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Abstract: We propose a compact nearfield scheme for fast and broadband dielectric characterization
in the microwave region. An open-type circular probe operated in the high-purity TE01 mode
was developed, showing a strongly confined fringing field at the open end. This fringing
field directly probed the freestanding sheet sample, and the overall reflection was measured.
Without sample-loading processes, both of the system assembling time and the risk of sample damage
can be significantly reduced. In addition, the nearfield measurement substantially simplifies
the calibration and the retrieval theory, facilitating the development of easy-to-integrate and
easy-to-calibrate dielectric characterization technique. The dielectric properties of more than ten
polymers were characterized from 30 GHz to 40 GHz. We believe that this work fulfills the requirement
of the fast diagnostic in the industrial manufactures and also provides valuable high-frequency
dielectric information for the designs of 5G devices.

Keywords: polymer dielectric characterization; nearfield measurement; mode converter;
transmission/reflection method

1. Introduction

With the advent of the 5th generation mobile networks (5G), numerous high-frequency circuits,
such as power amplifiers [1,2], flexible antennas [3], and low-pass filters [4], are required for connecting
billions of mobile devices and sharing a massive amount of data. To improve the performance and
the integration of these microdevices, reducing the signal loss within the circuits and inhabiting
the leakage current in the transistors become important tasks. For designing and optimizing, it is
essential to investigate the broadband dielectric properties of the circuit-board materials. On the other
hand, the nanocomposite field has grown quickly in recent years [5–8]. By doping dielectric/magnetic
nanoparticles into polymer matrices, the electromagnetic properties of the composites can be precisely
controlled, realizing many terahertz (THz) and optical devices such as multilayer anti-reflection
coatings [9], and all-dielectric waveguides [10]. To understand the electric functionality of the
nanocomposites, fast and broadband dielectric characterization techniques at the microwave to the
terahertz regimes are also required. Over the past decades, various methods have been developed to
meet this goal from 1 GHz to 1 THz [11–20].

The conventional cavity methods, utilizing the field enhancement of the resonant nature,
are able to characterize the materials with various permittivity [12,13]. However, those methods
are very narrowband owing to the strict resonant conditions. For broadband characterizations,
non-resonant techniques that measure the scattering parameters (transmission/reflection) in
waveguides were invented [11,14–17]. Since the samples are enclosed by the waveguides and
all experimental components (e.g., adapters and widows) can be well-calibrated, accurate and stable
broadband results are expected. Nevertheless, sample preparation for these methods is usually
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difficult [14–16]. On the one hand, machining samples to meet the waveguide geometry is costly and
might lead to sample damage. On the other hand, it is time-consuming to integrate the measurement
setup due to the processes of sample loading, position/orientation adjustments, and the avoidance of
the contact gaps [17].

The quasi-optical technique in the microwave region [18–20], and the time-domain spectroscopy
in the terahertz region [21–23], can overcome these challenges. It composes of a set of antennas
(source and receiver) to apply the far-field measurement in free space [18–20]. Unfortunately, the beam
diffraction or the employment of multiple focusing devices severely complicate the experimental setups
and the calibration procedures. In short, there is an urgent need to develop a compact, easy-to-integrate,
and easy-to-calibrate dielectric characterization system.

In this work, we propose an open-ended circular-waveguide probe for fast and broadband
dielectric characterization. The probe operated in the circular TE01 mode [24,25] is directly attached
to a freestanding sheet sample. Since there is no need to load the sample, the sample preparation
time, the system assembling time, and the risk of sample damage can be greatly reduced as compared
to References [11–17]. On the other hand, the TE01 mode exhibits purely azimuthal surface current,
implying very weak diffraction as it radiates from the waveguide to the sample. This unique feature
facilitates the nearfield measurement, making the calibration much easier than References [18–20].
We developed a semi-analytical model with a reliable single-mode approximation to simplify the
dielectric retrieval process. More than ten polymer sheets were tested, and the result shows good
agreement with the full-wave simulation results as well as the previously reported data [26–36].

2. Scheme for the Fast Dielectric Characterization

Simplifying the sample-loading process (necessary for References [11–17]) is a major challenge
for the fast dielectric characterization. Inspired by the quasi-optical techniques [18–20], we propose
an open-ended configuration delineated in Figure 1a, in which the end of a circular waveguide
(Region I) directly probes the front surface of the sample at Region II. The sample with a thickness of
d is freestanding in open space, and its rear side is attached to a metal plate for enhancing the total
reflection. To avoid the beam diffraction and the derived complexity in the calibrations (suffered by the
far-field measurements [18–20]), properly choosing the operating waveguide mode is necessary.

Considering the TE01 mode in an empty circular dRw waveguide with a radius of Rw,
its electromagnetic (EM) field components are [37],

Eφ = −ik0
kc

E0 J′0(kcρ)eikz0z−iωt

Hρ =
ikz0
kc

H0 J′0(kcρ)eikz0z−iωt

Hz = H0 J0(kcρ)eikzz−iωt

(1)

where ω is the angular frequency of the EM wave, and E0 (H0) represents the electric-field
(magnitude-field) amplitude. k0 = ω/c, kc = 0.382/Rw, and k2

z0 = k2
0 − k2

c , respectively, describe
the free-space wavenumber, the cutoff wavenumber, and the propagation constant, where c is the
speed of light in vacuum. The notation J′0 refers to the derivative of J0 (first-kind Bessel function).
All the other field components (not included in Equation (1)) are equal to zero.

The electric field of the TE01 mode is purely azimuthal, driving an azimuthal surface current on

the waveguide wall (∝ ρ̂×
→

H). Such azimuthal surface current is insensitive to the radial geometric
perturbations [37], such as the slotted waveguide structures [38], and the open-ended junction proposed
here. This special feature guarantees that the fringing field in Region II can still preserve the same
field pattern and the dispersion of the TE01 mode, propagating over a reasonably long distance in the
sample. In other words, the beam diffraction can be significantly suppressed.

For verification, we used HFSS (High-Frequency Structure Simulator, ANSYS, Canonsburg, RA,
USA) to simulate the steady-state field distributions (with Rw = 6.02 mm, Rs = 15 mm, and d = 2 mm).
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The side edges of Region II (at ρ = Rs) were set as the radiation boundaries to save the computation
time. The result of the TE01 incidence is demonstrated in Figure 1a, while that for the TE11 incidence
(i.e., the fundamental circular waveguide mode) is shown in Figure 1b for comparison. The fringing
field of the TE01 (TE11) mode in Region II is highly (weakly) confined, indicating very weak (strong)
diffraction. The radiation losses (defined by 1−|R|2; R is the total field reflection coefficient) of the
first five lower-order modes (TE11, TM01, TE21, TM11, and TE01) are shown in Figure 1c. The loss
of the TE01 mode is negligible, corresponding to the highly confined fringing field, as shown in
Figure 1a. On the contrary, the radiation losses of the other modes are all higher than 5%, owing to
their highly diffracted feature (e.g., Figure 1b for TE11). The TE01 radiation losses under three different
thicknesses (d = 1, 2, and 3 mm) are illustrated in Figure 1d. As shown, the loss remains low with the
increase of the free-propagating length. Consequently, the TE01 mode is the best candidate for nearfield
reflection measurement. This scheme combines the advantages of the waveguide systems [11–17]
(highly confined field and easy-to-calibrate), and the advantage of the quasi-optical systems [18–20]
(simple setup and easy-to-integrate), presenting the possibility for fast, efficient, and broadband
dielectric characterization.
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Figure 1. Fringing field patterns of the open-ended circular waveguide probe operated at (a) TE01

mode and (b) TE11 mode. (c) Radiation loss versus frequency of the first five circular waveguide modes.
(d) Radiation loss versus frequency of the TE01 mode under the three different sample (air) thicknesses.

3. Theoretical Model for the Complex Permittivity Retrieval

A concise theory is developed for retrieving sample’s complex permittivity from the measured
reflection coefficient. When the TE01 mode impinges on the open end (z = 0), it will be partially
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reflected (as the ballistic reflection) and partially radiated into the sample. The radiation propagates
over the sample and then is reflected by the metal plate (z = d). The reflected signal subsequently
bounces back and forth inside the sample, forming a sequence of reflection echoes. The steady-state
total reflection is the superposition of the ballistic reflection and the all following echoes.

In general, the complexity of the coupling between a waveguide mode and the open-space
diffracted modes (i.e., the plane waves propagating toward different directions) is very high. By taking
advantage of the highly confined TE01 fringing field in open space, it is possible to simplify the model.
The original scheme is illustrated in Figure 2a, in which the sample cross-section is assumed to be
much larger than the wavelength (Rs >> λ). Since the fringing field can never reach the sample edge
(highlighted by the red dashes in Figure 2a), it is reasonable to replace the radiation boundaries by
the metallic boundaries. The original “open system” thus becomes a “closed system” (Figure 2b).
However, as the waveguide geometry in Figure 2b is discontinuous at z = 0, multiple higher-order
TE0m modes must be excited at the junction, jointly with the TE01 mode to satisfy the boundary
conditions. This process is known as the modal effect [37].
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Red dotted lines indicate the radiation boundaries on the side edges. (b) First-step simplification:
a closed system with the geometric change in the waveguide radius. The radiation boundaries in (a)
are replaced by the metals. (c) Second-step simplification: a closed and uniform waveguide system.
(d) Magnified diagram of (c) with the details for the single-mode approximation.

Dealing with the modal analysis [10,17,39] is not the main focus of this work; instead, we further
simplify the model according to Figure 2c. Owing to the strong field confinement of the TE01 radiation
(as demonstrated in Figure 1a), Figure 2b is approximately equivalent to a uniform and closed-ended
waveguide with the under-test sample locating at its terminal. We can therefore adopt the single-mode
approximation (with only TE01) to solve the overall reflection. It is worth emphasizing that this
single-mode approximation is not valid for other operating modes that exhibit highly diffracted
fringing fields in open space (e.g., the lower-order modes listed in Figure 1c).

Based on this simplified configuration, the steady-state fields in each region are shown in Figure 2d.
The transverse field components in the empty waveguide (Region I) can be expressed as

EI
φ =

−iωµ0
kc

J′0(kcρ)
(
eikz0z + Re−ikz0z

)
e−iωt

HI
ρ =

ikz0
kc

J′0(kcρ)
(
eikz0z

−Re−ikz0z
)
e−iωt

(2)
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where R represents the overall field reflection coefficient. The transverse field components in the
sample region (with permittivity εs and permeability µ0) are

EII
φ =

−iωµ0
kc

J′0(kcρ)
(
Feikzsz + Be−ikzsz

)
e−iωt

HII
ρ = ikzs

kc
J′0(kcρ)

(
Feikzsz

− Be−ikzsz
)
e−iωt

(3)

in which F (B) denotes the forward-wave (backward-wave) coefficient and k2
zs = µ0εsω2

− k2
c .

Applying the boundary conditions at z = 0 that require EI
φ

∣∣∣∣z=0 = EII
φ

∣∣∣∣
z=0

and HI
ρ

∣∣∣z=0 = HII
ρ

∣∣∣
z=0

and the

boundary condition at z = L that forces EII
φ

∣∣∣∣z=L = 0 due to the metallic reflector, we obtain

R =
−(kz0 − kzs)e−2ikzsd + (kz0 + kzs)

−(kz0 + kzs)e−2ikzsd + (kz0 − kzs)
(4)

Although Equation (4) resembles the solution of the two-section configuration with one end
closed (Figure 2c), it serves as an approximated solution for the present “open scheme” as long as we
operate with the circular TE01 modes. Note that Equation (4) is a transcendental equation; numerical
root searching is thus required to retrieve the sample’s permittivity εs embedded in kzs.

4. Experimental Setup and Comparison with HFSS Simulation

The photograph of the experimental setup is demonstrated in Figure 3a. Part I is the performance
network analyzer (PNA, Agilent E8363B, Agilent Technologies, Santa Clara, CA, USA), which was
connected with a 2.4 mm coaxial cable (part II). This cable was attached to an adapter (part III),
converting the TEM signal to the TE10 mode in the Ka-band rectangular waveguide and vice versa.
For fast dielectric characterization, exciting a high-purity TE01 mode in a circular waveguide is
essential. Based on our previous works [24,25], a typical Y-type TE01 mode converter was designed,
fabricated, and connected at part IV, severing as the open-ended circular probe. It comprises two-stage
power-dividing junctions made of branched Ka-band rectangular waveguides (part A in Figure 3b),
followed by a mode-converting section made of circular waveguide (part B in Figure 3b). According to
the HFSS simulation, the purity of the TE01 mode achieves more than 99% ranging from 32 GHz to
39 GHz [10,25] (see Supplementary Materials S1 for its detail characteristics). A sheet sample (part V) is
sandwiched between the TE01 mode converter (part IV) and a metal plate (part VI). The cross-sectional
areas of all the samples are 80 mm × 80 mm, much larger than the probe size with Rw = 6.02 mm.
The sample thicknesses range between 1 mm and 2 mm. Notice that the reference plane is calibrated to
the interface between parts IV and V, as indicated by the red dashed line in Figure 3a (see Supplementary
Materials S2 for the detail calibration procedure). The overall reflection was recorded by the PNA and
analyzed with Equation (4) to retrieve the complex permittivity.

For verification, we used HFSS to simulate all the above procedures, including the calibration
of the mode converter and the permittivity retrieval of an artificial under-test material. The relative
permittivity (εr) of the under-test sample is set as 4, and its loss tangent (tan δ) is set as 0.02 over
the whole spectral window. The sample thickness is 1 mm. With the scattering data of the mode
converter (see Supplementary Materials S2), we can extract the complex permittivity of the sample
under test based on Equation (4). The result is plotted in Figure 3c to compare with the default values.
The retrieved εr ∼ 4.009 shows excellent agreement with the default with an error less than 0.5%
over the whole spectral window. On the other hand, the retrieved tan δ ∼ 0.022 is slightly larger
than the default because of the open boundaries of the freestanding sample; however, the accuracy
is still acceptable. To further improve the accuracy of tan δ, the modal analysis is required for the
less-simplified configuration shown in Figure 2b, i.e., the closed waveguide system with a sharp
radius change.
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Figure 3. (a) Experimental setup. Part I: performance network analyzer. Part II: 2.4 mm flexible
coaxial cable. Part III: rectangular TE10 mode converter. Part IV: home-made circular TE01 mode
converter, composed of a power-dividing junction (component A in (b)) and a mode-converting tube
(component B in (b)). Part V: sample under test. Part VI: back metal plate. (c) Retrieved results obtained
by HFSS simulation. Black triangles (green circles): retrieved εr (tan δ) based on the theory proposed in
Section 3. The corresponding default values set in HFSS are plotted in dashed curves for comparison.

5. Results and Discussions

In the experiment, we characterized eleven polymers in total, including three common
plastics (polyethylene (PE), polypropylene (PP), and polymethylmethacrylate (PMMA)),
one heat/chemical-resisting plastic (polytetrafluoroethylene (PTFE)), one engineering plastic
(polycarbonate (PC)), two piezoelectric materials (polyvinyl chloride (PVC) and polyvinylidene
difluoride (PVDF)), and four circuit boards (FR4). Two of the FR4 boards are yellow (FR4_Ya and
FR4_Yb), and the other two are green (FR4_Ya and FR4_Gb). The subscripts “a” and “b” stand for the
samples provided by different manufacturers.

For clarity, the retrieved data are classified into two groups: the low-loss and the high-loss
groups. The relative permittivity (εr ≡ Re[εs]/ε0) of the low-loss group is plotted in Figure 4. The loss
tangent ( tan δ ≡ Im[εs]/Re[εs]) is not shown, because it is too low to test (less than 10−3) by the present
scattering scheme. Instead, the conventional cavity methods with strong field enhancement are more
suitable [12,13]. Among these low-loss polymers, PTFE exhibits the lowest εr of around 2.14; PE and
PP, belonging to the polyolefin, show very close εr of around 2.45, and PVC and PC have relatively
large εr, ranging from 2.8 to 2.9.
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Regarding the high-loss group, εr (tan δ) is presented in Figure 5a,b. We found that PMMA
and PVDF exhibit quite similar εr around 2.77, while PVDF is relatively high-loss, manifested in its
larger tan δ around 0.02. On the other hand, the four FR4 boards possess higher and more diverse
εr (from 4.2–5.5). The higher dielectric constant and the stronger dielectric loss might result from
their complex compositions, including epoxy matrices (typical εr ∼ 3.5–4) [17], fiberglass (εr ∼ 3–15)
for reinforcement [40], functional fillers, and dyeing materials. Although the concentrations of the
latter two are usually low, they can still greatly alter the effective permittivity of the composite due
to their high-K nature [41,42]. Besides, our data show that the FR4 boards provided by different
manufacturers reveal very different permittivity even if the colors are the same (e.g., FR4_Ya vs.
FR4_Yb). Such difference must result in very distinct circuit impedances at the high-frequency (5G)
regime. This observation manifests the importance of our work, which can easily provide the accurate
electrical properties of the targeted boards before any circuit designs. The data at 36 GHz were extracted
and summarized in Table 1 with error bars, showing fairly good agreement with the previously reported
values (given in the parentheses) [26–36].Polymers 2020, 12, x FOR PEER REVIEW 8 of 11 
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Table 1. The dielectric properties of the plastics at 36 GHz.

Material εr tanδ

PTFE
2.14 ± 0.3%

<0.001(1.95) [26]

PP
2.45 ± 0.1%

<0.001(2.29~2.30) [27]

PE
2.44 ± 0.6%

<0.001(2.35~2.37) [27]

PVC
2.8 ± 0.3%

<0.005(2.50) [28]

PC
2.88 ± 0.1%

<0.001(2.76) [29]

PVDF
2.77 ± 0.3% 0.02 ± 11.8%

(1.5~10) [30–33] (0.02~0.16) [30]

PMMA
2.77 ± 0.1% 0.011 ± 16.9%

(2.60~2.67) [27] (0.015~0.061) [27]

FR4_Gb
4.29 ± 0.3% 0.026 ± 4.6%

(3.5~5) [34–36] (0.015~0.02) [18–20]

FR4_Yb 4.82 ± 0.2% 0.02 ± 3.1%
FR4_Ga 5.06 ± 0.2% 0.017 ± 5.2%
FR4_Ya 5.44 ± 0.8% 0.02 ± 7.3%

6. Conclusions

In Summary, this study established a broadband measurement system for fast dielectric
characterization. By using the open-ended probe operating in the circular TE01 mode, the nearfield
measurement of freestanding sheet dielectrics was accomplished. Since the experimental setup
is compact, the sample preparation time and the system assembling time were significantly saved,
as compared to the conventional cavity methods and the transmission/reflection methods in waveguide
systems. The highly confined TE01 fringing field also eliminated the complicated calibrations for
diffraction, leading to more accurate and stable results. More than 10 polymers (PTFE, PP, PE, PVC,
PC, PVDF, PMMA, and FR4) were characterized from 30 GHz to 40 GHz, showing various dielectric
constants ranging from 2.1–5.5 and loss tangents ranging from 0.001–0.03. We believe this novel
characterization method can benefit the development of the designs, fabrications, and manufacture
quality controls of 5G high-frequency devices.
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