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Purpose: Analysis of mutant mouse strains and linkage analysis with human families have both demonstrated that
mutations influencing the podosomal adaptor protein SH3 and PX domains 2B (SH3PXD2B) can result in a congenital
form of glaucoma. Here, we use immunohistochemistry to describe localization of the SH3PXD2B protein throughout
the adult human eye and test whether sequence variants in SH3PXD2B occur in multiple other forms of glaucoma.
Methods: In immunohistochemical experiments, cryosections of human donor eyes were evaluated for SH3PXD2B
immunoreactivity with a polyclonal antibody. In genetic experiments, exon sequences of SH3PXD2B from patients with
primary congenital glaucoma (n=21), Axenfeld-Rieger syndrome (n=30), and primary open angle glaucoma (n=127) were
compared to control subjects (n=89). The frequency of non-synonymous SH3PXD2B coding sequence variants were
compared between patient cohorts and controls using Fisher’s exact test.
Results: Varying intensities of SH3PXD2B immunoreactivity were detected in almost all ocular tissues. Among tissues
important to glaucoma, immunoreactivity was detected in the drainage structures of the iridocorneal angle, ciliary body,
and retinal ganglion cells. Intense immunoreactivity was present in photoreceptor inner segments. From DNA analysis,
a total of 11 non-synonymous variants were detected. By Fisher’s Exact test, there was not a significant skew in the overall
frequency of these changes in any patient cohort versus controls (p-value >0.05). Each cohort contained unique variants
not detected in other cohorts or patients.
Conclusions: SH3PXD2B is widely distributed in the adult human eye, including several tissues important to glaucoma
pathogenesis. Analysis of DNA variants in three forms of glaucoma detected multiple variants unique to each patient
cohort. While statistical analysis failed to support a pathogenic role for these variants, some of them may be rare disease-
causing variants whose biologic significance warrants investigation in follow up replication studies and functional assays.

The glaucomas are a leading cause of blindness
worldwide [1]. All forms of glaucoma ultimately share a
clinically recognizable form of progressive optic nerve
degeneration, with several additional pathologic features
often present in distinct forms of the disease [2]. There is a
significant genetic contribution to the pathogenesis of most
forms of glaucoma and while several loci associated with
glaucoma have been mapped [3], known mutations only
account for a small fraction of disease. Mutations in myocilin
and optineurin are responsible for approximately 5% of
primary open angle glaucoma (POAG) [4]. WD repeat domain
36 (WDR36) [5], neurotrophin 4 (NTF4) [6], ankyrin repeat
and SOCS box-containing 10 (ASB10) [7], and TANK-
binding kinase 1 (TBK1) [8] are other genes that have also
been reported to be glaucoma-causing genes, but are
controversial or have not yet been widely replicated.
Similarly, genes have been discovered that cause primary
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congenital glaucoma (PCG), cytochrome P450, family 1,
subfamily B, polypeptide 1 (CYP1B1) [9] and latent
transforming growth factor beta binding protein 1 (LTBP2)
[10], and Axenfeld-Rieger syndrome, paired-like
homeodomain 2 (PITX2) [11] and forkhead box C1
(FOXC1) [12,13]. Mutations in CYP1B1 are responsible for
10%–15% of simplex PCG cases [14-16], while mutations in
LTBP2 have only been reported in PCG families from
Pakistan. It has been estimated that mutations in PITX2 and
FOXC1 are associated with 25%–30% of cases of Axenfeld-
Rieger syndrome in the United States [17], although these
numbers vary significantly between patient populations.
Nonetheless, these data indicate that many more disease-
causing genes for these conditions have not yet been
identified. Recent genome-wide association studies of
primary open angle glaucoma have begun to identify genetic
factors that each contribute small risk for disease, including
caveolin 1 and 2 (CAV1/CAV2) [18] cyclin-dependent kinase
inhibitor 2B antisense RNA 1 (CDKN2B-AS1) [19], and
transmembrane and coiled-coil domains 1 (TMCO1) [19].
Risk alleles from these genes (and others) may combine to
lead to the development of some cases of glaucoma. Many
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more of these risk alleles are likely to be discovered by larger
glaucoma genome-wide association study (GWAS) that are
currently underway.

Another approach to discover glaucoma genes is by
studying the eyes of inbred mice. Recently, these
investigations identified the SH3 and PX domains 2B
(SH3PXD2B) gene as a potential glaucoma-causing gene
[20-22]. The nee strain of mice is a spontaneously arising
mutant that exhibits several glaucomatous defects, including
developmental malformations of the iridocorneal angle,
elevated intraocular pressure, and optic nerve degeneration
[22]. We have recently identified the genetic basis of the nee
phenotype as a 1-bp Sh3pxd2b deletion that is predicted to
result in a frame-shift and premature stop codon [21].
Independently, Iqbal et al. [20] used linkage analysis and
characterization of a mouse mutation generated via gene-trap
to link SH3PXD2B with Frank-Ter Haar syndrome, a
condition often involving congenital glaucoma [23,24]. Thus,
two independent lines of investigation have suggested that
severe loss-of-function mutations in SH3PXD2B could
contribute to developmental forms of glaucoma. It remains
unknown what role, if any, that hypomorphic alleles of
SH3PXD2B might have.

We have tested the role of SH3PXD2B in glaucoma
pathogenesis. The Sh3pxd2b mutant mice have a homozygous
1 base pair deletion in the Sh3pxd2b gene and develop
congenital glaucoma with features similar to Axenfeld-Rieger
syndrome. The mice have congenital craniofacial
abnormalities and peripheral anterior synechiae that mimic
the maxillary hypoplasia and iridocorneal angle abnormalities
that characterize Axenfeld-Rieger syndrome [21,22]. As a
result, we have tested the role of SH3PXD2B in Axenfeld-
Rieger syndrome by testing a cohort of patients for disease-
causing mutations. Given the role of SH3PXD2B in syndromic
congentital glaucoma associated with Frank-Ter Haar
syndrome and the early onset glaucoma phenotype in the
Sh3pxd2b mutant mice, we also tested a cohort of primary
congenital glaucoma patients for disease-causing mutations
in SH3PXD2B. We similarly tested a cohort of adult-onset
primary open angle glaucoma (POAG) patients to determine
if variants in SH3PXD2B have a role in the pathogenesis of
this more common form of glaucoma. We also report
localization of SH3PXD2B protein throughout the normal
human eye using immunohistochemistry. The results
demonstrate that SH3PXD2B is broadly expressed in many
ocular tissues important to glaucoma and that the
SH3PXD2B gene harbors rare variants that may be important
in the pathophysiology of glaucoma.

METHODS
Immunohistochemistry: Human donor eyes were obtained
from the Iowa Lions Eye Bank (Iowa City, IA) following
informed consent from the donors’ families. The average
death-to-preservation time for the eyes used in this study was

5.75 h (range 3.75 to 8.1 h). Immunohistochemistry was
performed on tissue from two normal eyes of donors with ages
ranging from 61 to 88 years. Eyes were processed
immediately on receipt. Lenses were removed, and tissues
from the anterior and posterior poles were punched using
disposable trephines, and punches were fixed with 4%
paraformaldehyde in phosphate buffered saline (PBS) for 2 h.
The removed lenses were fixed separately with a similar
approach. After fixation, tissues were rinsed with PBS.
Tissues were cryopreserved with sucrose gradient and
embedded in Optimal Cutting Temperature embedding
medium (Tissue-Tek O.C.T. Compound; Sakura Finetek,
Torrance, CA) [25]. Anterior and posterior punches were cut
at 6–8 µm thickness. The lenses were cut at 18–20 µm
thickness. Sections were air dried for 30 min at room
temperature, rehydrated in PBS for 5 min, and blocked with
10% goat serum, 3% BSA (BSA) in PBS for 1 h at room
temperature. Sections were then incubated overnight at 4 °C
with a rabbit anti-human SH3PXD2B polyclonal antibody
(Millipore, Temecula, CA) diluted at 1:50 in 1% goat serum,
1% BSA in PBS. Adjacent sections incubated without the
primary antibody were used as negative controls. After
washes with 0.1% Tween-20 in PBS (3×10 min), sections
were incubated with Alexa488-conjugated goat anti-rabbit
antibody (Invitrogen, Carlsbad, CA) diluted at 1:200 in 1%
goat serum, 1% BSA in PBS for 1 h at room temperature.
Following washes, sections were incubated with To-Pro-3
(1:1000 dilution in PBS; Invitrogen, Carlsbad, CA) for 15 min
at room temperature to stain nuclei. Sections were then
washed several times in PBS, mounted (ProLong Gold;
Invitrogen, Carlsbad, CA) and imaged with a confocal
microscope (Zeiss LCM 510; Carl Zeiss MicroImaging, Inc.,
Thornwood, NY). Two eyes were examined and
immunolabeling was repeated twice for each eye.
Human subjects: All subjects enrolled in the study gave
informed consent and the research was conducted with
approval of the University of Iowa’s Internal Review Board.
Twenty-one patients with primary congenital glaucoma had
typical features of disease including a diagnosis before 3 years
of age, open angles on gonioscopy, elevated intraocular
pressure, buphthalmos, and Haab striae. Thirty patients with
Axenfeld-Rieger syndrome had characteristic features of the
condition including posterior embrotoxon, iris processes,
correctopia, polycoria, redundant periumbilical tissue, and
dental abnormalities. One hundred and twenty seven patients
with POAG had excavation of their optic nerve head with
resultant glaucomatous visual field loss in at least one eye.
Glaucomatous optic nerves had cup-to-disc ratios of greater
than 0.7 with thinning of the neural rim, asymmetry of the
optic nerve cup-to-disc ratio of >0.2, or photographic
documentation of progressive loss of the neural rim. Patients
were 40 years of age or older at diagnosis and had open
iridocorneal angles on gonioscopy (angle greater than Shaffer
grade II). Patients were also required to have an IOP of greater
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than 21 mmHg on at least one occasion. Eighty-nine control
subjects were a minimum of 50 years old and were examined
and judged to have normal optic nerve head appearance and
IOP ≤21 mmHg by board-certified ophthalmologists. All
study subjects were examined by clinicians at the University
of Iowa Hospitals and Clinics and ascertained in Iowa.
Genetic analysis: DNA samples were prepared from
peripheral blood samples extracted from patients in the clinic
by standard procedures. The coding region of SH3PXD2B
(NM_001017995) was PCR amplified using overlapping
primer pairs in standard PCR reactions (Table 1). This assay
encompass 97% of the coding sequence of the longest isoform
of SH3PXD2B . Amplified DNA was scanned for mutations
with a combination of single strand conformation
polymorphism (SSCP) analysis and bi-directional DNA
sequencing with an Applied Biosystems (ABI) model 3730
automated sequencer as previously described [8]. Those
mutations that result in amino acid substitutions were
evaluated using the blosum62 matrix, which provides an
integer score for these substitutions that ranges from −4 to +3.
More positive blosum62 scores indicate conservative amino
acid changes that are less likely to be pathogenic, while more
negative scores indicate less conservative substitutions that
are more likely to cause disease [26].

RESULTS
SH3PXD2B expression in human eyes: Based on several
published microarray studies [27-33], in situ hybridization
data from mice [20], and limited experiments with ocular
tissues dissected from mice [22], SH3PXD2B is predicted to
have a broad ocular expression. However, the

immunolocalization of SH3PXD2B protein throughout the
eye has not previously been examined. To characterize the
distribution of SH3PXD2B protein in adult human eyes,
immunofluorescent labeling was performed using a
polyclonal antibody against human SH3PXD2B on
cryosections of healthy human donors (Figure 1). Presence of
SH3PXD2B immunoreactivity was demonstrated on multiple
tissues in the eye, including the cornea, iris, trabecular
meshwork, ciliary body, retina, and the lens. In the cornea,
relatively strong immunostaining was observed in the
cytoplasm of corneal epithelium (Figure 1A) and endothelium
(Figure 1B), while there was definite but weak labeling of the
keratocytes in the corneal stroma (Figure 1A,B). Similarly,
wide distribution of SH3PXD2B was also found in the
cytoplasm of all cell types of the iris and trabecular meshwork
(Figure 1C,D). In the ciliary body (Figure 1I,J), strong
labeling was detected in the non pigmented epithelium of the
ciliary process and the ciliary muscle. Immunoreactivity of
the pigmented epithelium of the ciliary process was less
intense. In the retina (Figure 1K), the immunoreactivity was
detected in most layers including the retinal ganglion layer,
the main cell type affected during glaucoma. Interestingly, the
strongest labeling of the retina was detected in the inner
segment. Definite, but weak labeling of the lens epithelium
and lens cortex were also observed (Figure 1L). No signal was
detected in negative controls stained only with the secondary
antibody (Figure 1E-H,M-P). These results demonstrate a
broad distribution of SH3PXD2B in human eyes and support
a possible role of SH3PXD2B in the pathogenesis of a variety
of ocular diseases.

TABLE 1. THE CODING REGION OF SH3PXD2B WAS PCR AMPLIFIED USING OVERLAPPING PRIMER PAIRS.

Exon Forward primer Reverse primer
2 GTCCCAGAGATTGGGAGACC GAATGTAAGTCCAATTAAACTCTTTCC
3 AAATGTCCTAGATGATGTTTAGTGC CAAGGGCTCTGGGAACTGTA
4 GGCACCACTCAGACCTACCC GCACAAATTTTTATTGTTGAGCAT
5 CAAACAATTATCTTGCCTCAGC TGCTTTACTTGGGGGTGGC
6 AATACATGGCAAGTCTGACTCG GTTTGCCGAAAACTGAACGA
7 TGACTCCTGCTCTTTCATGC GAGTTTCCAAATGTTTCATGTCC
8 TTCACTGGTACAGTGGCTGAAT GCAACCCAGTATAGGCGATG
9 AAGGGCATCACGGGGATT GTGAGGCCAGAGTCCCTGT

10A TGTGATTCCCAGTAGGAGCA TGCTGAGCAGCTCCTTCT
10B GTGCCCTTGACTTGGATGG GATGTGAGACGCCTTGAGC
11 CCCAGCTCAGGAATCTCATC TGTGTGAGGGGCTAGTGGAC
12 GACACAGGGTCGCAGGAGT GGGGAGAAGTAGGAGGTGATG

13A CCAAACCATTCCATCTGCTG GGAGCTGGGTCACCTCGT
13B AGGACTCTTTGTATGTGGCCGTG AAGCCAGCAAGGACCAGCGGG
13C AACGCGTCGAGACCCAAC GGGGTCTGAGATCTCCTCGTA
13D ATGTCCTGAGGAAGGCATC TTTTGTCAGGTTTGGGCTCT
13E GTGATTTTGCCGATGATGC TCTGGACTTCAAGAAGGGATTC
13F GCCCATCTCCAAATCCAAAA CCCTCCCCATCCAACAAG
13G GACCAAGTCGACATCTGCAA GCACGCTCTTAGACACAGGAT
13H GGGCAAACAGGATGGTCT GAGAAAAGGTTTGGCTTTTGG
13I ACAGTGTGAAGGCCACGAAA CCTGGAAGCTGCTGGTGT
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DNA variations in SH3PXD2B: A total of 24 unique variations
were detected in the SH3PXD2B gene including 11 non-
synonymous coding sequence variations, 5 synonymous
coding sequence variations, and 8 intron variations (Table 2).

The SH3PXD2B protein has one segment with homology
to a phosphoinositide binding Phox (PX) domain that extends
from amino acid 7–125 and four src homology (SH3) domains
that span amino acids 156–207, 225–277, 373–422, and 855–
909 [34]. Non-synonymous mutations in SH3PXD2B, were

Figure 1. Localization of SH3PXD2B in human eyes. Immunohistochemistry labeling of SH3PXD2B on human eyes reveals localization of
SH3PXD2B in most ocular cell types. (A-D, I-L) Cryosections were labeled with an anti-SH3PXD2B antibody (Green) and To-Pro-3, a
nuclear counterstain (blue). (E-H, M-P) Negative controls omitting the primary antibody were performed on adjacent sections. (A-B, E-F)
Cornea. (C, G) Iris. (D, H) Trabecular meshwork. (I, M) Ciliary processes. (J, N) Ciliary muscles. (K, O) Retina. (L, P) Lens. The orange-
yellow color in K and O represents lipofuscin autofluorescence in the retinal pigment epithelium. cep, corneal epithelium; cen, corneal
endothelium; ist, iris stroma; ipe, iris pigment epithelium; tm, trabecular meshwork; sc, Schlemm’s canal; gcl, ganglion cell layer; inl, inner
nuclear layer; onl, outer nuclear layer; is, inner segment; os, outer segment. Scale bar=50 µm.
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not clustered within any particular functional domains of the
gene. None of the detected non-synonymous codon variations
(Table 2) were located in the PX domain, while one variation
(Gly245Arg) was located in the second SH3 domain and
another variation (Glu396Lys) was located within the third
SH3 domain.

The detected SH3PXD2B variants were analyzed using
the blosum62 matrix. Some amino acid substitutions are more
deleterious to protein function than others and have more
negative blosum62 scores. Each of the 11 non-synonymous
coding sequence variants that we detected in SH3PXD2B was
evaluated with the blosum62 matrix to estimate their potential
effects on protein function (Table 2). Five of the 11 variants
(Gly245Arg, Gly481Arg, Pro571Leu, Pro826Leu,
Gly833Glu) had blosum62 scores of −2 or −3 which suggests
that they may be harmful to protein function. It is notable that
of these 11 variants, only one (Gly245Arg) is located within
a known functional domain and has a negative blosom62
score.

When the frequencies of non-synonymous coding
sequence variations were compared between the primary
congenital glaucoma patients and control subjects, no
significant difference was detected (p-value >0.99). Similar

results were obtained for Axenfeld-Rieger syndrome (p-value
>0.99) and POAG (p-value >0.76).

DISCUSSION
Animal models provide key resources for investigating the
biologic pathways that lead from a gene defect to the
development of disease. Studies of animal models have
already facilitated the development of powerful diagnostic
tests and effective therapeutic strategies, such as gene therapy
for Leber Congenital Amaurosis caused by defects in the
retinal pigment epithelium-specific protein 65kDa (RPE65)
gene [35-37].

However, with respect to glaucoma, there are currently
few mouse models that recapitulate the genotype and
phenotype of human disease [38].

Multiple lines of evidence suggest that SH3PXD2B is
relevant to human glaucoma. Loss of function mutations in
SH3PXD2B have been linked to the form of congenital
glaucoma occurring in Frank-Ter Haar syndrome [20] and
nee mutant mice [21,39]. SH3PXD2B is an adaptor protein
that has a vital role in the formation and function of podosome-
like adhesions and interacts with other molecules that are
important in maintenance of the extracellular matrix [21,39,

TABLE 2. SH3PXD2B VARIANTS.

Variations BLOSUM62
matrix score

Located within
protein domain

Primary congenital
glaucoma n=21

Axenfeld-Reiger
syndrome n=30

POAG
n=127

Normal control
subjects n=89

Non-synonymous coding sequence variations

Gly245Arg −2 SH3 #2 0 0 1 0
Pro295Gln −1 - 0 0 2 2
Arg356Gln 1 - 0 0 1 0
Glu396Lys 1 SH3 #2 1 0 0 0
Ala431Thr 0 - 0 1 0 0
Gly481Arg −2 - 0 0 1 0
Pro571Leu −3 - 0 1 0 0
Pro826Leu −3 - 0 0 0 1
Ile832Val 3 - 0 0 1 0
Gly833Glu −2 - 0 0 0 1
Glu834Lys 1 - 0 0 0 1

Total 1 2 6 5
Synonymous coding sequence variations

Ala195Ala - - 0 0 1 0
Ser174Ser - - 0 0 3 1
Ser35Ser - - 16 22 90 61

Asp385Asp - - 1 0 0 1
Thr428Thr - - 1 0 0 1

Intravening sequence variations
IVS3–28 a>g - - 3 1 9 4
IVS7–11 c>t - - 8 13 63 59
IVS7+50 t>c - - 0 0 3 1

IVS10–27 a>g - - 5 0 6 9
IVS11–9 t>c - - 1 1 0 0
IVS11–8 c>t - - 1 1 0 0
IVS11–7 g>t - - 0 0 2 1
IVS12–43 c>t - - 0 0 2 3
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40]. Podosomes have previously been observed in cells of the
trabecular meshwork and are likely to regulate localization of
matrix metalloproteinases capable of influencing outflow
facility [41,42]. As such, it is plausible that SH3PXD2B may
influence trabecular meshwork structure and function, facility
of outflow, and intraocular pressure. Finally, we have shown
with immunohistochemistry that SH3PXD2B is expressed in
tissues of the human eye that are important in the glaucoma
including the trabecular meshwork, ciliary body, and retina.
Prior studies of SH3PXD2B showed that loss of function
mutations are associated with a congenital form of glaucoma
as part of Frank-Ter Haar syndrome, suggesting that we might
find similar defects in a cohort of primary congenital
glaucoma patients and possibly hypomorphic alleles in other
forms of human glaucoma. Based on these observations, we
set out to test cohorts of glaucoma patients for mutations in
the SH3PXD2B to determine if the same defects that cause
glaucoma in the Sh3pxd2b mutant mice are responsible for
human disease.

We detected 14 instances of 11 non-synonymous
SH3PXD2B coding sequence variations in our cohorts of
primary congenital glaucoma, Axenfeld-Rieger syndrome,
primary open angle glaucoma, and control subjects (Table 2).
Rare SH3PXD2B variants were detected in each cohort that
were absent from the normal control cohort. One (4.8%) of 21
primary congenital glaucoma subjects carried a Glu396Lys
mutation that is located in the third SH3 domain and has a
relatively benign blosum62 score of “1.” Two (6.7%) of the
30 Axenfeld-Rieger syndrome patients carried SH3PXD2B
variations, one patient with Ala431Thr and another with
Pro571Leu. Neither of these variants alter known functional
domains of SH3PXD2B, however, one variant, Pro571Leu,
has a negative blosum62 score of “-3” implying that it may
have some effect on the encoded SH3PXD2B protein.
SH3PXD2B variants were detected in six (4.7%) of 127
POAG patients, including 4 variants (Gly245Arg,
Arg356Gln, Gly481Arg, and Ile832Val) that were absent
from normal control subjects. Two of these variants
(Gly245Arg and Gly481Arg) have blosum62 scores of −2 and
Gly245Arg is also located within the second SH3 domain of
SH3PXD2B. Finally, five (5.6%) of 89 normal control
subjects were found to carry SH3PXD2B mutations with
blosum62 scores that range from −3 to +1 and none were
located in known functional domains. Of note, two of these
variants were unique to the cohort of normal control subjects.
These data demonstrate that SH3PXD2B variants are not a
common cause of primary congenital glaucoma, Axenfeld-
Rieger syndrome, or POAG. However, it is certainly possible
that our research failed to identify disease-causing mutations
in SH3PXD2B that would be detectable with the power of a
study with larger cohorts of patients and controls.

Among the variants identified, Gly245Arg stands out as
a possible rare disease-causing variant. In addition to a
pathogenic prediction based on blosum62 score [26,43], the

change is also predicted to be deleterious by multiple
additional algorithms (data not shown), including Sorting
Tolerant From Intolerant (SIFT) [44], Polymorphism
Phenotyping (PolyPhen) [45], and Align Grantham Variation
Grantham Deviation (A-GVGD) [46]. This is significant as it
has been previously suggested that there is improved
predictive value when all four of these methods are in
agreement [47]. There is also biologic evidence suggesting
pathogenicity. SH3 domains typically consist of 5 or 6 beta-
strands arranged as two anti-parallel beta sheets that
essentially form a barrel-like structure mediating protein–
protein interactions [48]. The Gly245Arg substitution affects
a highly conserved Gly residue within a linker region between
beta-strands contributing to a type II beta-turn. Based on an
analysis of 266 nonredundant sequences encoding SH3
domains, this Gly is the fifth most highly conserved residue
of the 60 constituting a SH3 domain [48]. The residue
conservation at this position is thought to be explained by a
requirement for the backbone to adopt a left-handed helical
conformation for which Gly is strongly favored, both in SH3
domains [48] and in type II beta-turns in general [49]. Though
speculative, it is plausible that the Gly245Arg substitution
could disrupt folding and ability of the second SH3 domain to
participate in protein–protein interactions, thus resulting in a
hypomorphic or dominant negative mutation. However, given
the rarity of Gly245Arg variant, additional functional
experiments would be required to test this hypothesis directly.

One other SH3PXD2B variation (Pro826Leu) was also
associated with a blosum62 score of −3 that suggests
pathogenicity. However, the proline amino acid in
SH3PXD2B protein that is altered by this mutation is not
strongly conserved across species, nor does A-GVGD suggest
that this variation is likely deleterious. Lastly, the Pro826Leu
variant has been detected in the exome sequencing project at
a frequency of approximately 1% which suggests that it is too
common to be a glaucoma-causing mutation. Despite the
suggestive blosum62 score, the sum of the available data does
not support a disease-causing role for the Pro826Leu
variation.

In summary, we previously showed that mutation of
Sh3pxd2b generates a severe, congenital form of glaucoma in
mice [21,22], which suggests that the human ortholog
(SH3PXD2B) and interacting proteins are also good
candidates for causing disease in humans. We tested cohorts
of patients with primary congenital glaucoma, Axenfeld-
Rieger syndrome, and POAG for SH3PXD2B defects and
found several rare variants. While analyses of these data were
unable to establish a statistically significant link between
SH3PXD2B and these eye conditions, we have demonstrated
that SH3PXD2B is localized to multiple tissues relevant to
glaucoma and identified changes warranting future functional
studies.
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