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Abstract: Weather conditions may have an impact on SARS-CoV-2 virus transmission, as has been
shown for seasonal influenza. Virus transmission most likely favors low temperature and low
humidity conditions. This systematic review aimed to collect evidence on the impact of temperature
and humidity on COVID-19 mortality. This review was registered with PROSPERO (registration
no. CRD42020196055). We searched the Pubmed, Embase, and Cochrane COVID-19 databases for
observational epidemiological studies. Two independent reviewers screened the title/abstracts and
full texts of the studies. Two reviewers also performed data extraction and quality assessment. From
5051 identified studies, 11 were included in the review. Although the results were inconsistent, most
studies imply that a decrease in temperature and humidity contributes to an increase in mortality.
To establish the association with greater certainty, future studies should consider accurate exposure
measurements and important covariates, such as government lockdowns and population density,
sufficient lag times, and non-linear associations.

Keywords: COVID-19; SARS-CoV-2; temperature; humidity; precipitation; seasonality

1. Introduction

SARS-CoV-2 was first identified in Wuhan, China, in December 2019 [1], and quickly
reached pandemic status. To date (May 2021), there have been more than 150 million
confirmed cases of COVID-19, the infection caused by the SARS-CoV-2 virus, and more
than 3 million COVID-19-related deaths worldwide [2].

Ambient weather conditions, such as temperature and humidity, play a multi-faceted
role affecting virus transmission. The major form of transmission of SARS-CoV-2 is through
droplets and aerosols containing the virus, released during exhalation, talking, singing,
or coughing [3,4]. While larger and denser particles sink to the ground, microdroplets
are small enough to remain suspended in the air for a long time (hours to days in still
air), depending on their size [5]. Temperature and relative humidity influence the amount
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of time in which aerosols remain suspended. Larger particles exhaled from the lungs
initially have a high-water content, but reduce in size through evaporation once they reach
the ambient air. The speed of this shrinkage depends on the ambient temperature and
humidity, and the final size of the particle (along with its density) will determine whether
it stays in the air for a period of time or whether it falls to the ground [5]. Temperature and
humidity may also affect the virus’s viability. For SARS-CoV, it was observed in laboratory
conditions that the dried virus retained its viability for days in temperatures between 22 ◦C
and 25 ◦C and relative humidity between 40 and 50%. However, at higher temperature
and higher relative humidity, the viability was lost at a quicker rate [6]. Furthermore, low
temperature and humidity of the inhaled air may impair the host airway mucosal surface
antiviral defense [7].

The effect of weather variables, such as humidity and temperature, have also been
reported for seasonal influenza, indicating a preference of the virus for colder temperatures
and lower humidity [8,9]. When looking at worldwide trends, one study indicated that
virus transmissibility was highest during the winter (“cold-dry”) for regions where hu-
midity and temperature decrease below thresholds of 18–21 ◦C and 11 g/kg over the year.
In regions where these thresholds are not reached, seasonal influenza transmission peaks
in months where precipitation occurs the most (“humid-rain”) [9]. Studies also found a
correlation between outdoor temperature and SARS cases, and came to the conclusion that
the optimal temperature for transmission was between 16 ◦C and 28 ◦C, with humidity of
52% and a wind speed of 2.8 m/s [10,11].

In light of the above observations, it can be surmised that there may also be a de-
pendence of SARS-CoV-2 transmission on weather variables. There have been reviews
published regarding the association between weather variables and SARS-CoV-2 transmis-
sion [12–14]. Yet, these reviews showed contradicting results and they did not assess the
quality of the included studies, which would put more weight on the conclusions of studies
having a lower risk of bias. Furthermore, the reviews also focused on using COVID-19
infection cases as the outcome. This may be an unreliable outcome measure owing to the
changing testing conditions and availability of tests, which have varied throughout the
timeline of the pandemic and between countries. The variation in testing will result in
inaccurate measures of COVID-19 cases, as reported case numbers will increase or decrease
as testing is increased or decreased. Instead, using mortality due to COVID-19 or a form of
excess mortality in the population will provide a more objective outcome measure that is
not dependent on current testing procedures or availability.

We thus conducted a systematic review in order to evaluate whether weather condi-
tions, namely, temperature, humidity, and wind, were associated with COVID-19 mortality
as a proxy for transmission. The results may provide a better predictability of the regional
COVID-19 pandemic development.

2. Materials and Methods

We searched Pubmed, Embase (Ovid), and the Cochrane COVID-19 Study register on
3 July 2020 and again on 4 January 2021 to find all observational epidemiological research
on the effect of temperature and humidity on COVID-19 disease mortality published since
January 2020. The search strings comprised keywords for COVID-19 and weather combined
with Boolean operators, and they were adapted to each database. The database search
strings are included in the online supplement (Table S1). A protocol of the systematic review
was registered a priori with the PROSPERO database of systematic reviews (PROSPERO
ID: CRD42020196055). This systematic review follows PRISMA reporting guidelines [15]
(checklist in Supplementary Material S1).

We conducted the search applying no language or geographical restrictions. We
considered studies that had not been peer reviewed and that were available as pre-prints.
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2.1. Eligibility Criteria

The scope of the review was specified according to the Population, Exposure, Com-
parison, Outcome, and Study Design (PECOS) scheme, shown in Table 1. We included
studies that included both temperature and humidity in their models, and excluded studies
only investigating univariate correlations and studies that excluded either temperature
or humidity in their multivariate models. We included studies using precipitation if hu-
midity was not investigated. When both humidity and precipitation were studied, we
included both parameters. We included studies that investigated mortality specifically due
to COVID-19 or studies looking at excess mortality.

Table 1. Eligibility criteria according to population, exposure, comparison, outcome of interest, and
study design.

Inclusion Criteria Exclusion Criteria

Population General human populations
(both sexes, all ages) All others

Exposure(s) Temperature, humidity *, wind All other exposures
Comparator/control Not applicable Not applicable

Outcomes
Mortality due to COVID-19 or
excess mortality compared to a

previous time frame
Other outcomes

Study design **
Ecological studies, case series,

cross-sectional, case-control, and
cohort studies

RCTs, qualitative studies,
ecological studies, case

reports, experiments
* Precipitation may be replaced by humidity; ** congress abstracts, posters, and reviews were excluded.

We considered only observational studies, such as ecological, case series, cross-
sectional, case-control, and cohort studies. Letters to the editor were also examined.

2.2. Selection Process

We collected search results in an Endnote library, and removed duplicate listings
prior to beginning the study selection process. Two reviewers independently screened the
titles and abstracts of the search results, and conflicts were resolved by seeking consensus.
If the reviewers still could not agree, a third reviewer made the decision. The full texts
of the remaining studies were then screened by two independent reviewers, and again,
disagreements were discussed in consensus meetings. We recorded reasons for exclusion
during the full-text review.

2.3. Data Collection Process

One reviewer extracted the data, and a second reviewer checked the extraction for
accuracy. Whenever there was missing or unclear information, we tried to obtain it through
personal communication with the authors. We extracted the following for each study: study
design, region, population size and cases, assessed time period, exposure measurement and
characteristics, outcome source and validation, variables adjusted for in the model, analysis
methods, and summary of the quantitative results. Furthermore, funding information
and conflict of interest statements were noted. The extracted study results included any
measures of association, with corresponding 95% confidence intervals (CI), such as relative
risks (RRs), odds ratios (ORs), hazards ratios (HRs), and β values.

2.4. Risk of Bias Evaluation

The risk of bias was assessed by two reviewers, applying a risk of bias tool established
in previous reviews [16–20], but adapted for our research question (Supplementary Table S2).
The risk of bias tool has eight domains: (1) recruitment procedure, (2) exposure assessment,
(3) outcome source and validation, (4) confounding, (5) analysis methods, (6) chronology, (7)
funding, and (8) conflict of interest, which are described below.
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2.4.1. Recruitment Procedure

This domain assesses the potential for selection bias. Studies were evaluated as having
a low risk of bias if there were no baseline differences among the study groups, or if
adjustment techniques were applied to correct for baseline differences.

2.4.2. Exposure Assessment

This domain was considered as low risk if there was high confidence in the accuracy
of the exposure assessment (i.e., data collected from weather stations) and if the exposure
measurements were geographically close to the outcome measurements—meaning that
they could represent the temperature to which the cases were exposed. If, for instance, the
average temperature or humidity readings were taken to represent a whole country, this
domain was considered high risk, as regional temperature differences were not considered.

2.4.3. Outcome Source and Validations

Risk of bias was assumed to be low for this domain, if the outcome (COVID-19 deaths)
was obtained through objective sources, such as from the World Health Organization
(WHO), the John Hopkins University Center for Systems Science and Engineering (CSSE)
COVID-19 Dashboard, or from government agencies.

2.4.4. Confounding

If major confounding factors were assessed and accounted for in the analysis, then
the risk of bias was assumed to be low for this domain. This varied depending on the
population included in each respective study. If more than one population within a country
(i.e., different cities or states) was studied, then at least the population density would have
to be adjusted for in the model, for the study to be listed as low risk of bias. If more than one
country was studied, then at least the population density and a measure of the healthcare
system would have to be adjusted for. For instance, we judged the gross domestic product
(GDP) as an adequate proxy for the healthcare system in a multi-country study. In addition,
if the time span of the study was relatively long (i.e., more than a month), government
interventions had to be accounted for in the model for this domain to receive a low risk of
bias rating.

2.4.5. Analysis Methods

This domain was rated as low risk of bias if it fulfilled several specifications. The
authors should have used adequate statistical models to reduce bias, such as considering
the fact that new cases of death are influenced by the amount of older, still infectious
cases in the population (autocorrelation). Further, similar variables should not have been
reiterated in the model (i.e., mean, low, and high temperatures in the same model. Finally,
if more than one population was studied (i.e., different countries), a component in the
model should have been included to allow for other differences in the population studied
(i.e., random effects).

2.4.6. Chronology

This domain was considered as low risk if the temporal relationship could be estab-
lished (the exposure precedes the outcome). In our study, this meant that a sufficient lag
effect between exposure and outcome should have been taken into account (depending on
the population and time period studied, at least 22 days: 6 days mean incubation plus 16
days from start of symptoms to death [21]).

2.4.7. Funding

If the study was funded by non-profit organizations and it was clearly not affected by
sponsors, this domain was considered low risk.
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2.4.8. Conflict of Interest

If the study authors reported not having a conflict of interest, this domain was consid-
ered low risk.

2.4.9. Overall Risk of Bias

Domains 1–6 were considered as major domains, while domains 7 and 8 were mi-nor
domains. A study could have an overall low risk of bias (high quality) if all the major
domains were low risk. If any of the major domains were rated as high or un-clear, then
the study was classified as having an overall high risk. Note that the risk evaluations for
domains 7 and 8 have no impact on the overall risk of bias of the study.

2.5. Data Synthesis

A narrative analysis of the studies was conducted, based on the characteristics and
methods of each study. We planned to conduct a random effects meta-analysis if at least
two studies were comparable in terms of outcomes and exposures, but this was not the case.

3. Results

Figure 1 shows the PRISMA flowchart of the process followed for the study iden-
tification and selection. From 5051 unique identified studies identified (7587 including
duplicates), we identified 299 studies for the full text screening. After further screening
full texts, eleven studies [22–32] were identified for our review. Both reviewers had a
97% (4923/5051) and 96% (286/299) consensus for the title/abstract and full text screen-
ing, respectively. Most of the conflicts between both reviewers were related to the type
of analysis—whether it was univariate or multivariate. The most common reasons for
exclusion during the full text screening were mortality missing as an outcome, humidity or
temperature were missing from the model, or the analysis was only univariate.

3.1. Overview of the Studies

All included studies were ecological studies. There were six studies investigating asso-
ciations worldwide, while two were set in China, one in Pakistan, one in Bangladesh, and
one in England. Most studies covered the first quarter or first half of 2020, encompassing
primarily the first wave of the pandemic. Most studies investigated the temporal spread of
mortality as a function of the weather variables, while two studies instead investigated
the spatial spread. Four studies reported relative risks (RRs) and six studies reported
β-coefficients based on the results of linear regressions, while one study reported both.
Table 2 displays a summary of the study characteristics and results of the studies included
in this review. More details of the studies are displayed in Tables S3 and S4.

3.2. Quality of the Studies

Detailed information about the quality of each study can be found in Table 3. In
general, the quality of the studies was low, mainly due to the “exposure”, “confounding”,
“analysis”, and “chronology” domains. Four studies used what we deemed as inaccu-
rate temperature or humidity measurements. For instance, some took average weather
conditions to represent a large area (i.e., a country), which may not have characterized
the exposure of the cases when infected. Various papers missed what we considered
important confounders to include in the model: population density (n = 1); a measure of
the healthcare system (n = 1); and government interventions, such as school closures, when
the period of the study was prolonged (n = 5). In addition, various studies either did not
include an autocorrelation component in their model (n = 6) or it was unclear whether this
was done (n = 2). All studies either did not include a lag between the exposure (weather
variables) to the outcome (death), or we considered that the lag was insufficient to establish
a temporal association. The longest lag considered was 18 days, some four days short of the
minimum lag required. Several studies (n = 4) received a high risk of bias in the exposure
domain, mostly because the weather measurements were not geographically close to the
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outcome measurements and, therefore, did not represent the exposure status of the cases.
Both studies evaluating the effect of weather variables on mortality by considering the
spatial spread of cases were problematic in the exposure and outcome domains. Their
exposure assessment was inadequate because the climatic data were either taken from the
previous year (2019) or for one day only. Similarly, one study chose one specific day for the
outcome assessment, which we evaluated as spurious. The other study used an aggregated
three-month mortality rate, which was not precise enough.

Even though no study was found to have a low risk of bias, we considered two studies
to be of comparably higher quality: Guo et al. [27] and Fernandez et al. [32], which both
used world-wide data. Both of these studies were of high quality in all major domains,
except for chronology. If both had used longer lags (they both used 14 days) to account for
the time between exposure and outcome, both would have received a high-quality rating.

Figure 1. PRISMA flowchart.
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Table 2. Characteristics of included studies.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Ma, 2020
[22]

Ecological
study

Study area:
Wuhan, China

Climatic zone:
Humid subtropical
climate

20 January–29
February 2020

Exposures:
Daily average temperature,
diurnal temperature range
(DTR), and relative
humidity

Source of data:
Shanghai Meteorological
Bureau and Data Center of
Ministry of Ecology and
Environment of the
People’s Republic of China

Outcome;
COVID-19 deaths

Source of data:
Official website of
Health Commission of
Hubei Province

Air pollutants, date of the
week, time trends

Analysis:
Generalized additive model (GAM) to analyze
associations, with a quasi-Poisson link function.
Used smoothed spline functions of times to
accommodate nonlinear and nonmonotonic
patterns between mortality and time.

Lag:
Examined single day lag and multiple-day
average lag effects (0–5 lag) of weather
conditions

Results:
% change of COVID-19 mortality (based on
Figures 2 and 3 of the text in Ma et al. 2020
[22])—no quantitative figures could be obtained.

Sobral, 2020
[23]

Ecological
study

Study area:
World
(249 countries)

1 December
2019–30 March
2020

Exposures:
Average temperature,
maximum temperature,
minimum temperature,
and precipitation

Source of data:
National Oceanic and
Atmospheric
Administration (NOAA)
database

Outcome:
Daily death rates

Source of data:
World Health
Organization reports

Population density,
dummy month (specific
month effects), country’s
time of exposure to the
epidemic (temporal
distance, in days, between
the first case registered
in the territory and the
time of study)

Analysis:
Multivariate linear regression

Lag:
No lag effect included

Results:
Model 1 (average temperature only):
ß = 0.053 (p < 0.01)

Model 2 (average temperature, maximum
temperature, minimum temperature,
precipitation, exposure time):
Death:
Average temperature:
ß = −0.10
Maximum temperature:
ß = 0.01
Minimum temperature:
ß = 0.01
Precipitation: ß = 0.34
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Model 3 (average temperature, maximum
temperature, minimum temperature,
precipitation, exposure time, population density,
dummy month):
Death:
Average temperature:
ß = −0.10
Maximum temperature:
ß = 0.02
Minimum temperature:
ß = 0.001

Su, 2020
[24]

Ecological
study

Study area:
178
countries/regions
(excluding
countries/region
without COVID-19
cases and some
unmatched
countries/region
(i.e., Taiwan))

22 January–6
April 2020

Exposures:
Mean temperature, relative
humidity, and precipitation

Source of data:
Global Surface Summary
of the 183 Day (GSOD) via
The Integrated Surface
Hourly (ISH) dataset
(includes global data
obtained from the USAF
Climatology Center

Outcome:
Cumulative mortality
rate (CMR)

Source of data:
John Hopkins
University dashboard
from Center for Systems
Science and
Engineering

World Development
Indicators dataset (World
Bank), urban development
(% urban population,
population growth,
population density), GDP
per capita, health,
infrastructure (railways,
passengers carried),
poverty (poverty
headcount ratio), science
and technology
(researchers in R&D) ,
social protection and labor
(cover of social insurance
programs, unemployment),
mean wind speed

Analysis:
Negative binomial regression

Lag:
No consideration of time (no lag)

Results:
Cumulative mortality rate
Mean temperature (◦C):
IRR = 0.975
(95% CI 0.887–1.071)
Relative humidity (%):
IRR = 1.025
(95% CI 0.995–1.056)
Mean wind speed (.1 knots):
IRR = 1.155
(95% CI 0.951–1.403)
Precipitation (0.01 inches)
IRR = 0.019
(95% CI 0.001–0.377)
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Wu, 2020
[25]

Ecological
study

Study area:
Worldwide (166
countries excluding
China)

December–27
March 2020

Exposures:
Temperature and relative
humidity

Source of data:
National Oceanic and
Atmospheric
Administration Center

Outcome:
Daily new deaths

Source of data:
WHO daily situation
reports

Wind speed, median age of
national population, Global
Health Security Index,
Human Development
Index, population density,
controlling for countries,
date of the week and date
of the observation to
control time trend and
cycle

Analysis:
Log-linear generalized additive model (GAM)

Lag:
Single lag days
(lag 0, 1, 2, 3).
Cumulative effects of average exposure over
multiple
days assessed using additional analyses
(lag 01, 02, 03)

Results:
Changes in daily new deaths (% change)
associated with each 1-unit increase:

Temperature (◦C):
ß = −0.65%
(95% CI −1.40% to 0.099%)
Relative humidity (%)
ß = −0.46%
(95% CI −0.63% to −0.29%)

Sensitivity analyses:
Over 10 days since the first reported case:
Temperature (◦C):
ß = −1.22%
(95% CI −2.00% to −0.45%)
Relative humidity (%)
ß = −0.51%
(95% CI -0.68% to −0.34%)

Over 100 cumulative cases:
Temperature (◦C):
ß = −1.25%
(95% CI −2.16% to −0.34%)
Relative humidity (%)
ß = −0.53%
(95% CI −0.73% to −0.33%)
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Rehman, 2020
[26]

Ecological
study

Study area:
Provinces of
Pakistan

Climatic zone:
Lies in temperate
zone with wide
variations
depending on
location

10 March–10 July
2020

Exposures:
Daily mean humidity and
wind, daily and minimum
temperature

Source of data:
Pakistan Meteorological
Department (http:
//www.pmd.gov.pk/en/),
https:
//www.timeanddate.com/
weather/pakistan, https:
//www.accuweather.com,

Outcome:
COVID-19 deaths

Source of data:
Government of Pakistan
http://covid.gov.pk/
stats/pakistan and
Worldometer
Coronavirus cases
https:
//www.worldometers.
info/coronavirus/
country/pakistan/

Sun status

Analysis:
Negative binomial log linear mixed model

Lag:
No lag

Results:
Due to lack of space, results summarized in
Table S3

Guo, 2020
[27]

Ecological
study

415 sites comprising
235 cities from 10
countries and 180
countries

23 January–13
April 2020

Hourly meteorological
data (temperature, relative
humidity, wind speed)
aggregated as daily
average meteorological
data.

Ground-based monitoring
network of the World
Meteorological
Organization global
telecommunications
system

COVID-19 mortality

Johns Hopkins
University Center for
Systems Science and
Engineering (JHU VSSE)
The Wind Financial
databases (WFD) for
detailed information on
COVID-19 at city/stae
level in Australia,
Canada, USA, China,
Germany, Italy, Japan,
Korea, Norway, and
Spain

Date of first reported cases,
population density, median
age, Global Health Security
Index (GHSI), latitude,
longitude, intervention
policies implemented

Analysis:
Negative binomial log linear mixed model

Results:
Lag 0–14 days
Temperature (Reference = 11 ◦C)
5 ◦C: RR 1.35
(95% CI: 1.21, 1.51)
22oC: RR = 0.51
(95%CI: 0.39, 0.67)
Relative humidity (Reference = 71%)
59%: RR = 0.98
(95% CI: 0.92–1.05)
79%: RR = 0.86
(95% CI: 0.80–0.92)
Wind speed
(Reference = 3 m/s)
2 m/s: RR = 1.31
(95% CI: 1.16, 1.48)
4 m/s: RR = 0.76
(95% CI: 0.70, 0.82)

Lag 14 days
Temperature (Reference = 11 ◦C)
5 ◦C: RR 1.02
(95% CI: 0.99, 1.06)
22oC: RR = 0.92
(95%CI: 0.84, 1.01)

http://www.pmd.gov.pk/en/
http://www.pmd.gov.pk/en/
https://www.timeanddate.com/weather/pakistan
https://www.timeanddate.com/weather/pakistan
https://www.timeanddate.com/weather/pakistan
https://www.accuweather.com
https://www.accuweather.com
http://covid.gov.pk/stats/pakistan
http://covid.gov.pk/stats/pakistan
https://www.worldometers.info/coronavirus/country/pakistan/
https://www.worldometers.info/coronavirus/country/pakistan/
https://www.worldometers.info/coronavirus/country/pakistan/
https://www.worldometers.info/coronavirus/country/pakistan/
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Relative humidity (Reference = 71%)
59%: RR = 1.00
(95% CI: 0.98–1.02)
79%: RR = 1.00
(95% CI: 0.98–1.02)
Wind speed
(Reference = 3 m/s)
2 m/s: RR = 1.03
(95% CI: 1.00, 1.05)
4 m/s: RR = 0.98
(95% CI: 0.96, 0.99)

Islam, 2020
[28]

Ecological
study

Study area:
Bangladesh

Climatic zone:
Humid monsoon
sub-tropical climate

8 March–30 April
2020

Exposures:
Night relative humidity
(NRH), rainfall,
diurnal temperature
(TDN), mean temperature
(MT), mean relative
humidity (MRH), and
absolute humidity (AH)

Source of data:
Bangladesh Meteorological
Department (BMD)
weather stations

Outcome:
COVID-19 death cases

Source of data:
Bangladeshi
government site

None besides the weather
parameters shown in
results (NRH, TDN, MT,
MRH, AH)

Analysis:
Compound Poisson generalized linear model,
along with a Monte-Carlo method and random
forest model

Lag:
Single and multiple day lags

Results:
no effect numbers (Figures 5 and 6 in the text in
Islam et al. 2020 [28] show a depiction)

Jiang and Xu,
2021
[29]

Ecological
study

Study area:
Wuhan, China

Climatic zone:
Humid sub-tropical
climate

25 Jan–7 April
2020

Exposure:
Daily temperature, relative
humidity, and diurnal
temperature range

Source of data:
Weather
Channel
(www.weather.com)

Outcome:
COVID-19 deaths

Source of data:
Health Commission
of Hubei China

No further confounders in
the analysis model and no
government interventions
were included because the
whole study period was
under strict lockdown

Analysis:
Poisson generalized linear model

Lag:
18 days

Results:
Daily temperature
ß = −0.149
RR = 0.861
(95% CI: 0.851, 0.872)
Relative humidity
ß = −0.005
RR = 0.995 (95% CI: 0.989, 1)
Diurnal temperature range
ß = 0.014
RR = 1.014 (95% CI: 1.003, 1.025)

www.weather.com
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Sun
2020
[30]

Ecological
study

Study area:
317 local authority
districts (LADs) in
England

Climatic zone:
Temperate climate

March–May 2020

Exposure:
3-month mean monthly
relative humidity and
monthly air temperature
(from 2019)

Source of data:
Met Office
HadUK-Grid, Gridded
Climate Observations on a
1 km Grid over the UK

Outcome:
Aggregated
three-month
England-wide
COVID-19 mortality
rate. Spatial patterns of
COVID-19 mortality
compared with
non-COVID-19
mortality

Source of data:
Office for National
Statistics

First model:
sex, ethnicity (percent
Asians, percent blacks),
percent of households in
poverty, unemployment
rate, population density,
hospital density annual
mean PM2.5

Analysis:
Variable selection: Lasso technique, spatial
autoregressive model (MESS-SAR), Eigenvector
spatial filtering model (RES-ESF)

Lag:
No consideration of time (no lag)

Results:
First model:
OLS Model:
Humidity: ß = −8.521 (p < 0.001)
Air temperature: ß = −0.795

MESS-SAR model:
Humidity: ß = −3.715 (p < 0.01)
Air temperature: ß = 1.512

RE-ESF model:
Humidity: ß = −4.793 (p < 0.001)
Air temperature: ß = 3.852
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Tzampoglou
and Dimitrios,
2020
[31]

Ecological
study

Study area:
Worldwide
101 countries
(countries with
Human
Development Index
(HDI) < 0.7
excluded from
analysis)

March–3 May
2020

Exposures:
Monthly average
atmospheric temperature
(◦C), monthly average
relative humidity (%), and
cumulative precipitation
(mm)

Source of data:
Collected from the
Copernicus Program
database, estimated from
climate reanalysis
ERA-Interim and ERA5

Spatial analysis tool of the
ArcGIS software was
employed to derive the
spatial average of variables
across the entire territory
of each country. After
spatial averaging, temporal
average values were
computed for the March
2020 to May 2020 period.

Outcome:
Total deaths per million
due to COVID-19

Source of data:
European Commission
(EC),
OurWorldInData.org,
and COVID-19
Government Response
Tracker, Blavatnik
School of Government

Cloud cover (CC),
population density (PD),
median age (MA),
stringency index (SI), delay
in first case (FC) and stay
at-home order measures
(SH)

Analysis:
Linear model, variable selection: Lasso and
forward stepwise

Lag:
No lag (no consideration of time)

Results:
Only two models shown, other models in Table
S3

Model A
Temperature:
ß = −108.9 (95% CI: −307.2, 89.4)
Relative humidity:
ß = 82.2 (95% CI −125.1, 289.5)
Precipitation:
ß = 13.4 (95% CI −258.8, 285.6)
confounders: CC, PD, MA, SI, FC, SH

Model B
Temperature:
ß = −88.9 (95% CI −259.2, 81.5)
Relative humidity:
ß = 79.1 (95% CI −126.5, 284.8)
Precipitation:
ß = −17.9 (95% CI −239.6. 203.8)
Confounders: PD, MA, SI, FC, SH
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Table 2. Cont.

Author, Year
Reference

Study
Design

Study Area and
Climatic Zone

Time Period of
Study

Exposures and Source of
Data

Outcome Definition
and Source of Data

Confounders/
Covariates Analysis, Lags, and Results

Fernández 2021
[32]

Ecological
study

Study area:
Worldwide
218 countries

21 January–18
May 2020

Exposures:
Maximum, miniumum,
and average daily
temperature and
precipitation
Source of data:
Downloaded from NASA’s
Goddard Earth Sciences
Data and Information
Services Center (GES
DISC).

Integrated Multi-satellite
Retrievals for Global
Precipitation Measurement
(IMERG), MERRA-2 (a
Modern-Era Retrospective
analysis for Research and
Applications version 2)

Outcome:
Daily confirmed deaths
and the total amount of
confirmed deaths

Source of data:
Population-level
information
(per country), reported
by WHO

National Biodiversity
Index (NBI), population
density, days since last
case, days since first case
reported in country,
country income level,
government intervention
level

Analysis:
Generalized linear mixed models

Lag:
14 days

Results:
Results of Bayesian spatio-temporal regression
analysis:
All countries
Precipitation:
ß = 0.000 (95% CI: −0.002, 0.001)
Maximum temperature:
ß = −0.003 (95% CI: −0.010, 0.005)

CI: confidence intervals; IRR: incidence rate ratio; RR = relative risk; NA: not available.
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Table 3. Risk of bias in the included studies.

Study ID
Major Domains Minor Domains

OVERALLRecruitment
Procedure

Exposure
Assessment

Outcome Source
and Validation Confounding Analysis

Method Chronology Funding Conflict of
Interest

Ma et al. 2020
[22]

Sobral et al. 2020
[23]

Su et al. 2020 **
[24]

Wu et al. 2020
[25]

Rehman et al. 2020
[26]

Guo et al. 2020
[27]

Islam et al. 2020
[28]

Jiang and Xu et al. 2021
[29]

Sun et al. 2020 **
[30]

Tzampoglou and Dimitrios
et al. 2020

[31]
Fernandez et al. 2020

[32]

** Spatial correlation : low risk; : unclear risk; : high risk.
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3.3. Effect of Temperature on Mortality

The results on a potential association between temperature and COVID-19 mortality
are unclear, yet most studies that did find a consistent association reported a tendency for
decreased mortality with increasing temperature. Here, we consider only studies that have
provided effect sizes with corresponding 95% confidence intervals, or at least p-values.
There were three studies (30%) that reported inconsistent associations (both negative and
positive associations depending on the analysis) [22,28,30]; one study (10%) with a positive
(not-significant) association [30]; five studies (50%) with negative associations [24–26,29,31];
and one study (10%) showing small, not significant effects [32]. Ma et al. [22], using non-
linear models, reported both negative and positive associations between temperature and
mortality depending on the lag days and lag scheme used. Islam et al. [28] reported
both positive and negative associations depending on the lag day used when using single
day lags, but when using multiple day lags, increasing temperature resulted in increased
mortality. Sun et al. [30] had conflicting results (all statistically not significant), depend-
ing on the model used. Rehman et al. [26] reported increased mortality with increased
temperature, but the effects were not significant. Tzampoglou and Dimitrios [31] found
an negative correlation between temperature and mortality, but it was statistically not
significant. Su et al. [24] also found decreased mortality with increased temperature. When
restricting to countries with over ten days since the first reported case or to countries
with over 100 cumulative cases, Wu et al. [25] found a decrease in daily new deaths with
increasing temperature (ß = −1.25%; 95% CI: −2.16% to −0.34%). Jiang and Xu [29] also
found that daily temperature was negatively correlated to mortality (RR = 0.861; 95% CI:
0.851–0.972). Interestingly, Guo et al. [27] examined non-linear models, which showed
that the effect of temperature on deaths was dependent on the temperature range and the
lag used. When looking at the single day lags, no statistically significant association was
found. When examining the association between COVID-19 mortality and temperature for
14 consecutive days (lag 0–14), mortality at 5 ◦C was 1.35 times greater than the mortality
at 11 ◦C (RR = 1.35; 95% CI: 1.21–1.51). When the temperature was at 22 ◦C, the risk in
mortality was halved (RR = 0.51; 95% CI: 0.39–0.67). A similar association was found when
using a cumulative 7-day lag. Fernandez et al. [32] found only small effects that were not
statistically significant.

3.4. Effect of Relative Humidity and Precipitation on Mortality

While the studies showed heterogeneous results, they presented a possible negative
correlation between mortality and humidity. In this analysis, we include only studies
reporting 95% confidence intervals or p-values. Ma et al. [22], Rehman et al. [26], and
Tzampoglou and Dimitrios [31] showed either no association or the associations were
not statistically significant with small effect sizes. Islam et al. [28] reported a positive
association for a 0-day lag, but no association for other lag days when using single day
lags, but when using multiple day lags, increasing humidity resulted in increased mortality.
Fernandez et al. [32], who investigated precipitation instead of relative humidity, showed
no correlation between precipitation and mortality.

Although Su et al. [24]’s analyses showed no association between relative humidity
and death, the risk of mortality decreased with increasing precipitation (IRR = 0.019; 95% CI:
0.001–0.377). The remaining studies found that an increase in humidity was associated with
a decreased risk in mortality. Wu et al. [25] found a −0.46% reduction in daily new deaths
associated with a 1% increase in relative humidity (ß = −0.46%; 95% CI: −0.63% to −0.29%),
and this effect remained in their sensitivity analyses. Likewise, Sun et al. [30] observed a
decreased risk of mortality with increased relative humidity (ß = −4.793; CIs not reported),
and the association was statistically significant. Jiang and Xu [29]’s estimations indicated
a very small effect of increased relative humidity on the risk of COVID-19 mortality
(RR = 0.995; 95% CI: 0.989–1). Guo et al. [27] looked again at non-linear associations,
looking at individual lag days and cumulative day lags. While in general, no associations
were found in single day lags, associations were found when using cumulative day lags. At
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a cumulative lag of 0–14 days, the authors found no association of humidity and COVID-
19 mortality below 71% relative humidity (RR = 0.98; 95% CI: 0.92–1.05 at 59% relative
humidity), but found a statistically significant negative relationship between relative
humidity and mortality above 71% relative humidity (RR = 0.86; 95% CI: 0.80–0.92 at 79%
relative humidity).

3.5. Effect of Wind on Mortality

Three of the included studies investigated the effect of wind on mortality. Su et al. ‘s [24]
findings show an increase in mortality with increased wind speed, but the effect was not
statistically significant (IRR = 1.155; 95% CI: 0.951–1.403). Rehman et al. [26] found no effect
of wind speed on mortality for all study regions. Lastly, Guo et al. [27] explored non-linear
associations between wind and mortality. They found an increased risk of mortality with
decreased wind speed below 3 m/s (RR = 1.31; 95% CI: 1.16, 1.48 at 2 m/s) and a decreased
risk of mortality with increasing wind speeds at wind speeds above 3 m/s (RR = 0.76; 95% CI:
0.70, 0.82 at 4 m/s).

3.6. Quantitative Analysis

A quantitative analysis (meta-analysis) could not be conducted as planned for the
effect of temperature and wind because of the heterogeneity of the outcome measures and
because various studies investigating associations investigated the same population (i.e.,
worldwide) during the same time frames.

4. Discussion
4.1. Summary of Results

Our results show some evidence of associations between temperature, humidity,
and wind speed on mortality, but they were ambiguous. When associations were found
for temperature and mortality, the direction of association indicates a decreased risk in
mortality with increasing temperature, supported by 50% of the studies. Half of the studies
(five in total) found a decrease in mortality risk with increasing humidity, while others
found no association (four studies) or a positive association (one study). Similarly, there
were inconsistent findings for the effect of wind on mortality. Considering both higher-
quality studies, Fernandez et al. [32], a worldwide study, found no effect of temperature or
precipitation on mortality. The other higher-quality study, Guo et al., also a world-wide
study that investigated non-linear effects [27], found associations between temperature,
humidity, and wind speeds on mortality, depending on the reference point (11 ◦C, 71%
humidity, and wind speed 3 m/s). Overall, if any effect was found, the tendency was for a
lower humidity and lower temperature to facilitate virus transmission, indirectly measured
by mortality.

The results of our systematic review are in agreement with three previous reviews [12–14],
suggesting a negative correlation between ambient temperature and humidity and the num-
ber of COVID-19 cases, but these previous reviews also report heterogenous findings, with
some studies reporting no or even a positive correlation.

4.2. Strengths and Limitations of Our Review

A strength of our systematic review is that the title-abstract and full-text screening,
the data extraction, and the quality assessment were carried out independently by two
reviewers. No language restrictions were applied, and studies only published in preprint
severs were included. Further, the study design was published a priori in PROSPERO. Our
review only included studies assessing mortality as an outcome. Owing to the variability
of testing in the population over time and between countries, using mortality is a more
accurate method that is less susceptible to such variations than using COVID-19 cases. The
reporting of cases of mortality due to COVID-19 might indeed vary by time and between
countries, but we deemed that this bias would be lower than that of reported COVID-19
cases. Mortality is also associated with disease severity, and our results may thus also
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indicate an association to disease severity. Data on mortality were taken from either official
government sources, WHO situation reports, or the John Hopkins University dashboard.
These data sources were assumed to be the most reliable, as they are based on local death
records. We extracted data on wind if available in the included studies, but unlike tempera-
ture and humidity, wind was not a necessary factor for inclusion. Therefore, our results
on wind were not representative of all studies investigating wind, but are representative
of all studies investigating temperature, humidity, and wind together. A meta-analysis
was not possible owing to the heterogeneity of the effect measurements, and because
various studies used the same study population during the same time frame. However,
we presented the results in a descriptive approach, using the risk of bias evaluation as a
supporting point for our conclusions and recommendations.

4.3. Risk of Bias of Included Studies and Recommendations for Future Work

The conclusions presented in this systematic review are limited by the high risk of
bias of the included studies. No studies were evaluated as having an overall low risk
of bias, mostly owing to the exposure, confounders, analysis method, and chronology
domains. Most studies missed important confounders, mainly by not including a measure
of government interventions in their model. Including factors such as school closures in
the model will take the decreased contacts in the population into account, which may have
occurred concurrently with temperature changes over time. In addition, some studies
missed having a random component in the model to allow for differences in the studied
populations. This is especially important when studying different countries, as unmeasured
factors such as culture and government type will also have an impact on compliance
(or ability to comply) to infection prevention measures. Other studies did not consider
autocorrelation, which takes into account that the incident cases on one day are dependent
on the number of cases in the past—an important feature of infectious disease epidemiology.
Further, no studies considered the necessary lag times to reflect the weather variables at
the time of infection. Rather, they tended to use the same time lags as when investigating
the association between weather factors and incident cases. Even though most studies
only considered linear correlations, it is worth further exploring non-linear associations,
as done in Guo et al. [27]. The non-linear associations may be useful to help explain
possible contradictory results from linear regressions, or the lack of associations, resulting
in heterogeneity. It is possible that the relationships depend on the geographical region
studied, with different peaks identified for weather conditions, as for influenza [9]. Studies
have shown non-linear temperature and humidity effects on influenza even within one
geographical region [33–35], and the same may apply for SARS-Cov-2.

All included studies were ecological study designs. However, it may be possible
to include epidemiological studies (i.e., cohort and case-control studies) to answer these
research questions. With such studies, personal factors, including age and comorbidities,
may be included to study the direct effect of weather variables on mortality.

It should be pointed out that some research questions, such as this one, still rely sub-
stantially on ecological studies or studies with ecological exposure assessment. Therefore,
increased efforts are needed to explicitly address risk of bias assessments to ecological
designs as, currently, no standard tools are available for these types of study designs.

4.4. Public Policy Implications

In the Northern Hemisphere, which was heavily affected by the COVID-19 pandemic,
it is widely expected that a reduction in COVID-19-related disease incidence will occur
with rising temperatures in the upcoming summer of 2021. Based on our systematic review,
this expectation should be met with caution. Particularly in view of the “action fatigue”
observed in many societies, it seems important to consistently continue effective public
health measures to contain the spread of the virus until vaccination leads to herd immunity.
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5. Conclusions

This review shows that some studies appear to confirm the hypothesis that lower
temperature and humidity contribute to an increase in cases, although this relationship
was not found for all studies. Future studies should principally consider accurate exposure
measurements, confounders such as government lockdowns and population density, long-
enough lag times, and non-linear associations in order to derive a solid conclusion. Further,
because of the lack of unequivocal results regarding the association between temperature
and humidity with COVID-19 cases, continued effective public health measures should
be implemented despite rising temperatures with seasonal changes, particularly in the
upcoming Northern Hemisphere summer in 2021. Preventive methods include contact
restrictions, the use of masks, widespread testing, and vaccination.
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