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Abstract: Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation
in the liver. Various mechanisms such as an increased uptake in fatty acids or de novo synthesis
contribute to the development of steatosis and progression to more severe stages. Furthermore, it has
been shown that impaired lipophagy, the degradation of lipids by autophagic processes, contributes
to NAFLD. Through an unbiased lipidome analysis of mouse livers in a genetic model of impaired
lipophagy, we aimed to determine the resulting alterations in the lipidome. Observed changes
overlap with those of the human disease. Overall, the entire lipid content and in particular the
triacylglycerol concentration increased under conditions of impaired lipophagy. In addition, we
detected a reduction in long-chain polyunsaturated fatty acids (PUFAs) and an increased ratio of n-6
PUFAs to n-3 PUFAs, which was due to the depletion of n-3 PUFAs. Although the abundance of major
phospholipid classes was reduced, the ratio of phosphatidylcholines to phosphatidylethanolamines
was not affected. In conclusion, this study demonstrates that impaired lipophagy contributes to the
pathology of NAFLD and is associated with an altered lipid profile. However, the lipid pattern does
not appear to be specific for lipophagic alterations, as it resembles mainly that described in relation
to fatty liver disease.

Keywords: non-alcoholic fatty liver disease; lipophagy; lipidomics; fatty acid profile; long-chain
polyunsaturated fatty acids

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of disorders mainly
characterized by the deposition of fat in hepatocytes without any impact in terms of alcohol
consumption. The disease ranges from simple steatosis to non-alcoholic steatohepati-
tis, cirrhosis and hepatocellular cancer [1]. NAFLD is the most common chronic liver
disease worldwide and is strongly associated with obesity, type 2 diabetes, metabolic
syndrome and nutritional factors [2,3]. The prevalence of NAFLD is estimated to exceed
25% worldwide [4]. Not only adults, but also 3 to 10% of children have the characteristics
of NAFLD [5], indicating that this disease spectrum is a major public health problem
worldwide.

The biological source of fatty acids which are taken up by the liver can primarily be
linked to enhanced lipolytic activity in the adipose tissue (59%) [6]. In addition, 26% of
triacylglycerols stored in the liver derive from increased hepatic de novo lipogenesis and
only 15% from diet [6]. In addition to these mechanisms, an increased hepatic fat content
can also be caused from impaired autophagy, notably lipophagy. Autophagy is a cellular
self-digestive pathway that targets cytosolic components to lysosomes for degradation in
order to maintain cellular homeostasis and supply substrates for energy generation [7,8]. So
far, three different forms of autophagy have been described in mammalian cells: macroau-
tophagy (referred to autophagy), microautophagy and chaperone-mediated autophagy [9].
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As reported in 2009, autophagy was shown to mediate the degradation of intracellular
lipid droplets, with this being termed lipophagy. Indeed, the inhibition of lipophagy is
associated with an increased cellular triacylglycerol content, lipid droplet number and liver
size [8].

A lipidomic analysis of liver biopsies from healthy people and NAFLD patients
revealed differences in the abundance of specific lipid species [10–12], indicating that the
composition of the lipid profile is changed upon NAFLD manifestation and progression.
However, up until now, it is not known if and to which extent impaired lipophagy alters
the hepatic lipid composition. We recently identified a quantitative trait locus (QTL) for
fatty liver in the murine Collective Diabetes Cross [13] Ltg/NZO (liver triacylglycerols from
NZO alleles). The locus contains a group of immunity-related GTPases (IRGs), two of
which, Ifgga2 and Ifgga4, were markedly suppressed in advanced NAFLD due to a single-
nucleotide polymorphism in the FOXO2 binding site in the enhancer of both genes [14].
We recently demonstrated that IFGGA2 plays an important role in lipophagy. It is recruited
from endosomes to lipid droplets when lipids accumulate in hepatocytes. There, IFGGA2
interacts with ATGL (adipocyte triglyceride lipase), which in turn binds the autophagy
protein LC3B (microtubule associated protein 1 light chain 3 beta), leading to the induction
of lipophagy and the prevention of excess hepatic lipid accumulation [14].

In the current study, we present a murine model of advanced NAFLD without con-
firmed inflammation, based on disturbed lipid catabolism due to impaired lipophagy.
This led to changes in lipid metabolism that supported further fat storage in the liver and
resulted in an altered lipid profile compared to the control group.

2. Results
2.1. Identified Locus Ltg/NZO on Chromosome 18 Increased Hepatic Fat Content

As previously described, the locus Ltg/NZO on chromosome 18 associates with in-
creased hepatic triacylglycerols levels and is mediated by the suppression of the immunity-
related GTPase Ifgga2, resulting in impaired lipophagy and increased hepatic fat accumu-
lation [14]. To investigate differences in the lipid architecture of livers with an altered
lipophagic capacity, an untargeted lipidome analysis was performed on livers of obese
mice, which differ in their Ifgga2 expression. The two recombinant congenic strains (RCSs),
which were bred on the obese NZO background, differ genetically in terms of the 5.3 Mbp
of the Ltg/NZO locus. Mice at the age of 7 weeks carrying one NZO and one C57BL/6 allele
(Ltg/NZO.5.3N/B, referred to as IRG, immunity-related GTPases) and mice homozygous
for the NZO allele (Ltg/NZO.5.3N/N, referred to as ∆IRG) were fasted for 16 h. To induce
autophagy/lipophagy, a nutritional stressor such as prolonged fasting is required [7]. The
IRG mice exhibited high Ifgga2 expression while the ∆IRG mice displayed a very low Ifgga2
expression in the liver (Figure 1A). Mice did not show any genotype-specific differences in
body weight and liver weight at seven weeks of age (data not shown). However, the ∆IRG
mice had significantly higher levels of hepatic triacylglycerols compared to the IRG mice
(70.59 vs. 29.44 µg/mg tissue, Figure 1B).

2.2. Altered Hepatic Lipid Composition Induced by the Ltg/NZO Locus

Of the 941 lipid species measured by the differential mobility spectroscopy approach,
877 were detected in the current study. The measured lipid species can be divided into
14 lipid classes, which are classified into glycerolipids, phospholipids, sphingolipids and
sterols (Table 1). The results are either presented as concentration (nmol/g), to provide
quantitative information, or as composition (mol%), to investigate the relative quantity. As
the liver of the ∆IRG mice accumulated significantly more lipids, we put a specific focus on
the relative quantity in order to evaluate if impaired lipophagy affects the pattern of specific
lipids. Lipidomics was performed on liver samples from 6- and 16-h-fasted mice. However,
since we aimed at the effects of impaired lipophagy and the results of the samples after 6-h
fasting showed only minor differences (data not shown), we focused our analysis on the
16-h fasted animals.
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Figure 1. Mice with impaired lipophagy store more fat in the liver. (A) Expression of the lipophagy-

associated Ifgga2 in livers of mice that were heterozygous (IRG) or homozygous (ΔIRG) for the locus 

Ltg/NZO. (B) Hepatic triacylglycerol levels of IRG and ΔIRG mice. Data are shown as means ± SD 

and analyzed by unpaired t-test with Welch’s correction. *** p < 0.001; IRG, n = 9; ΔIRG, n = 7. 
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Figure 1. Mice with impaired lipophagy store more fat in the liver. (A) Expression of the lipophagy-
associated Ifgga2 in livers of mice that were heterozygous (IRG) or homozygous (∆IRG) for the locus
Ltg/NZO. (B) Hepatic triacylglycerol levels of IRG and ∆IRG mice. Data are shown as means ± SD
and analyzed by unpaired t-test with Welch’s correction. *** p < 0.001; IRG, n = 9; ∆IRG, n = 7.

Table 1. Hepatic lipid content in mice with reduced lipophagy (∆IRG) compared to control mice
(IRG) after a 16-h fast. Absolute (concentration, nmol/mg) and relative (composition, mol%) values
for individual lipid classes are presented. Data are shown as means ± SD and analyzed by unpaired
t-test with Welch’s correction. Significant values (p < 0.05) are bold. IRG, n = 7; ∆IRG, n = 7.

Lipid Class Abbr. Species in
Class

Concentration (nmol/mg) Species Composition (mol%) Species
IRG ∆IRG Down Up IRG ∆IRG Down Up

Glycerolipids
Triacylglycerol TG 518 29.687 ± 7.193 63.494 ± 12.995 0 370 40.292 ± 6.894 59.986 ± 5.720 82 109
Diacylglycerol DG 58 0.921 ± 0.162 1.212 ± 0.201 1 17 1.256 ± 0.169 1.165 ± 0.209 13 4

Monoacylglycerol MG 22 0.162 ± 0.062 0.155 ± 0.076 0 1 0.228 ± 0.108 0.150 ± 0.071 0 0

Phospholipids
Phosphatidylcholine PC 72 19.502 ± 2.593 16.940 ± 2.959 7 0 26.799 ± 3.913 16.381 ± 3.477 0 5

Phosphatidylethanolamine PE 93 16.657 ± 2.093 14.721 ± 2.332 9 4 22.857 ± 2.975 14.161 ± 2.388 3 9
Phosphatidylinositol PI 7 0.252 ± 0.042 0.233 ± 0.042 0 0 0.348 ± 0.069 0.222 ± 0.029 1 1

Lysophosphatidylcholine LPC 16 0.572 ± 0.136 0.502 ± 0.090 1 0 0.788 ± 0.195 0.483 ± 0.088 0 0
Lysophosphatidyl-

ethanolamine LPE 11 0.071 ± 0.019 0.059 ± 0.017 0 0 0.097 ± 0.027 0.056 ± 0.013 0 0

Sphingolipids
Ceramide Cer 12 0.126 ± 0.027 0.107 ± 0.021 1 0 0.173 ± 0.039 0.102 ± 0.014 1 2

Hexosylceramide HexCer 10 0.025 ± 0.002 0.021 ± 0.003 3 2 0.034 ± 0.004 0.020 ± 0.005 1 4
Lactosylceramide LacCer 10 0.003 ± 0.000 0.003 ± 0.000 0 1 0.004 ± 0.001 0.003 ± 0.001 2 1
Dihydroceramide dhCer 10 0.022 ± 0.002 0.019 ± 0.003 2 1 0.030 ± 0.004 0.018 ± 0.002 0 2

Sphingomyelin SM 12 2.178 ± 0.281 1.964 ± 0.311 1 0 2.992 ± 0.429 1.887 ± 0.293 0 2

Sterols
Cholesteryl ester CE 26 3.018 ± 0.847 5.678 ± 1.892 0 23 4.102 ± 1.033 5.365 ± 1.461 5 11

Between both groups, 29% of all measured lipid species were significantly different;
17% were more and 12% less abundant in the livers of the ∆IRG compared to those of
the IRG mice (Figure 2A). Determining the lipid classes revealed significantly increased
concentration of glycerolipids and sterols (cholesterol ester, CE) in livers with impaired
lipophagy (∆IRG) compared to controls (IRG), while the concentration of phospholipids
and sphingolipids did not differ between mice (Figure 2B). Within the class of glycerolipids,
the concentration of triacylglycerols (TGs) and diacylglycerols (DGs) in particular were
significantly increased. The same effect was detected for CE. Among the sphingolipids, the
levels of hexosylceramides (HexCers) were significantly lower in the livers of the ∆IRG mice
in comparison to the IRG mice (Figure 2C). Glycerolipids such as DGs and TGs as well as CE
are also most affected in human liver samples and increase with disease progression [15,16].
However, in contrast to our mouse data on HexCers, a recent liver lipidome analysis of
more than 180 humans undergoing bariatric surgery detected increased levels of HexCers
with increasing steatosis [15].
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Figure 2. Mice with impaired lipophagy accumulate more glycerolipids and sterols in the liver.
(A) Percentage of significantly regulated lipid species in ∆IRG and IRG mice. (B) Concentration of
glycerolipids, phospholipids, sphingolipids and sterols in IRG and ∆IRG mice. (C) Concentration of
lipid classes in ∆IRG vs. IRG mice shown as logFC. (D) Relative abundance of major lipid classes
in IRG (top) and ∆IRG (bottom) mice. Data are shown as means ± SD and analyzed by unpaired
t-test with Welch’s correction or one sample t-test vs. 0. * p < 0.05; ** p < 0.01; *** p < 0.001. IRG, n = 7;
∆IRG, n = 7.

By comparing the relative abundance of the different major lipid classes, it is apparent
that TG in particular were strongly increased in the ∆IRG mice relative to the other classes.
This was accompanied by a relatively high decrease in phosphatidylcholines (PCs) and
phosphatidylethanolamines (PEs) (Figure 2D).

2.3. Total Fatty Acid Composition Is Modulated by the Ltg/NZO Locus

The rough classification of fatty acids into saturated (SFAs), monounsaturated (MUFAs)
and polyunsaturated (PUFAs) acids displayed an increased concentration in all three
classes in the livers of the ∆IRG mice (Supplementary Figure S1A). However, in terms of
composition, MUFAs accumulated in the ∆IRG mice in favor of SFAs and PUFAs (Figure 3A,
left). Among the PUFAs, n-3 PUFAs were lower abundant in the ∆IRG mice (Figure 3A,
middle) and the short-chain PUFAs (SC-PUFAs) had a higher percentage than the long-
chain PUFAs (LC-PUFAs) in the ∆IRG mice (Figure 3A, right). Videla et al. suggested in a
human study that the depletion of LC-PUFAs promotes fatty acid and TG synthesis rather
than oxidation [17].

To determine whether the suppression of Ifgga2 and impaired lipophagy affect the
relative quantity of specific fatty acids, we analyzed their general distribution in total lipids
as well as in the indicated classes (Figure 3B). The heat map shows that short-chain SFAs
and n-3 PUFAs in TGs, DGs and PCs are lower in the ∆IRG mice, whereas PCs and PEs
showed a reduction of the n-6 PUFAs C20:3 and C20:4. Most other n-6 PUFAs displayed a
slight increase in ∆IRG livers (Figure 3B). This resulted in a significant increase of the n-6
to n-3 ratio and a decrease of the n-3 index (Figure 3C, upper panel), which have already
been observed in NASH patients and are both markers of inflammatory processes during
disease progression [18].
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Figure 3. Impact of altered lipophagic capacity on fatty acid composition. (A) Relative quantity
of saturated (SFAs), monounsaturated (MUFAs) and ployunsaturated (PUFAs) fatty acids levels
(left). Abundance of n-3 and n-6 PUFAs (middle) and analysis of PUFAs in regard of chain length
(right). (B) Heat map presenting the distribution of different fatty acid species within total fatty acids
(top row) and individual lipid classes in ∆IRG and compared to IRG mice. * indicates significant
differences. Not detected fatty acids are marked in grey. (C) Evaluation of enzyme activities based
on product to precursor ratios. The n-6/n-3 ratio includes the fraction of all fatty acids that belong
to either the n-3 or the n-6 series. The n-3 index comprises all n-3 fatty acids. Schemes for the
biosynthesis of (D) SFAs and MUFAs as well as (E) PUFAs. Visualization adapted from mapping tool
Lipid Surveyor™ by Metabolon. Data are shown as means ± SD and analyzed by unpaired t-test
with Welch’s correction. * p < 0.05; ** p < 0.01; *** p < 0.001; IRG, n = 7; ∆IRG, n = 7.

The most abundant saturated fatty acids in both genotypes within each lipid class
were palmitic acid (C16:0) and oleic acid (C18:1; Supplementary Table S1). In TGs, C16:0
was significantly lower present and higher in DGs in ∆IRG livers (see below, Figure 3D,
Supplementary Figure S2A). Palmitic acid originates from either the diet or lipogenesis
and is the precursor of most n-7 and n-9 MUFAs synthesized through different elongation
and desaturation steps (Figure 3D). By calculating the ratio of product to precursor, it is
possible to estimate the activity of the fatty acid-synthesizing enzymes without having
to determine them directly. Of course, this can only be considered as a surrogate marker,
but it has proven to be reliable in other studies [11,19]. As indicated in Figure 3D, the
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estimated activity of stearoyl-CoA desaturase (SCD1, ∆9) determined from (C16:1/C16:0)
and (C18:1/C18:0) was increased in the livers of the ∆IRG mice (Figure 3C, middle panel),
which was accompanied by an accumulation of its products C16:1 and C18:1, respectively.
However, further elongation to C24:1 or C24:0 as well as its catalyzing enzyme ELOVL fatty
acid elongase 3 (ELOVL3) were decreased, resulting in an accumulation of C20:0 and C20:1
and a reduction in downstream products (Figure 3D and Supplementary Figure S2A).

Essential fatty acids such as alpha-linolenic (C18:3n-3, ALA) and linolenic (C18:2n-6,
LA) acid are absorbed through food and are the precursors for other LC-PUFAs which can-
not be synthesized by mammals. LC-PUFAs act as ligands for the peroxisome proliferator-
activated receptor-α (PPARα), thereby upregulating genes for fatty acid oxidation. LC-
PUFAs of the n-3 series are more effective inducers of PPARα expression than those of
the n-6 series, although neither of them are strong inducers [20]. Although there were no
differences in food intake between the genotypes (data not shown), both ALA and LA were
enriched in the livers of the ∆IRG animals (Supplementary Figure S2B and Supplementary
Table S1). LA was generally the predominant essential fatty acid. Due to similar or reduced
fatty acid desaturase (FADS1, ∆5; FADS2, ∆6) and elongase (ELOVL5 and 6) activities
(Figure 3C, lower panels), the overall amount of LC-PUFAs was reduced in the ∆IRG mice
in comparison to the livers of the IRG mice (Figure 3A,E and Supplementary Figure S2B).
In particular, arachidonic acid (C20:4n-6, AA) and docosahexanoic acid (C22:6n-3, DHA)
were depleted in terms of total lipids (Figure 3B). Furthermore, applying the ratio pro-
posed by Valenzuela et al. [21] to calculate the desaturase activity of the n-3 [C20:5n-3
(EPA)+DHA/ALA] and n-6 series (AA/LA) resulted in a 51% (p < 0.01) and 55% (p < 0.01)
reduction, respectively (Figure 3).

We also assessed the expression of genes such as enzymes (e.g., Elovl5 and Scd1) or
central regulators (e.g., Ppara) involved in lipid metabolism. However, we did not measure
any difference between strains after either a 6- or 16-h fast (Supplemental Figure S3).

While the indicated fatty acids were significantly regulated between both genotypes,
the effect size was rather small (Supplementary Figure S2A,B). This can be attributed to the
fact that the two obese mouse strains were genetically nearly identical except for a 5.3 Mbp
region on chromosome 18 and that the study was performed at a young ageof the mice
(7 weeks). Thus, it can be assumed that due to the reduced hepatic lipophagy caused by the
Ltg/NZO locus, the ratio of SFAs, MUFAs and PUFAs was altered, whereby the depletion of
LC-PUFAs in particular is worth noting. We believe that the influence of the locus could be
even more pronounced at a later age, when the mice show an even more striking difference
in liver fat content [14].

2.4. Triacylglycerols, the Lipid Class Mostly Affected by the Locus Ltg/NZO

The hallmark of fatty liver disease is the increased synthesis and accumulation of TGs
within hepatocytes, which serve as energy storage and prevent the aggregation of toxic
intermediates such as DG, thereby reducing lipotoxic stress. Indeed, most of the additional
liver fat content in the ∆IRG mice can be attributed to elevated TG levels, whereas the
overall DG levels were not altered in terms of composition (Table 1). This is also reflected in
the TG/DG ratio, which was significantly increased in ∆IRG livers (IRG 32.6 ± 2.5; ∆IRG
53.2 ± 4.5; p < 0.01).

Next, the impact of an altered lipophagic capacity on the PUFA-composition in TGs
and DGs was analyzed. The most common fatty acids in TGs similar to the composition of
the total fatty acid profile were palmitic acid (C16:0), which was decreased in ∆IRG livers,
as well as oleic acid (C18:1) and linoleic acid (C18:2), which both increased in ∆IRG livers.
The latter showed the same pattern in DGs, which, however, exhibited a higher degree of
C16:0 in ∆IRG livers and thereby displayed the opposite effect to that of TGs (Figure 3B).
The abundance of the sum of the different n3- and n-6 PUFAs was similar in TGs and DGs
but ∆IRG mice showed significantly lower levels of n-3 PUFAs with no differences in the
n-6 fatty acids. However, the ratio of n-6 to n-3 PUFAs was in both lipid classes significantly
regulated, with higher levels in the ∆IRG mice (Figure 4A,B). Both eicosapentanoic acid
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(C20:5n-3, EPA) and DHA (C22:6n-3) were significantly depleted in TGs and DG, whereas
AA (C20:4n-6) was only reduced in DGs (Figure 4C,D).
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2.5. Changes in Phospholipid Classes

Phophatidylcholines (PC) and phosphatidylethanolamines (PEs) are the most abun-
dant phospholipids of mammalian cells and cellular organelles and are known to be affected
in obesity and NAFLD [22]. Interestingly, although the concentration of these lipid classes
was only slightly different, Ltg/NZO appeared to affect the relative levels of PC and PE,
as the ∆IRG mice had significantly lower percentages of these two phospholipid classes
in their livers than the IRG mice (Table 1). The molar ratio of PC/PE, which is related
to membrane integrity [23], where a decreased ratio promotes liver damage and may be
involved in initiating inflammatory processes [24], was not different between the mice
(IRG 1.17 ± 0.12; ∆IRG 1.15 ± 0.10). The overall analysis of total fatty acid composition
revealed a reduction in n-3 PUFAs, including EPA and DHA (Figure 3B). The ∆IRG mice,
which developed a more severe fatty liver, showed a significantly lower abundance of PEs
containing EPA compared to mice with less severe steatosis (IRG). No genotype-specific
difference could be detected for DHA in PCs or PEs (Figure 3B).

3. Discussion

The manifestation of NAFLD is associated with adverse metabolic changes, which
include alterations in hepatic lipid composition [25]. It is not only the quantity of stored fat
that has an impact on the disease, but also the quality [26]. In the current study, an unbiased
lipidome approach was used to determine the specific lipid profile of mice characterized
by increased hepatic lipid content due to impaired lipophagy [14].

The present mouse model for advanced NAFLD is not based on dietary differences
but on genetics, caused by a fragment of 5.3 Mbp on chromosome 18 (IRG vs. ∆IRG)
containing the cluster of immunity-related GTPases [14] which affects autophagy. Although
there were only minor differences in lipid profiles between the IRG and ∆IRG mice, our
analysis revealed several significant alterations. However, the results do not allow for
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the conclusion that the observed changes are specific to impairments in lipophagy. Most
effects appear to be common in NAFLD because they correspond to those described in
relation to the progression of fatty liver disease in humans: (i) an increase in DGs and TGs
as well as CEs [16], resulting in an elevated TG/DG ratio [12], (ii) an overall reduction
in the LC-PUFAs percentage [17] and an increased n-6/n-3 ratio driven by n-3 PUFA
depletion [10,12,27,28], and (iii) a relative reduction in EPA (C20:5n-3) and DHA (C22:6n-3)
in DGs and TGs [12] (Figure 5).
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Figure 5. Decreased lipophagy in ∆IRG mice resulted in increased lipid storage in the liver and
changes in the hepatic lipidome. The main effects included an overall reduction in LC-PUFA content
and an increased n-6/n-3 ratio, which was due to the depletion of n-3 PUFAs and an increased
TG/DG ratio. Although the phospholipid classes PC and PE were reduced, the PC/PE ratio was
not affected.

The finding of increased hepatic TG content with disease progression has already been
confirmed in several studies and is considered a hallmark of NAFLD [10,12]. In general,
four major pathways contribute to hepatic TG accumulation, including the elevated uptake
of circulating fatty acids derived from the diet or adipose tissue lipolysis, increased hepatic
fatty acid synthesis, the lower secretion of TGs via very low density lipoprotein (VLDL)
particles and decreased fatty acid oxidation [29]. None of these pathways were affected
by ∆IRG and the suppression of Ifgga2. Rather, an impaired lipophagy was discovered
to be causative for increased hepatic TG storage in the ∆IRG mice [14]. Others have also
described the impact of impaired lipophagy on NAFLD development in mice [30] and
humans [31,32]. The increase in TGs, which are inert, can be seen as a defense mechanism
against lipotoxicity induced by free fatty acids (FFAs), especially SFAs such as palmitic acid
(C16:0) and stearic acid (C18:0). SFAs elicit lipotoxic effects through diverse mechanisms
including the generation of reactive oxygen species [33], de novo ceramide synthesis and
detrimental effects on mitochondrial function [34], which can eventually cause organ
dysfunction and promote chronic inflammation. Overall, the progressive increase in SFAs
correlates with disease severity in humans [11]. However, our analysis does not provide
information on FFAs, but the concentration of SFAs in total lipids was increased in the
∆IRG mice, which implies the same for FFAs (see Supplementary Table S1).

DGs play a prominent role in NAFLD by acting as signaling molecules affecting insulin
sensitivity [35]. The analysis of the fatty acid composition of DGs and TGs indicated higher
percentages of palmitate (C16:0) and lower percentages of stearic acid (C18:0) in the DGs
of livers with impaired lipophagy (∆IRG), whereas in the TGs, the opposite effects were
obtained. In a cardiomyoblast cell line, it was shown that palmitate induced DG accumula-
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tion mostly in the endoplasmatic reticulum (ER), which is associated with ER stress [36].
This may indicate that due to an impaired lipophagy-mediated lipid degradation, lipid
turnover is affected, resulting in an enhanced package of palmitate into DGs.

Another important observation of this study is the reduction in PCs and PEs in ∆IRG
livers, an effect that is known to be associated with NAFLD progression [12] in mice and
humans. Low levels of PEs and PCs are supposed to contribute to the disease by initiating
inflammation or increasing the formation of large lipid droplets [22,23].

The reduction in LC-PUFAs, in particular of n3-PUFAs, in our model of impaired
lipophagy is interesting. Earlier, it was shown that the treatment of hepatocytes with n-3
fatty acids such as EPA or DHA increased autophagic flux represented by an augmented
LC3B-II/LC3B-I ratio and thereby preventing hepatocytes from lipotoxicity and increased
lipid accumulation [37]. The authors showed that this effect was mediated by downregu-
lating the expression of Scd-1 in hepatocytes. Accordingly, ∆IRG mice with an impaired
lipophagy exhibit an increased SCD1 activity, which was calculated by the (C16:1/C16:0)
and (C18:1/C18:0) ratios. The desaturase SCD1 plays an essential role in lipid biosynthe-
sis. It catalyzes the insertion of a cis double bond at the n-9 position into fatty acyl-CoA
substrates including palmitoyl-CoA and stearoyl-CoA [38,39] and gives rise to a mixture
of C16:1 and C18:1 unsaturated fatty acids [40]. In fact, both MUFAs are significantly
upregulated in the lipids of the ∆IRG livers (Figure 3B).

Limitations

Although we found significant differences, our study has certain limitations. The
mice developed severe hepatic steatosis. However, they did not show the full spectrum of
pathological features of NASH (non-alcoholic steatohepatitis), which include inflammation
and fibrosis. This could be due to the relatively young age of the mice compared to other
models of fatty liver disease [19,23]. Furthermore, since we did not include control mice
with healthy livers, it is difficult to estimate how much the lipid profile deviates from the
healthy state. In view of this, it is challenging to estimate the extent of changes due to
impaired lipophagy.

4. Materials and Methods
4.1. Animals

Recombinant congenic mice (RCS) were generated as described [14]. RCS (Ltg/NZO.5.3N/B,
referred to as IRG and Ltg/NZO.5.3N/N, referred to as ∆IRG) were phenotyped in the
F4.N9 generation. Mice were kept under standard conditions (22 ◦C, 12-h light/12-h dark
photoperiod), with the light switched on at 6:00 am (Zeitgeber time 0, ZT0 corresponding
to the environmental circadian time set). At three weeks of age, animals received a high-fat
diet (HFD) (D12451, Research Diets Inc., New Brunswick, NJ, USA). At the age of seven
weeks, mice were sacrificed after a 16-h fast from ZT12 to ZT28. Plasma and organs were
frozen in liquid nitrogen and stored at −80 ◦C for biochemical analyses.

Animal experiments were performed referring to the ARRIVE guidelines and ap-
proved by the ethics committee of the State Agency of Environment, Health, and Consumer
Protection (State of Brandenburg, Germany 2347-10-2014).

4.2. Gene Expression Analysis

The total RNA from livers was isolated using RNeasy Mini Kits (Qiagen, Hilden,
Germany) and cDNA prepared by a M-MLV Reverse Transcriptase-Kit (Promega, Madison,
WI, USA). Genome-wide expression analysis from mice after a 6-h fast was performed
by OakLabs GmbH (Germany, Hennigsdorf, Germany) applying SurePrint G3 Mouse GE
8x60k Microarray gene chips (Agilent Technologies, Santa Clara, CA, USA), as previously
described [14]. Expression analysis for livers of 16 h-fasted mice was performed by applying
hydrolysis probes (Supplemental Table S2) for quantitative reverse transcription PCR (qRT-
PCR). Eef2, Ppia and Hprt were used as reference genes. Relative gene expression was
analyzed using the ∆Ct method [41].
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4.3. Detection of Liver Triacylglycerides

Liver triacylglycerols were quantified enzymatically using a commercial kit (RandoxTR-
210, Crumlin, United Kingdom), as described previously [13]. In brief, livers were ho-
mogenized for 5 min in 10 mmol/L sodium dihydrogen phosphate, 1 mmol/L EDTA and
1% (v/v) polyoxyethylene-10-tridecyl ether and incubated for 5 min at 70 ◦C to inactivate
enzymes. After an additional 5 min incubation on ice, the samples were centrifuged and the
supernatant was diluted 1:10 due to turbidity and a fat layer on top. The diluted samples
were incubated at 70 ◦C and on ice for 5 min each. After the second centrifugation, the clear
supernatant was used for the enzymatic assay following the manufacturer’s protocol.

4.4. Lipidomic Analysis

Lipidomics analysis of hepatic tissue was performed by Metabolon (Morrisville, NC, USA)
using the Metabolon TrueMass® Complex Lipid Panel. Samples were prepared as follows: lipid
fraction was extracted with dichloromethane:methanol overnight at 4 ◦C. Supernatants were
subjected to a modified Bligh–Dyer extraction using methanol/water/dichloromethane in the
presence of deuterated internal standards. For data acquisition, sample extracts were dried
under nitrogen and reconstituted in a dichloromethane:methanol solution containing am-
monium acetate. Extracts were transferred to vials for infusion-MS analysis, performed on
a Shimadzu LC with nano PEEK tubing and the Sciex SelexIon®-5500 QTRAP. The samples
were analyzed via both positive and negative mode electrospray. The 5500 QTRAP was
operated in multi reaction monitoring (MRM) mode with a total of more than 1100 MRMs.
Individual lipid species were quantified by taking the ratio of the signal intensity of each
target compound to that of its assigned internal standard, then multiplying this by the
concentration of the internal standard added to the sample. Lipid class concentrations were
calculated from the sum of all molecular species within a class, and fatty acid compositions
(mol%) were determined by calculating the proportion of each class comprised by individ-
ual fatty acids. The lipidomic analysis does not provide any information on free fatty acids.
For triacylglycerols, only one esterified fatty acid was specified.

In total, 941 different lipid species were analyzed belonging to 14 different lipid classes
(cholesteryl esters, CEs; monoacylglycerols, MGs; ceramides, Cers; dihydroceramides,
dhCers; lactosylceramides, LacCers; hexosylceramides, HexCers; sphingomeylins, SMs,
lysophosphatidylethanolamines, LPEs; lysophosphatidylcholines, LPCs; diacylglycerols,
DGs; triacylglycerols, TGs; phosphatidylcholines, PCs; phosphatidylethanolamines, PEs;
and phosphatidylinositol, PI).

4.5. Statistical Analysis

Statistical analysis of two groups was performed by unpaired t-test with Welch’s
correction. Data are presented as means ± SD. p ≤ 0.05 was regarded as statistically
significant, and the results were calculated with Prism 8 (GraphPad Software, La Jolla,
CA, USA).
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