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Purpose: Early warning in the travel origins is crucial to prevent disease spreading. When travel origins 

have delays in reporting disease outbreaks, the exported cases could be used to estimate the epidemic. 

Methods: We developed a Bayesian model to jointly estimate the epidemic prevalence and detection 

delay using the exported cases and their arrival and detection dates. We used simulation studies to dis- 

cuss potential biases generated by the exported cases. We proposed a hypothesis testing framework to 

determine the epidemic severity. 

Results: We applied the method to the early phase of the COVID-19 epidemic of Wuhan, United States, 

Italy, and Iran and found that the indicators estimated from the exported cases were consistent with the 

domestic data under certain scenarios. The exported cases could generate various biases if not modeled 

properly. We presented the required number of exported cases for determining different severity levels 

of the outbreak. 

Conclusions: The exported case data is a good addition to the domestic data but also has its drawbacks. 

Utilizing the diagnosis resources from all countries, we advocate that countries work collaboratively to 

strengthen the global infectious disease surveillance system. 

© 2022 Elsevier Inc. All rights reserved. 
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ntroduction 

Travel is a potent force in the emergence and spread of dis- 

ases [1] . Early warning and rapid response in the travel origins 

re crucial to prevent disease spreading. However, many travel ori- 

ins have delays in reporting the disease outbreak. Under this cir- 

umstance, those exported cases, who traveled from the origin and 

ere tested positive at the destination, became a valuable and in- 

ormative data source for detecting the disease outbreaks in the 

ravel origins. 

The traveler data were mostly used as imported cases to model 

he epidemic at the travel destinations. For instance, [2] estimated 

ndicators of COVID-19 outbreak in Nigeria using both the local 

ases and the imported cases. The traveler data were also used to 

ssess the potential for the virus to spread across international bor- 

ers after a local outbreak was confirmed by the domestic cases 
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see [3–5] as examples). A few studies focused on using the trav- 

ler data as exported cases to detect the outbreak at the travel 

rigin [ 6–8,16–19 ]. These studies all used the number of exported 

ases and aggregated those numbers to the end of the study pe- 

iod and provided estimates for the time at the end of the study 

eriod. 

Here we used the number of exported cases, the diagnostic 

ates, and the arrival dates (if available) to provide daily estimates 

f some key indicators of the epidemic during the early stage of 

he COVID-19 outbreak in four travel origins, Wuhan (China), Iran, 

taly, and United States. The additional information in the diagnos- 

ic and arrival dates allowed us to approximate the detection delay 

mong travelers and include some undiagnosed travelers in esti- 

ating the prevalence. They also lead to a better estimate of the 

rowth rate compared to evenly distributing the total number of 

xported cases over the study period. We investigated the useful- 

ess and limitations of using the exported cases in understanding 

he epidemic and provided a disease outbreak detection criterion 

ased on the cumulative number of exported cases for stakehold- 

rs to make decisions. 

https://doi.org/10.1016/j.annepidem.2022.09.005
http://www.ScienceDirect.com
https://sciencedirect.com/journal/annals-of-epidemiology
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annepidem.2022.09.005&domain=pdf
mailto:lebao@psu.edu
https://doi.org/10.1016/j.annepidem.2022.09.005
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Table 1 

The start date of the local epidemic, the end date of the study period, the number of days in the study period 

Start date of the local epidemic End date of the study period Number of days in the study period Number of exported cases 

Wuhan Dec 1, 2019 Jan 23, 2020 54 11 

U.S. Jan 20, 2020 Mar 13, 2020 54 25 

Italy Jan 31, 2020 Feb 28, 2020 29 57 

Iran Jan 9, 2020 Feb 23, 2020 46 4 

the total number of exported traveler case reports within the study period and the total number of exported destinations within the study period. 
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aterials and methods 

ata description 

We chose four travel origins, Wuhan (China), the United States, 

taly, and Iran, in which the COVID-19 outbreaks were detected 

elatively early compared to their neighbors in their region. We 

btained the exported case reports within the period specified in 

able 1 from [9] with reverification of their travel histories using 

overnment and media reports. For each travel origin, we also ob- 

ained the domestic case reports [ 10 , 11 ] to model the domestic

rowth curve as a comparison with the one estimated from the 

xported cases. Reasons for choosing the start and end dates of 

ach travel origin were provided in Supplementary S1. The details 

f obtaining the outbound travel volume data, criteria used to ex- 

lude certain cases, and full data table were also in Supplementary 

1. 

For each travel origin, we also obtained the domestic case re- 

orts to model the domestic growth curve as a comparison with 

he one estimated from the exported cases. Domestic case reports 

or Wuhan were obtained from [10] , and the data for the United 

tates, Italy, and Iran were obtained from COVID-19 Data Reposi- 

ory by the Center for Systems Science and Engineering (CSSE) at 

ohns Hopkins University [11] . 

tatistical models for traveler cases 

We assumed that in the initial period of the epidemic the dis- 

ase prevalence in the general population increased exponentially: 

t = exp( β0 + β1 t ) , and referred to β1 as the exponential growth 

ate. Another important indicator, the basic reproduction number 

 0 , is the expected number of new infections caused by one in- 

ected individual during the infectious period. R 0 can be related 

o β1 by R 0 = 

1 
∫ ∞ 

0 
exp( −β1 τ ) ω(τ ) dτ

, where ω(τ ) is the density of the 

erial interval [12] . We assumed the exported cases follow a bino- 

ial distribution given the daily travel volume, disease prevalence 

n the general population, and a traveler bias correction factor. In 

ddition, we assumed that a certain proportion of infected travel- 

rs were not detected by the end of the study (right censoring) 

nd used the interval between arrival dates and detection dates to 

nfer the censoring proportion. We used Bayesian inference to es- 

imate the parameters. Detailed statistical models are provided in 

upplementary S2. 

stimation based on domestic case reports 

To investigate the potential biases generated by using only the 

xported cases, we compared the estimates from the exported case 

ata with the ones from the domestic data. [10] carefully stud- 

ed and reconstructed the full transmission dynamics in the early 

eriod of the COVID-19 epidemic in Wuhan by fitting a seven- 

ompartment model. From their R 0 estimate of 3.54 with a 95% 

onfidence interval (3.40,3.67), we could derive the exponential 

rowth rate before January 23, 2020 (assumed to be a constant) 

eing 0.192 with a 95% credible interval (0.185,0.199). Unfortu- 

ately, similar results were not readily available for the other travel 
68 
rigins due to limitations of the data and knowledge about their 

arly stages. For the other three origins, we fitted the exponen- 

ial growth rate by using domestic records in [11] and their cor- 

esponding R 0 to serve as a comparison with the one estimated 

rom the exported case data. In this study, we set the serial inter- 

al T c to follow a gamma distribution with mean (sd): 7.5 (3.4) in 

uhan and the United States [13] , 6.6 (4.86) days in Italy [14] , and

.55 (3.33) days in Iran [15] . For Wuhan, the prevalence was taken 

rom [10] . For the United States, Italy, and Iran, the prevalence 

as calculated from their reported numbers [11] . Note that the 

umbers in Wuhan included pre-symptomatic, ascertained, and 

nascertained cases, while the other three countries’ numbers only 

ncluded the ascertained cases. 

etermining the severity of the outbreak based on the number of 

xported cases 

International Health Regulations (2005) and the Global Out- 

reak Alert and Response Network (GOARN) considered the im- 

orted/exported human cases as a sign of potential public health 

isk. However, the guideline did not provide how the total number 

f exported cases could indicate the intensity of the epidemic. We 

eveloped a tool for policymakers to determine the intensity of a 

ountry’s epidemic based on the number of exported cases. Statis- 

ically, we could form the question as a hypothesis testing problem. 

n each day, based on the cumulative number of exported cases 

p to that day, we could test whether the exponential growth rate 

s significantly above a certain threshold, for example, 0.1: 

 0 : β1 = 0 . 1 v .s.H 1 : β1 > 0 . 1 

We could also test whether the prevalence rate is significantly 

bove a certain threshold, for example 

 0 : ρt = 0 . 001 v .s.H 1 : t > 0 . 001 

The detailed test procedure was provided in Supplementary S3. 

We developed a Shiny App for calculating the detection crite- 

ia in which users can specify their own significance level, initial 

revalence, and detection threshold. 

esults 

Figure 1 visualized how the mean estimates and 95% uncer- 

ainty bounds of β1 , R 0 , and the number of cases per 10 0,0 0 0 pop-

lation changed over time. The points in Figure 1 were not from a 

ingle time series but represented the moving window of estimates 

rom data up to each time point. The estimates became more sta- 

le with smaller uncertainties as more cases accumulated. The es- 

imated exponential growth rate β1 generally showed an increas- 

ng trend after the first exported case. The red lines in Figure 1 in-

icated the estimates from domestic data. Note that the numbers 

n Wuhan included pre-symptomatic, ascertained, and unascer- 

ained cases [10] , while the other three countries only included 

scertained cases. The unascertained cases here include asymp- 

omatic and some mildly symptomatic cases that are not detected. 

For Wuhan, the estimates from the exported cases were consis- 

ent with the ones estimated from domestic data. For the rest of 
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Fig. 1. Estimated key indicators using exported case data. Posterior mean and 95% credible interval of exponential growth rate β1 (left), basic reproduction number 

R 0 (middle), and cases per 10 0,0 0 0 population (right, on log scale with y-axis labels on the original scale) in the early stage of the COVID-19 outbreak in ( A ) Wuhan, 

China, ( B ) United States, ( C ) Italy, and ( D ) Iran. The black dots are the posterior mean and the gray bands are the 95% credible intervals estimated from the exported case 

data. The red horizontal lines indicate the mean (solid) and 95% confidence interval (dashed) estimated from domestic data for exponential growth rate β1 and reproduction 

number R 0 . The red lines in plots for cases per 10 0,0 0 0 indicate the estimated domestic prevalence ( 10 ) for Wuhan and the reported domestic prevalence ( 11 ) for the United 

States, Italy, and Iran. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he travel origins, prevalence estimated from exported data were 

ll higher than the domestic reported ones. There are several pos- 

ible reasons for the discrepancies. First, the domestic prevalence 

f those three countries only included ascertained cases while our 

stimated prevalence included some unascertained cases by allow- 

ng a proportion of infected travelers did not get diagnosed be- 

ore the end of the study period. Second, there might be a cer- 

ain proportion of unreported domestic cases in the JHU COVID-19 

ata Repository during the early period which resulted in a lower 

omestic prevalence. Third, the initial number of cases might be 

arger than the one that appeared in the first government or the 

edia report which would lead to an overestimate of the growth 

ate, β1 . Fourth, the United States, Italy, and Iran had 60.0%, 89.5%, 

nd 75% missing arrival dates while Wuhan had only 9.1%. The 

arge proportion of missing arrival dates might have affected the 

stimation of the detection delay. Finally, the travelers might not 

epresent the general population thus could bear a higher or lower 

nfection rate. 

We also compared our prevalence estimates with existing lit- 

rature using traveler data. For Wuhan, we compared our results 

ith [ 6 , 7 ]. Wu et al. [6] used data up to January 25 and estimated

he number of infected people as 75,815 (304–130,330). Our study 

nd date was January 23 due to Wuhan lockdown and our es- 
69 
imated infection size on January 23 was 69,410 (2091–403,900). 

7] used data up to January 22 to estimate the number of symp- 

omatic infected individuals on January 18 as 40 0 0 (10 0 0, 970 0),

y assuming all individuals with symptoms were detected before 

anuary 22. Using data up to January 22, we estimated the number 

f infected individuals on January 18 as 17,881 (677–95,845). This 

umber was closer to the one estimated by [10] using domestic 

ata, which was 14,478. We also compared our estimate with Tu- 

te et al. [ 17 , 18 ] for Italy and Iran. They modeled the traveler data

sing models by [16] and assumed that all traveler cases were de- 

ected at destination countries. For Italy, [17] estimated the domes- 

ic outbreak size to be 3971 (2907–5297) by Feb 29, 2020. Our es- 

imates showed that only 35.0% (13.2%–59.5%) exported cases had 

een observed and the domestic outbreak size was 11,573 (571–

4,232). For Iran, [18] estimated the domestic outbreak size to 

e 18,300 (3770–53,470) by Feb 23, 2020. Our estimates showed 

hat 49.0% (15.8%–81.1%) of exported cases had been observed and 

he domestic outbreak size was 26,047 (487–158,411). For United 

tates, our estimates showed that 26.6% (5.1%–49.1%) of exported 

ases had been observed by Mar 13, 2020. In addition to the preva- 

ence, [19] developed a model for estimating the detection rate of 

xported cases and used Wuhan’s traveler data as an illustrating 

xample. Their estimated detection proportion for Wuhan was 38% 
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Fig. 2. Hypothesis tests of the doubling time and prevalence. The tests were conducted under three different lengths of doubling time: 3 days (red), 7 days (green), and 14 

days (blue) in A and B ; and under three different prevalence rates per thousand people: 0.01 (red), 0.1 (green), and 1 (blue) in C and D . The dotted lines show the required 

cumulative numbers of exported cases to reject the null hypothesis and favor a shorter doubling time or a higher prevalence rate under significance level 0.05. The x-axis 

indicates the number of days since the initial local infection in A and C , and the number of days since the first exported case in B and D . The y-axis indicates the cumulative 

total of exported cases at the day indicated by the x-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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22%–64%), similar to our estimated detection rate of 39.3% (12%–

5.8%). 

Figure 2 presented the epidemic severity detection results for 

he various thresholds. Sub-figures A and B illustrate the minimum 

equired number of exported cases for detecting a doubling time 

horter than the threshold; C and D illustrate the minimum re- 

uired number of exported cases for detecting a prevalence higher 

han the threshold. When making decisions to detect a future dis- 

ase outbreak on a certain day, if we have relatively accurate infor- 

ation about how long it has been since the initial infection date, 

e can use A and C to compare the observed total number of ex- 

orted cases up to this day. At a pre-specified significance level, 

ay 0.05, if the observed total number exceeded the number of 

he corresponding day in the figure, we would be able to tell with 

5% confidence that the local epidemic has been doubling faster 

han the threshold or the local prevalence has reached to a level 

igher than the threshold. For instance, assuming 10 0 0 outbound 

ravelers per day, we may look at the total number of exported 

ases that had been detected within the first month since the ini- 

ial local infection (day 30 on the x-axis of Figs. 2 A and C ). One ex-

orted case suggested that the local epidemic doubled in less than 

4 days; two exported cases allowed us to conclude that the epi- 

emic doubled in less than 7 days and the prevalence was above 

.01 per thousand; five cases indicated a doubling time less than 3 

ays; three and seven exported cases were required to conclude a 
a

70 
revalence greater than 0.1 per thousand and 1 per thousand, re- 

pectively. If we do not know the initial infection date, we would 

se B and D to reach a conclusion. The total number of exported 

ases and how quickly those cases accumulated together provided 

vidence of the intensity of the outbreak: a larger number of con- 

rmed infections among outbound travelers was needed to detect 

 shorter doubling time or a higher prevalence; the required num- 

er of cases increased as the epidemic went into a later period. 

A Shiny App for implementing the above procedure can be 

ound here: https://lebao.shinyapps.io/growthratetest/ , where users 

ould specify the general population size, the detection threshold, 

he daily traveler sizes, the number of simulations, and the sig- 

ificance level, etc. With this tool, policymakers could adjust the 

arameters to fit their own country’s situation, and quickly deter- 

ine how severe their country’s epidemic is based on the exported 

ases. 

iscussion 

We used the COVID-19 epidemic as an example to illustrate 

ow the exported cases could be used to detect a disease out- 

reak. We proposed the moving window of the study end date 

o offer a new perspective of mimicking the real decision-making 

rocess. Our inclusion of the detection delay parameter relaxed the 

ssumption that all exported cases had been detected by the end 

https://lebao.shinyapps.io/growthratetest/
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[  
f the study period and could correct the potential underestima- 

ion due to the right censoring. Detailed information on symptom 

nset date and natural history of disease would be more accu- 

ate than our approximation using the arrival and diagnostic dates. 

oth the bias correction term and the detection delay terms could 

otentially vary by destination, which was not considered here due 

o limited data availability. 

In addition to the comparisons with the prevalence using do- 

estic reports, we performed posterior predictive checks (Supple- 

entary S4), sensitivity analysis (Supplementary S5), power anal- 

sis for the test (Supplementary S6), and a series of simulation 

tudies (Supplementary S7) to validate our method and evaluate 

he robustness of the model. Our posterior predictive samples were 

ore compatible with the observed traveler case reports over time 

Supplementary Figure S1). Our simulation studies showed that, 

f the exponential growth phase of the true prevalence was rel- 

tively short while we assumed an exponential form throughout, 

ith the help of the bias correction term, α, the fitted preva- 

ence curve would stay close to the truth for a week or so be-

ore drifting away (Supplementary Figure S6); our model could still 

etect the domestic prevalence at 0.01% or lower thresholds, but 

t lost the power of detecting the domestic prevalence at thresh- 

ld 0.1% and above (Supplementary Figure S7). If the traveler data 

ad a bias, the estimated domestic prevalence and the exponen- 

ial growth rate would be also biased in the same direction. The 

ias of the model with α went to zero as more case reports be- 

ng observed, but the bias of the model without α remained con- 

tant over time (Supplementary Figure S8). When we misspeci- 

ed the start date of the epidemic earlier than the true epidemic 

tart date, the prevalence would be over-estimated, and the ex- 

onential growth rate would be under-estimated. As more trav- 

ler cases being observed, the growth rate estimate went to the 

rue value (Supplementary Figure S9). Completely missing or mis- 

pecified arrival dates affected the accuracy of the estimates, and 

t demonstrated the importance of reporting arrival dates at the 

arly stage of an outbreak. The bias term α can help alleviate the 

ias caused by misspecified or missing arrival dates (Supplemen- 

ary Figure S10). Finally, and more fundamentally, how well one 

an estimate the domestic prevalence using the exported cases de- 

ends on how representative the traveler samples were. If the trav- 

ler data had biases, we would need a large amount of data to es- 

imate the intercept difference between the observed time series 

f case reports and the fitted exponential trend in order to detect 

he bias and uncover the true prevalence. Due to the sparsity of 

he traveler data, this information was relatively weak and resulted 

n a large uncertainty of the bias estimates. Studies that can po- 

entially help estimate the bias include a better understanding of 

he travelers’ demographics, such as age, gender, sub-national re- 

ion of residence, and whether the traveler is a foreign tourist or a 

esident of the travel origin. The bias estimate could be improved 

f we could (1) classify people into different risk groups based on 

hose factors using external data, for example, case reports from 

ther countries with good surveillance systems; and (2) know the 

istribution of risk groups among travelers and the general popu- 

ation, respectively. If so, a more informative prior distribution of 

he bias parameter can be derived to account for factors that lead 

o systematic biases between travelers and the general population. 

Rapid detection of a disease outbreak is crucial for government 

ntervention and raising public awareness. Utilizing the diagnosis 

esources from all countries, the exported case data is a good addi- 

ion to the domestic data. The proposed method could help detect 

ew disease outbreaks, as well as resurgence and new hot spot lo- 

ations during the current COVID-19 epidemic. We advocate that 

ountries should work in a collaborative way by sharing the trav- 

ler cases information in a timely manner, including arrival dates, 

etection dates, and travel history. Working together, we would 
71 
trengthen the global infectious disease surveillance system, which 

s especially important in detecting disease outbreaks in countries 

here public health infrastructure is rudimentary or nonexistent. 
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