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Abstract
Long‐distance migration is a common phenomenon across the animal kingdom but the 
scale of annual migratory movements has made it difficult for researchers to estimate 
survival rates during these periods of the annual cycle. Estimating migration survival is 
particularly challenging for small‐bodied species that cannot carry satellite tags, a 
group that includes the vast majority of migratory species. When capture–recapture 
data are available for linked breeding and non‐breeding populations, estimation of 
overall migration survival is possible but current methods do not allow separate esti‐
mation of spring and autumn survival rates. Recent development of a Bayesian inte‐
grated survival model has provided a method to separately estimate the latent spring 
and autumn survival rates using capture–recapture data, though the accuracy and 
precision of these estimates has not been formally tested. Here, I used simulated data 
to explore the estimability of migration survival rates using this model. Under a variety 
of biologically realistic scenarios, I demonstrate that spring and autumn migration sur‐
vival can be estimated from the integrated survival model, though estimates are bi‐
ased toward the overall migration survival probability. The direction and magnitude of 
this bias are influenced by the relative difference in spring and autumn survival rates 
as well as the degree of annual variation in these rates. The inclusion of covariates can 
improve the model’s performance, especially when annual variation in migration sur‐
vival rates is low. Migration survival rates can be estimated from relatively short time 
series (4–5 years), but bias and precision of estimates are improved when longer time 
series (10–12 years) are available. The ability to estimate seasonal survival rates of 
small, migratory organisms opens the door to advancing our understanding of the 
ecology and conservation of these species. Application of this method will enable re‐
searchers to better understand when mortality occurs across the annual cycle and 
how the migratory periods contribute to population dynamics. Integrating summer 
and winter capture data requires knowledge of the migratory connectivity of sampled 
populations and therefore efforts to simultaneously collect both survival and tracking 
data should be a high priority, especially for species of conservation concern.
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1  | INTRODUC TION

Seasonal migratory movements between breeding and non‐breeding 
areas are common phenomena across the animal kingdom (Alerstam, 
Hedenström, & Åkesson, 2003). These movements, which can range 
in scale from tens of meters to thousands of kilometers, induce com‐
plexities on the demographic processes that shape population dy‐
namics of migratory species. Theoretical and empirical studies have 
demonstrated that not only can migratory species experience limiting 
factors during any stage of the annual cycle (e.g., breeding, winter, mi‐
gration; Sherry & Holmes, 1996; Sutherland, 1996), but also that en‐
vironmental and demographic processes can interact across periods 
(Marra, Cohen, Loss, Rutter, & Tonra, 2015). As a result, understand‐
ing the factors that limit and regulate dynamics of migratory species 
requires population models that can accommodate processes oper‐
ating across the full annual cycle (Hostetler, Sillett, & Marra, 2015).

Full‐annual‐cycle models are a broad class of population mod‐
els that include events occurring during both the breeding and 
non‐breeding periods (Hostetler et al., 2015). In recent years, de‐
velopment of full‐annual‐cycle models, driven in large part by the 
need inform conservation planning for declining migratory species, 
has increased our understanding breeding vs. winter population 
limitation (Robinson et al., 2016; Rushing, Ryder, & Marra, 2016; 
Taylor, 2017). Most full‐annual‐cycle models, however, have either 
focused only on events occurring during the stationary breeding 
and winter periods or have lumped the migration and winter pe‐
riods into a single “non‐breeding” period (e.g., Wilson, LaDeau, 
Tøttrup, & Marra, 2011). As a result, the impact of the spring and 
autumn migration on the dynamics of migratory species remains 
poorly understood.

The primary obstacle to accounting for the migratory periods in 
full‐annual‐cycle models is the inability to quantify survival during 
these periods. For large species (>~100 g), the development of minia‐
turized satellite tags has revolutionized our ability to track migratory 
movements and mortality rates during these periods (e.g., Klaassen 
et al., 2014). Most species, however, are too small to directly track 
during migration (Bridge et al., 2011) and therefore survival during 
these periods can only be estimated from indirect (e.g., capture–
mark–recapture) methods. In a seminal paper, Sillett and Holmes 
(2002) used capture–recapture data from linked breeding and win‐
ter populations of Black‐throated Blue Warblers (Setophaga caerules-
cens) to estimate overall migration survival (i.e., cumulative spring 
and autumn survival) and demonstrate that the majority of annual 
mortality in this species occurs during these periods. Subsequent 
application of this approach to several other migratory passerines 
(Paxton, Durst, Sogge, Koronkiewicz, & Paxton, 2017; Rockwell 
et al., 2017) has corroborated results from Sillett and Holmes (2002) 
showing the highest seasonal mortality during migration. However, 
the method used by Sillett and Holmes (2002) was not developed 
to separately estimate survival during spring and autumn migration. 
This limitation has prevented a full understanding of when mortality 
occurs across the annual cycle as well as how the survival during the 
migratory periods influences population dynamics.

Recently, Rushing et al. (2017) developed a novel integrated 
population model (IPM) to separately estimate spring and autumn 
migration survival. The core of this model is an integrated survival 
model that uses capture–mark–recapture data collected during both 
the breeding and winter periods. By integrating the two data sets, 
it is possible to estimate the latent spring and autumn survival rates 
(Rushing et al., 2017), though the accuracy and precision of these es‐
timates has not been formally tested. Here, I used simulated data to 
explore the identifiability and estimability of migration survival rates 
using the integrated survival model. Under a variety of biologically 
realistic scenarios, I demonstrate that spring and autumn migration 
survival are identifiable and can be estimated from the integrated 
capture–recapture model. I also show that the inclusion of covari‐
ates can improve the model’s performance compared to the use of 
capture data alone. These results open the door for full‐annual‐cycle 
population models to provide deeper understanding of the ecology 
of migratory species.

2  | MATERIAL S AND METHODS

The models described here assume a simple migratory annual cycle, 
with two stationary periods separated by distinct migratory stages. 
In the remainder of the paper, I refer to the stationary periods as 
“breeding” and “winter” and to the migratory periods as “spring” and 
“autumn” (Figure 1). For all simulations, I assume a 4 month breed‐
ing season, 2 month autumn migration, 5 month winter period, and 
1 month spring migration.

To infer survival during spring and autumn, the integrated model 
requires data sufficient to estimate survival within and between 
each stationary period. In practice, these estimates could come from 
a variety of data types and model frameworks but here I assume 
standard capture–mark–recapture data appropriate for estimating 
apparent survival using the basic Cormack‐Jolly‐Seber (CJS) model 
(Lebreton, Burnham, Clobert, & Anderson, 1992). I further assume 
that sampling within each stationary period takes place at the begin‐
ning and again at the end of each season, allowing one to estimate 
both within‐ and between‐season survival probabilities (Figure 1). In 
the remainder of the paper, I refer to survival between breeding pe‐
riods as ϕBB and survival between winter periods as ϕBW.

As illustrated in Figure 1, ϕBB and ϕBW contain information about 
the latent autumn and spring survival rates. By integrating the breed‐
ing and winter CJS models in a unified analysis, the between‐season 
survival rates can be parameterized in terms of the underlying sea‐
sonal survival parameters. Specifically,

where ϕSum,t and ϕWin,t are the summer and winter survival probabili‐
ties estimated from the capture–recapture data and ϕAut,t and ϕSpr,t 
are the latent autumn and spring survival rates. When repeated over 

(1)�BB,t=�Aut,t�Win,t�Spr,t

(2)�BW,t=�Spr,t�Sum,t+1�Aut,t+1
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multiple years of sampling, Equations 1 and 2 provide a system of 
equations that can be parameterized in terms of the latent survival 
rates.

In this paper, I used simulated data to assess the identifiability 
and estimability of the latent spring and autumn survival rates. In 
CMR models, parameter identifiability can be assessed by simu‐
lating capture histories for a very large number of individuals and 
then quantifying the bias of parameter estimates from the model 
(Gimenez, Viallefont, Catchpole, Choquet, & Morgan, 2004). With 
large sample sizes, the observed frequency of encounter histories 
should be equal to the expected frequency (i.e., no sampling error), 
and therefore bias in the estimated parameters indicates a lack in‐
trinsic identifiability. In some cases, parameters may technically be 
identifiable but may nonetheless not be estimable given the data at 
hand (Auger‐Méthé et al., 2016). To investigate estimability of the 
latent survival rates, I simulated CMR data with sample sizes more 
typical of CMR studies and assessed the bias and precision of esti‐
mates based on these data.

2.1 | Simulating survival data

For each simulation, I generated data consistent with typical cap‐
ture–mark–recapture (CMR) sampling protocols. All simulations 
consisted of two CMR data sets collected during both summer and 
winter. For tests of identifiability, I simulated data with 10,000 new 
individuals captured in each year. This number was chosen to be 
large enough that parameter estimates were not influenced by sam‐
pling error (Gimenez et al., 2004). For tests of estimability, I assumed 
75 new individuals captured each year, a sample size more typical of 
many CMR studies. Mean monthly survival probabilities during sum‐
mer, winter, and autumn were held constant across all simulations 
(μSum = 0.97, μWin = 0.98, μAut = 0.90). Mean monthly spring survival 
(μSpr) varied across simulations (described below). These monthly 
survival rates were chosen to produce biologically realistic annual 
survival rates for a small, migratory songbird (~0.43–0.58). Each 
simulation consisted of the following steps:

1.	 Determine mean spring migration survival

For each simulation, μSpr was determined as:

where ∆ is the relative difference between μSpr and μAut.

2.	 Simulate realized autumn/spring survival probabilities

For each year t, realized monthly survival probability in autumn and 
spring were simulated as:

where ϕj,t is the realized monthly survival rate for season j (autumn 
or spring), βj is the effect of covariate Xj,t on ϕj,t, Σ is the variance–
covariance matrix describing annual variation in spring and autumn 
migration, �2

Aut
 and �2

Spr
 are the annual variances of autumn and spring 

survival, and ρ is the correlation between autumn and spring survival 
in a given year. Parameterizing the yearly spring and autumn survival 
rates in this way made it possible to independently vary the annual 
variance in and correlation between spring and autumn migration.

3.	 Generate Φ matrix

The monthly ϕj,t rates were converted into survival across 
the entire season by raising each to the appropriate number 
of months. The seasonal survival rates were then arranged in 
a matrix Φ containing the survival rates across all 48 seasons 
(12 years × 4 seasons/year):

(3)�Spr=Δ×�Aut

(4)logit(�j,t)= logit(�j)+�jXj,t+�j,t, �j,t∼MV(0,Σ)
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(
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F I G U R E  1  Conceptual diagram of the integrated survival model
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4.	 Simulate summer/winter survival histories

Survival histories were simulated for individuals in both the 
summer and winter populations using the occasion‐specific survival 
probabilities in Φ. Conditional on first capture, survival of individual 
i across all subsequent seasons was modeled as:

where zi,j is the true state (0 = dead, 1 = alive) of individual i dur‐
ing season j, and Φj−1 is the survival probability from season j−1 to 
season j. Note that although summer and winter survival histories 
were generated independently (i.e., did not share any individuals), 
individuals in both data sets shared the same survival rates during 
each occasion.

5.	 Simulate capture histories

To account for imperfect detection during each sampling period, 
individual capture histories were generated based on each individu‐
al’s true state at sampling occasion k and a season‐specific monthly 
recapture probability pj:

where yi,j,k is the observed state (0 = not recaptured, 1 = recaptured) 
during season j on occasion k (beginning or end of season). For all 
simulations, pSum = 0.6 and pWin = 0.4.

2.2 | Simulation scenarios

Equations 3,6,7 contain several parameters that may influence 
identifiability and estimability of the latent spring and autumn 
survival rates. To quantify the effects of these factors on model 
performance, I generated capture histories under a range of simu‐
lation scenarios:
“Basic” model: To understand the performance of the integrated CJS 
model in instances where no additional information is available (e.g., 
covariates), I simulated 12 years of CMR data following steps 1–5 
while manipulating three parameters: Δ, �2

j
, and ρ. In the remainder 

of the paper, I refer to this as the “basic” model. For each parameter, 
data were simulated under three levels corresponding to low, me‐
dium, and high values. To examine the influence of the relative dif‐
ference between μSpr and μAut, data were generated assuming Δ = 1, 
0.875, and 0.75. Because μAut was held constant at 0.9 in all simula‐
tions, these scenarios correspond to μSpr = 0.9, 0.78, and 0.675. To 
examine the effect of annual variation in migration survival on iden‐
tifiability and estimability, data were generated assuming �2

j
 = 0.02, 

0.25, and 0.50. To minimize the total number of simulation scenarios, 
I assumed that �2

Aut
=�2

Spr
. To examine the effect of the correlation 

between ϕSpr,t and ϕAut,t, data were generated assuming ρ = 0, 0.4, 
and 0.8. In all cases, parameter values were chosen to produce bio‐
logically realistic survival rates. For all “basic” model simulations, βj in 
Eq. (4) was fixed at 0. The three parameters were varied in a factorial 
design, resulting in 33 = 27 simulation scenarios.

Covariate model: To investigate whether including covariates im‐
proves estimation of the latent migration survival rates, I conducted 
additional simulations with a range of βj values for both spring and 
autumn (0, 0.5, 1.0) and σ2 values (0.02, 0.25, 0.50). Annual values 
for each covariate Xj,t were simulated from a normal distribution with 
mean 0 and standard deviation of 1. As for the basic model, these 
three parameters (βAut, βSpr, and σ

2) were varied in a factorial design 
resulting in 27 scenarios. All covariate models included 12 years of 
CMR data and assumed Δ = 0.75 and ρ = 0. I did not conduct identifi‐
ability simulations for the covariate model because if the parameters 
are identifiable under the basic model, than they should also be iden‐
tifiable with the addition of covariates.
Number of years: Estimability of survival rates in CJS models is influ‐
enced by the number of years of capture–recapture data included 
in the analysis (Pollock, Nichols, Brownie, & Hines, 1990). To inves‐
tigate how study length influences estimability of migration survival 
rates, I conducted additional simulations of the “basic” model with 
4–11 years of data, resulting in 8 scenarios. For all study length simu‐
lations, Δ = 0.75, σ2 = 0.25, and ρ = 0.

2.3 | Model fit

For each scenario, I simulated a single data set for the identifiability 
tests and 250 data sets for the estimability tests. I estimated the 
joint likelihood of the model using JAGS version 3.3.0 (Plummer, 
2012) called from program R version 3.3.1 (R Core Team, 2016) with 
package jagsUI version 1.4.2 (Kellner, 2016). Breeding and winter 
monthly survival rates were given uninformative Uniform(0,1) priors 
and beta coefficients in the covariate models were given uninforma‐
tive Normal(0,100) priors. The monthly spring and autumn survival 
probabilities were given weakly informative Beta(3,2) priors. Initial 
model testing indicated that this prior improved mixing of the chains 
compared to an uninformative uniform prior (effective sample sizes 
were ~4× higher under the Beta prior) but did not meaningfully in‐
fluence posterior means (on average, posterior means differed by 
<0.01 under the Uniform vs. Beta priors). For all models, I ran three 
chains for 50,000 iterations each after an adaptation phase of 5,000 
iterations and discarding the first 10,000 iterations as burn‐in. To 
reduce autocorrelation in the chains, I saved every 10th iteration. 
Convergence was confirmed through Rhat values and visual inspec‐
tions of trace plots.

2.4 | Model evaluation

Model performance was measured using five metrics. To meas‐
ure identifiability of the mean survival rates (μSpr and μAut) 
under the “basic” model, I measured relative bias under each 
scenario as (𝜇̂i,j−𝜇j)∕𝜇j, where 𝜇̂j is the estimated mean sur‐
vival rate for season j, and μ j is the true mean survival rate. 
Parameters were considered identifiable if the relative bias was 
>−0.01 and <0.01.

For each of the estimability scenarios, mean relative bias and 
root mean square error (RMSE) of μSpr and μAut were measured as:

(5)zi,j∼Bernoulli(zi,j−1Φj−1)

(6)yi,j,k∼Bernoulli(zi,jpj)
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In some applications, researchers may also be interested in de‐
termining which season has the lowest survival. For simulations in 
which Δ < 1, I also estimated the proportion of simulations in which 
𝜇̂Spr<𝜇̂Aut. This metric provides an estimate of the power of the 
model to correctly infer which season has the lowest survival.

For the annual estimates (ϕAut,t and ϕSpr,t), performance was 
measured as the mean correlation between the estimated and true 
values:

where 𝜙̂i,j,t is the estimated survival for season j in year t in simula‐
tion i.

3  | RESULTS

For the “basic” model, the relative bias of mean monthly spring and 
autumn survival (𝜇̂Spr and 𝜇̂Aut) was <0.01 for all parameter combi‐
nations, indicating that these parameters are identifiable under all 

simulated scenarios (Figure 2, Supporting Information Table S1). 
However, under more realistic sample sizes 𝜇̂Spr and 𝜇̂Aut were bi‐
ased toward the overall mean migration survival rate (i.e., �2

Aut
×�Spr

). The magnitude of both bias and root mean square error (RMSE) 
were proportional to the relative difference between the seasonal 
survival rates (Δ) and the magnitude of annual variation in survival 
rates (σ2; Figure 2). When mean monthly survival in spring and au‐
tumn were equal (Δ = 1), was biased on average by −2.92% while 
𝜇̂Aut was biased by 1.27%. Note that when monthly survival rates 
are equal, survival across the entire 2 month autumn period is lower 
than survival during the 1 month spring period, resulting in negative 
bias in 𝜇̂Spr and positive bias in 𝜇̂Aut. When Δ = 0.75, the direction of 
bias switched and the magnitude of bias in 𝜇̂Spr increased to 8.62% 
and to −3.2% for 𝜇̂Aut (Figure 2).

The degree of bias in 𝜇̂Spr and 𝜇̂Aut was inversely related to σ
2 

(Figure 2). Assuming Δ = 0.75, bias in 𝜇̂Spr was 11.98% and bias in 𝜇̂Aut 
was −4.11% when σ2 = 0.02. In contrast, when σ2 = 0.5, bias in 𝜇̂Spr de‐
clined to 6.18% and bias in 𝜇̂Aut declined to −2.74%. Despite the sources 
of bias in the basic model, power to detect the direction of survival dif‐
ferences (i.e., whether survival was lower in spring or autumn) was high 
(range = 87%–100%). Thus, the basic model was generally successful 
at determining which period had lower survival but tended to underes‐
timate the difference between the two periods. Estimates of 𝜇̂Spr and 
𝜇̂Aut were not influenced by correlation between spring and autumn 
migration (ρ; Supporting Information Figures S1 and S2).

In all “basic” model scenarios, estimates of spring and autumn 
survival were positively correlated with true survival but the magni‐
tude of the correlation was strongly affected by σ2 (Figure 3). When 

(7)Biasj=

∑250

i=1
(𝜇̂i,j−𝜇j)∕𝜇j

250

(8)RMSEj=

�

∑250
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(𝜇̂i,j−𝜇j)
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cor(𝜙̂i,j,t,𝜙j,t)

250

F I G U R E  2  Relative bias and root mean square error of mean monthly survival estimates for spring and autumn migration as a function 
of the relative difference in survival between the two seasons (∆) and annual variation in survival rates (σ2). Relative bias of identifiability 
models are indicated by open circles/dashed lines and relative bias of estimability models are indicated by filled circles/solid lines. In all 
simulations shown, ρ = 0
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spring and autumn survival showed little annual variation (σ2 = 0.02), 
the correlation was small and non‐significant (rSpr = 0.47, 95% credi‐
ble interval = −0.03 to 0.81; rAut = 0.34, −0.22 to 0.76). However, as 
annual variation increased, survival estimates were more strongly 
correlated with true survival (σ2 = 0.25: rSpr = 0.83, 0.61–0.95; 
rAut = 0.7, 0.35–0.93; σ2 = 0.50: rSpr = 0.87, 0.65–0.97; rAut = 0.77, 
0.46–0.96). The correlations between true and estimated survival 
were inversely related to Δ but were not influenced by ρ (Supporting 
Information Figure S3).

Including covariates in the model improved estimation of migra‐
tion survival rates compared to the basic model, though the degree 
of improvement depended on σ2. When σ2 = 0.02, including covari‐
ates in the model greatly reduced both bias and RMSE (Figure 4). 
In this scenario, including covariates with a strong effect (β = 1) re‐
duced bias in 𝜇̂Spr by 78% (3% when β = 1 vs. 12% when β = 0) and 
by 86% (−1% vs. −4%), despite a large relative difference between 
the two seasons (Δ = 0.75). In contrast, when σ2 = 0.5, the effect of 
covariates was much smaller (12% and 35% decreases in bias of 𝜇̂Spr 
and 𝜇̂Aut, respectively). RMSE was similarly decreased through the 
inclusion of covariates and correlation between true and estimated 
survival was increased. For example, when strong covariates were 
included on both autumn and spring survival, rAut increased to 0.93 
(95% credible interval = 0.77–0.99) and rSpr increased to 0.95 (95% 
credible interval = 0.86–0.99; Figure 5). As in the basic model, power 
to detect the direction of survival differences was high when covari‐
ates were included in the model (range = 90–100%).

Both bias and RMSE of 𝜇̂Aut tended to decrease as additional 
years of capture–recapture data were included in the analy‐
sis (Figure 6), but reached an asymptote with ~10 years of data. 
Interestingly, neither bias or RMSE of 𝜇̂Spr estimates were in‐
fluenced by the number of years of data. The mean correlation 
between the true and estimated yearly survival rates tended to 
increase with additional years of data when the number of years 
was less than 6 but beyond 6–7 years of data there was no fur‐
ther increase in the mean r for either season. However, longer time 
frames greatly improved the precision of the r estimates, as evi‐
dent from the decreasing width of the r credible intervals as the 
number of years increased (Figure 7).

4  | DISCUSSION

The twice‐annual migrations made by billions of individual organisms 
each year are among the most fascinating phenomena in the natural 
world. These movements have important implications for the popula‐
tion dynamics and conservation of migratory species but have proven 
difficult to study in most species. Using simulated data, I demonstrate 
that the integrated survival model developed by Rushing et al. (2017) 
is capable of estimating latent spring and autumn survival probabili‐
ties from capture–recapture data under certain conditions.

Tests of identifiability indicate that mean monthly spring and au‐
tumn survival rates are identifiable using the integrated survival model. 

F I G U R E  3  Correlation between estimated and true spring and autumn survival rates under the basic model. For all simulations shown, 
∆ = 0.75 and ρ = 0. Points show estimates of ϕj,t from all 250 simulations in each scenario. Solid and dashed black lines show the mean 
correlation for each season and the solid gray line indicates 1:1 correspondence between estimated and true survival. Values in parentheses 
are the 95% credible interval of the r estimates
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However, estimates of these rates were biased in simulations that as‐
sumed sample sizes more typical of many CMR studies (75 new individ‐
uals released at each occasion). In particular, estimates of μSpr and μAut 
were biased toward the overall “migration” survival, suggesting that 
the model had trouble pulling apart the seasonal survival rates without 

larger sample sizes. The degree of bias was positively related to the 
relative difference between spring and autumn survival and negatively 
related to the amount of annual variation in these survival rates. Thus, 
bias in the basic model was lowest when the difference between spring 
and autumn survival was small and when annual variation was high. 

F I G U R E  4  Relative bias and root mean square error of mean monthly survival estimates for spring and autumn migration as a function 
of covariate effect size (β) and annual variation in survival rates (σ2). The x‐axis refers to the simulated value of both βSpr and βAut. In all 
simulations shown, Δ = 0.75 and ρ = 0
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2 = 0.25. Points show estimates of ϕj,t from all 250 simulations in 
each scenario. Solid and dashed black lines show the mean correlation for each season and the solid gray line indicates 1:1 correspondence 
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rAut = 0.66 (0.01 : 0.93)

rSpr = 0.82 (0.52 : 0.96)

rAut = 0.83 (0.4 : 0.97)

rSpr = 0.9 (0.74 : 0.98)

rAut = 0.94 (0.8 : 0.99)

rSpr = 0.96 (0.88 : 0.99)

β = 0 β = 0.5 β = 1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

True φ

E
st

im
at

ed
 φ

Autumn
Spring



856  |     RUSHING

Lower bias with increasing year‐to‐year variation is likely the result of 
smaller ranges of plausible combinations of spring and autumn survival 
in the time series defined by Eqs. 1 and 2. The correlation between 
estimated and true migration survival rates (r) was also influenced by 
σ2, with higher correlations occurring when annual variation was high. 
Given the bias in the mean survival rates, users should interpret their 
results carefully and are encouraged to analyze simulated data based 
on their actual sample sizes and estimated parameters as a post hoc 
assessment of potential bias in their parameter estimates. Despite bias 
toward the overall migration survival rate, the model had high power to 
detect which season had lower survival.

Including covariates in the model improved estimation of spring 
and autumn migration rates. When annual variation in these rates was 
small, the additional information provided by the covariates greatly 
reduced bias and RMSE and increased the correlation between esti‐
mated and true survival compared to the basic model, even when co‐
variates had only a moderate effect (β = 0.5; Supporting Information 
Figures S4–S6). However, when annual variation in spring and au‐
tumn survival rates was high, including covariates resulted in only 
small improvements to parameter estimates, likely because the 
plausible combinations of spring and autumn survival were already 
reduced by the year‐to‐year variation. Interestingly, covariates have 
little effect on the estimation of survival rates during the opposite 
migratory period (Supporting Information Figure S6), suggesting that 
model performance will be best when covariates are included for 
both spring and autumn migration.

For most species, researchers may have little a priori knowl‐
edge about the demographic or environmental processes that 

F I G U R E  6  Relative bias and root mean square error of mean 
monthly survival estimates for spring and autumn migration as 
a function of study length. In all simulations shown, Δ = 0.75, 
σ2 = 0.25, and ρ = 0
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F I G U R E  7  Correlation between estimated and true spring and autumn survival rates under different simulated study lengths. For 
all scenarios shown, Δ = 0.75, σ2 = 0.25, and ρ = 0. Points show estimates of ϕj,t from all 250 simulations in each scenario. Solid and 
dashed black lines show the mean correlation between true and estimated survival for each season and the solid gray line indicates 1:1 
correspondence. Values in parentheses are the 95% credible interval of the r estimates
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influence migration survival. In these cases, it may be useful to 
identify processes known to influence annual survival and test 
these as covariates on spring and/or autumn migration. For ex‐
ample, Sillett, Holmes, and Sherry (2000) found that El Niño/La 
Niña cycles have a strong influence on annual survival of Black‐
throated Blue Warblers wintering in Jamaica. Subsequent analysis 
of these data using the framework presented here indicated that 
the El Niño/La Niña effects primarily influence spring migration 
survival rather than survival during the stationary winter or breed‐
ing periods (C. S. Rushing and T. S. Sillett, unpublished). Because 
covariates of annual survival are known for many species, this may 
be a useful approach for improving estimates of migration survival 
in many species.

Currently, only one published study has used this integrated sur‐
vival model to estimate the latent spring and autumn survival rates 
from capture–recapture data. Using a modification of the basic model 
presented here, Rushing et al. (2017) found that apparent spring mi‐
gration survival of Wood Thrush (Hylocichla mustelina) was ~5% and 
50% lower than autumn survival for adults and juveniles, respec‐
tively. Based on the results presented in this paper, we conclude that 
the direction of these differences (μSpr < μAut) is likely correct but 
that the magnitudes of the differences were likely underestimated.

In addition to the assumptions of conventional CJS models, the 
integrated survival model assumes that individuals in each pop‐
ulation have the same seasonal survival rates. Thus, although it is 
not necessary to sample the same individuals in each season, the 
integrated model does require data from linked breeding and winter 
populations. In reality, most breeding CMR data will contain individ‐
uals that winter in different locations and vice versa for winter CMR 
data. The degree to which individuals maintain geographic proximity 
across the annual cycle, termed migratory connectivity (Webster, 
Marra, Haig, Bensch, & Holmes, 2002), as well as the degree to 
which seasonal survival rates vary among populations could pro‐
duce complex forms of heterogeneity that were not included in the 
simulations presented here. The influence of migratory connectivity 
on estimation of seasonal survival rates requires additional study, 
though due to the complexity of possible patterns and strengths of 
migratory connectivity (Cohen et al., 2018), this topic is beyond the 
scope of this paper. Until the effects of migratory connectivity are 
better understood, users of this method should at least provide evi‐
dence that their data comes from linked breeding and winter popu‐
lations (Rushing et al., 2017).

The ability to estimate seasonal survival rates of small, migratory 
organisms opens the door to advancing our understanding of these 
species. At present, application of this method is likely restricted to 
a few well‐studied species that have adequate survival data from 
linked populations. Future efforts focused on quantifying migratory 
connectivity and collecting mark–recapture data, especially from 
wintering populations, are urgently needed for many other species, 
especially those of conservation concern. Collection of those data, 
along with further development of integrated models for estimating 
seasonal survival and population dynamics, will provide even deeper 
insights into the ecology and conservation of migratory species.
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