maturation.4 Increasing percentages of

S-specific CD137+ CD8+ TEMRA effectors characterized by prolif-

erative and self-renewal capacity were also detected, which are

typically found in convalescing COVID-19 patients and vaccinated

individuals.4 Our data confirm recent studies suggesting that T-cell

responses in immunosuppressed patients can be preserved and

may provide an essential role in vaccine-mediated protection.5

Hence, the prompt surge in levels of donor-derived functional

SARS-CoV-2-specific T-cells and IFN-γ in MUD/R3 patient indicate

that in T-cell replete HCT recipients, a graft from a vaccinated

donor can favor successful booster-like cellular response even early

post-HCT, when humoral responses are blunted by ongoing immu-

nosuppressive regimens.

In the three recipients, NAb titers remained low or undetect-

able early post-HCT, confirming delayed B-cell functional reconsti-

tution and adaptive humoral immune recovery post-HCT. Increases

in SARS-CoV-2-specific IgG and NAb followed SARS-CoV-2-spe-

cific CD4 T-cell reconstitution. The critical role of CD4 T-cells6 in

promoting robust, long lived SARS-CoV-2-specific antibody levels,

and in response to mRNA vaccines has been shown including in

HCT and cellular therapy recipients, in whom COVID-19 vaccines

are not precluded even when B-cell aplasia occurs. In summary,

pre-HCT vaccination of MUD/R2 and MUD/R3 pairs potentiated

immune reconstitution and stimulated proliferation of functional

donor-derived T-cells, which were likely the primary cause of the

robust SARS-CoV-2-specific humoral responses observed in the

recipients.

Detection of low levels of S-specific and RBD-specific IgM after

COVID-19 re-vaccination could be explained as the inability of the

immunosuppressed patient to mount an efficient antibody response.

No effect of tixagevimab/cilgavimab prophylaxis was observed in

MUD/R3 patient, likely because the treatment was administered

immediately after the post-HCT vaccination rise in humoral response.

Our data suggest that choosing a donor with SARS-CoV-2-specific

immunity could be decisive as an alternative prophylaxis strategy to miti-

gate COVID-19 severity in HCT recipients and can promote a functional

vaccine response early post-HCT. Finally, none of the three recipients

described in this report developed COVID-19 post-HCT, which is a limi-

tation of this study. Therefore, further investigation in different

transplant settings is needed to verify that SARS-CoV-2-specific

adoptive immunity from a COVID-19-seropositive donor is protec-

tive for the recipient after transplantation. Such clinical studies can

constitute a critical, essential step toward improvement of the

remarkably poor recovery from COVID-19 observed in the HCT

setting.
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