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Abstract: Early diagnosis is crucial for individuals who are susceptible to tooth-supporting tissue
diseases (e.g., periodontitis) that may lead to tooth loss, so as to prevent systemic implications and
maintain quality of life. The aim of this study was to propose a personalized explainable machine
learning algorithm, solely based on non-invasive predictors that can easily be collected in a clinic,
to identify subjects at risk of developing periodontal diseases. To this end, the individual data and
periodontal health of 532 subjects was assessed. A machine learning pipeline combining a feature
selection step, multilayer perceptron, and SHapley Additive exPlanations (SHAP) explainability, was
used to build the algorithm. The prediction scores for healthy periodontium and periodontitis gave
final F1-scores of 0.74 and 0.68, respectively, while gingival inflammation was harder to predict (F1-
score of 0.32). Age, body mass index, smoking habits, systemic pathologies, diet, alcohol, educational
level, and hormonal status were found to be the most contributive variables for periodontal health
prediction. The algorithm clearly shows different risk profiles before and after 35 years of age and
suggests transition ages in the predisposition to developing gingival inflammation or periodontitis.
This innovative approach to systemic periodontal disease risk profiles, combining both ML and
up-to-date explainability algorithms, paves the way for new periodontal health prediction strategies.

Keywords: personalized oral medicine; machine learning; risk factors; periodontitis

1. Introduction

A total of 50% of people over 50 years of age present periodontitis, and they have a
potential risk of losing teeth during their lifetimes [1]. Indeed, periodontitis is a chronic
inflammatory disease of the tooth-supporting tissues, both the gingiva and the underlying
tissues anchoring the tooth root in its surrounding alveolar bone. It results in clinical
gingival inflammation and alveolar bone loss with subsequent increasing gingival crevices,
typically leading to the formation of periodontal pockets [2]. The shift from periodontal
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health to periodontitis occurs through a transient gingival inflammation stage (with no un-
derlying root anchorage defect) associated with a dysbiosis [2]. Such periodontal dysbiosis
arises from the disruption of gingival host–microbiota homeostasis, a physiological mecha-
nism that serves to prevent the emergence of pathogenic microbiota through appropriate
periodontal host defenses, despite the continuous stresses occurring in gingiva throughout
a lifespan. Because the mere presence of periodontal pathogens is not sufficient at inducing
a dysfunctional clinical phenotype [3], it is currently accepted that the evolution towards
periodontitis through host–microbiota homeostasis disruption and gingival inflammation
occurs only in susceptible hosts [2,4,5], with an increase in the risk factors associated with
periodontal disease. Indeed, susceptibility to periodontitis, as for other inflammatory
diseases, appears to change in response to complex interactions between genetic and ac-
quired environmental factors throughout a lifespan (e.g., smoking, pathologies, psychic
stress, pregnancy, gender, ethnicity) [6]. These modifiable and non-modifiable risk factors,
however, may impact the initiation, progression, and severity of periodontal disease [3,4].
To control periodontitis and its systemic implications, therapies must be introduced as early
as possible. Thus, the identification of risk factor profiles for periodontal diseases represents
a great challenge to improve periodontal prevention. Some periodontal risk prediction
strategies are routinely used, such as Lang and Tonetti’s [7] periodontal risk assessment
(PRA). This estimates the risk of susceptibility for periodontal disease progression by a
clinical assessment of periodontal lesions, together with the patient’s age, an evaluation
of the systemic conditions and, finally, an evaluation of environmental and behavioral
factors, such as smoking. The PRA is used for treatment planning and prognosis [8] but
requires an oral medicine practitioner for the periodontal assessment. Furthermore, PRA
does not consider the complexity of the potential interactions between the different risk
factors, including medical and psycho–sociodemographic status, which is critical to target
periodontal-susceptible subjects at an early stage, even before the oral symptomatology be-
comes identifiable by a practitioner [3,5]. In terms of personalized medicine, these multiple
interaction assessments are crucial toward implementing individualized prevention and
therapeutic strategies. The rise of artificial intelligence (AI), including machine learning
(ML), provides exciting opportunities to extract valuable information from complex data to
benefit patients [9]. ML strategies seem to be particularly pertinent to predict the factors
influencing periodontitis occurrence [10,11]. Despite their undeniable efficacy for predic-
tion, these approaches are often considered as black boxes, with limited explainability.
However, the recent development of explainability technologies now offers the possibility
of understanding the prediction mechanisms of ML models [12]. The aim of this study
was to propose a predictive machine learning algorithm to identify the subjects at risk of
developing periodontal diseases, solely based on non-invasive predictors that can easily
be collected in the clinic. This innovative approach of a systemic periodontal disease risk
score, combining both ML and up-to-date explainability algorithms, paves the way for a
new strategy of periodontal health prediction.

2. Materials and Methods

This observational study was reported in accordance with the STROBE guidelines [13].

2.1. Study Design and Subjects

This observational study was conducted at the Oral Medicine Department of the
Toulouse University Hospital Centre (France) during routine visits by three independent
and calibrated experts. All patients attending a consultation were considered. To be eligible,
the patients and/or guardians needed to understand French and to provide their consent
for the data collection and clinical examination. If the oral clinical exam could not be
performed, mostly because of lack of cooperation, the patient was excluded. All patients
gave their consent. The personal and medical data were collected and computer-processed
to analyze the results of this research.
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2.2. Clinical Procedures

The clinical examinations were conducted by four trained practitioners (P.M., M.M.,
C.C.A., P.K.), specialists in oral medicine and periodontology, calibrated before the start of
the study. The Community Periodontal Index of Treatment Needs (CPITN) score (range 0
to 4) was used to assess periodontal health [14]. The highest CPITN score was considered
using partial recordings [15]—CPITN 0: healthy periodontium, CPITN 1: presence of
gum bleeding, 2: presence of calculus and gingival bleeding, 3: presence of shallow
periodontal pocket (4–5 mm), and 4: presence of deep periodontal pocket (6 mm and
above) [14]. As such, CPITN was classified as 0 (healthy periodontium), CPITN 1–2
(gingival inflammation), and CPITN 3–4 (periodontitis). The examinations were conducted
at a dental setting with a suitable dental probe, mirror, and light source. The data collection
was completed with information obtained by a patient interview (all of the requested
information is detailed in Supplementary Table S1) on putative periodontal risk factors i.e.,
general medical status (presence of a systemic pathology, long-term medicinal treatments),
stress (using 0–10 EVA score), socioeconomic status/conditions, and dietary habits. All
data were collected anonymously.

2.3. Data Visualization, Modeling, and Explanation

Different analysis strategies were successively combined to produce the final peri-
odontal health prediction model.

The machine learning pipeline (Figure 1) involved: (1) encoding binary and ordinal
variables followed by a feature selection step, (2) a random training/test dataset splitting
of 75:25, (3) a min–max data scaler followed by a multilayer perceptron model [16], and (4)
explainability of the prediction results on the whole dataset (Figure 1). The scikit-learn
library v0.24.0 was used as a general framework [17]. BorutaPy v0.3 [18] is a feature selec-
tion method able to select a minimal set of features (i.e., variables) that carry significant
information for the prediction model. The following hyperparameters were used: 500 esti-
mators, maximal depth of 3, and entropy as a criterion. The profiles of the subjects, with
respect to the variables selected by BorutaPy, were visualized by projecting them through
UMAP (i.e., uniform manifold approximation and projection [19]), followed by a DBSCAN
algorithm using Euclidean distance to identify clusters of subjects. Descriptive statistics
were then produced to characterize each cluster.

After min–max normalization, the Boruta-reduced dataset was passed through a
multilayer perceptron algorithm (from the scikit-learn library). Since this technique has
some hyperparameters and we were seeking the best performing model with minimum
overtraining, we explored the hyperparameter space using scikit-optimize v0.8.1. The best
combination was retained: four hidden layers with 4, 128, 256, and 8 neurons, respectively,
an Adam solver, an ’identity’ activation function, 0.7 beta1 and 0.4 beta2 scores. To assess
the performance of the model, we conducted a five-fold cross-validation, and compared
the performance values (weighted F1-score [20]) between the training and validation sets.
Finally, the complete performance of the model was assessed on the test set (precision,
recall/sensitivity, specificity, weighted F1-score, and ROC curve) for each category to
predict (CPITN 0, CPITN 1–2, and CPITN 3–4).

The main obstacle to understanding most machine learning models is the “black
box” aspect. Once a model has been trained, it is necessary to know the influences and
interactions of the attributes behind the classification performed. Kernel SHAP is a model-
agnostic method to approximate SHAP values [12]. This method can explain the influence
of each attribute of the dataset on the output of the predictive model.
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Figure 1. Machine learning analysis pipeline. The analysis pipeline involves three successive steps:
(1) constitution of the database with sociodemographic, general medical status, stress, and dietary
habits from 532 subjects, together with the periodontal health condition (CPITN); (2) development
of the prediction algorithm and evaluation of its performance; (3) model explainability, based on
cluster-based visualization of data, SHapley Additive exPlanations (SHAP) profile at the global and
individual levels.

3. Results
3.1. Description of the Study Population

A total of 532 subjects were examined between 02/01/2019 and 01/03/2021. The mean
age of the total sample was 33 ± 15 years (range 2 to 83) with 45% of females (Table S1).
The distributions of the subjects’ periodontal health scores by age group are detailed in
Figure S1. The maximum proportion of the healthy periodontium was found in the 0–10-
year-old group. The prevalence of gingival inflammation (i.e., CPITN score 1–2) increased
up until 35 years-old (20%, 40%, and 45% for the 0–10-, 10–20-, and 20–35-year-old groups,
respectively) then decreased sharply after 35 years as periodontitis (CPITN score 3–4)
increased.

The missing data were encoded by assigning a “−1” value. By mapping all of the
variables in two dimensions using an UMAP methodology, three distinct clusters were
highlighted according to the sociodemographic characteristics and other risk factors of the
individuals (Figure S2). Cluster 1 included the smallest (and mainly contained) children
(0–10 years-old), while clusters 2 and 3 consisted of female and male adults, respectively.
Within each cluster, a distinction can be drawn between CPITN 0 and CPITN 3–4 (the two
groups can be separated on the vertical axis of UMAP), while no distinction can be made
for CPITN 1–2. The clusters of adults showed similar value distributions for BMI, smoking
habits, systemic pathologies, alcohol, and sugary drinks consumption.

3.2. Feature Selection

BorutaPy is a feature selection algorithm designed to select only the relevant variables
according to the CPITN group score, thus maintaining a minimum number of explanatory
variables to establish the final model. By using the BorutaPy algorithm introduced in
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Section 2.3, 9 out of 30 (30%) variables were retained, namely age, body mass index
(BMI), systemic pathologies, educational level, hormonal status, as well as smoking and
nutritional habits, such as consumption of dried vegetables or fruits, sugary drinks, and
alcohol. Interestingly, gender, stress, oral hygiene practices, and dental attendance were not
sufficiently contributive to be selected by the method. The raw correlation matrix showed
that age, BMI, and systemic pathologies were highly positively associated to CPITN,
while sugary drink consumption was highly negatively associated to CPITN (Figure 2).
Smoking habits and hormonal status did not associate with CPITN, although the BorutaPy
algorithm showed that they were needed to predict CPITN. Moreover, many parameters
were associated with each other, illustrating the complex interactions between the factors
themselves, such as pathologies and smoking habits (r = −0.29) or alcohol and smoking
habits (r = 0.34). Building a machine learning model will thus make it possible to capture
the complex relationships between the variables.

Figure 2. Variable correlation matrix. The matrix shows the Pearson correlation between CPITN
and the variables selected by the BorutaPy algorithm. Age, body mass index, and the presence of a
systemic disease are positively associated with CPITN, while sugary drink consumption is negatively
associated with CPITN. The low association of CPITN with hormonal status can be explained as a
multi–variable effect, as the hormonal status depends, among others, on both gender and age.

3.3. Data Modeling by Machine Learning Models

The machine learning pipeline consisted of a min–max scaler followed by a multi-
layer perceptron step, whose parameters had been tuned on the training data set. Using a
five–fold cross-validation, the weighted F1–scores obtained for the training and validation
datasets were 0.60 ± 0.03 and 0.57 ± 0.08, respectively. The confusion matrix (Figure 3A)
showed good prediction scores for healthy periodontium and periodontitis, but it high-
lighted some problems in the model for accurate prediction of gingival inflammation (final
F1–score of 0.74, 0.32, 0.68, and 0.60 for CPITN 0, CPITN 1–2, CPITN 3–4 and average,
respectively). The evaluation metrics presented in Supplementary Table S2 and the ROC
curve in Figure 3B illustrate the specificity and sensitivity of the model prediction regarding
each group prediction.
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Figure 3. Machine learning model performance. Assessment of the best performing model based
on variable selection (BorutaPy), data augmentation, and multilayer perceptron. (A) The corre-
sponding confusion matrix indicates the proportion of good predictions for each category of CPITN.
The complexity of predicting CPITN 1–2 is, thus, highlighted. (B) The ROC curves show the relation-
ship between the true positive rate (sensitivity) and the false positive rate (1 - specificity) for each
CPITN category.

The “kernelSHAP method” was used to interpret the predictions, assigning each
attribute (i.e., each variable of the final ML model) with an importance value (SHAP value)
for a given CPITN score prediction (Figure 4A–D). Age, systemic pathologies (mostly car-
diovascular, endocrine, and metabolic diseases), hormonal status, dried vegetable or fruit
consumption, and sugary drink consumption were the five most contributive variables used
to predict periodontal health, in contrast to body mass index for example (Figure 4A,B).
Increased age, dried vegetable or fruit consumption, smoking, and pathologies tended
to increase the risk of periodontitis (CPITN 3–4), in contrast to other variables, such as
level of education (Figure 4D). Figure 4C shows that age, hormonal status (for women),
level of education, sugary drink consumption and pathology tend to increase the risk of
gingival inflammation.
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Figure 4. Explanations of the ML model. The “KernelSHAP method” was used for prediction,
assigning each attribute (i.e., each variable of the final ML model) with an importance value (SHAP
value) for the prediction of specific CPITN scores. (A) Variable importance for each CPITN score,
sorted by decreasing mean absolute values of SHAP values. SHAP values, according to feature values
for subjects with healthy periodontium (B), gingival inflammation (C), or periodontitis (D). The color
of each violin plot encodes the value of the associated variable—red for higher values for the variable
and blue for lower values. For the categorical variables, a low value can also signify a missing value.
For hormonal status, the values in increasing order were as follows: being a man, non–menopausal
woman, postmenopausal woman. On the x–axis, a positive SHAP value signifies that the variable,
contributes positively to the risk prediction, whereas a negative SHAP value signifies that the variable
contributes negatively to the prediction. Variables are shown from the top to the bottom, in order of
importance (mean of absolute SHAP values).

The partial dependence plots show how the SHAP values partially depend on the
input variables of interest. The model clearly demonstrates the rise in gingival inflammation
risk up until 35 years old, and the decrease thereafter (Figure 5A). The SHAP contribution
of age for the CPITN 3–4 prediction increased in a sigmoid-type relationship with a sharp
transition around 35 years old (Figure 5B). Since 35 years old seemed to be an important
transition phase, the explanations were split according to this age. While age is the most
important factor for gingivitis prediction, the explainability profile differs between before
and after 35 years of age (Figure 5C,D). It is interesting to note that age remains the
preponderant factor in predicting periodontitis risk, and that the explanatory profile is
quite similar before and after 35 years of age, according to the importance ranking of the
variables and the distribution of the SHAP values (Figure 5E,F). When comparing prediction
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explainability between gingival inflammation and periodontitis, variable importance and
ranking are nevertheless not superimposable (Figure 5C–F).

Figure 5. SHAP contribution for CPITN prediction according to the pivotal age of 35 years. (A,B) The
partial dependence plots show how the SHAP values partially depend on the input variables of inter-
est. (A) Rise of gingival inflammation risk until 35 years old and decrease thereafter. (B) Sigmoid-type
relationship of periodontitis risk with age with a sharp transition around 35 years old. (C–F) SHAP
values of gingival inflammation (C,D) or periodontitis (E,F) risk according to feature values for
subjects < 35 years old (C,E), and subjects > 35 years old (D,F). The color of each violin plot encodes
the value of the associated variable, red for higher values of the variable and blue for lower values.
For the categorical variables, a low value can also signify a missing value. For hormonal status,
the values are in increasing order as follows: being a man or a girl (<12 years old), non-menopausal
woman, postmenopausal woman. On the x–axis, a positive SHAP value signifies that the variable
contributes positively to the risk prediction, whereas a negative SHAP value signifies that the variable
negatively contributes to the prediction. Variables are shown from the top to the bottom in order of
importance (mean of absolute SHAP values).

Interestingly, the analysis of the SHAP values for periodontitis prediction show that
age correlates with BMI and alcohol consumption, while diet is more dependent on the
level of education, and gender (displayed by hormonal status) is associated with general
pathologies (Figure 6A). Moreover, the SHAP values clustering on the whole population
highlights that, at the individual level, there is an increase in combinations among age
and diet, education, smoking, alcohol consumption, hormonal status, and/or systemic
pathologies to explain the probability of a periodontitis diagnosis (Figure 6B).
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Figure 6. SHAP values correlation and clustering on periodontitis prediction. (A) SHAP bar plot
clustering (right side) displays the redundancy structure as a dendrogram. Age mainly correlates
with BMI and alcohol consumption, while pathologies are strongly associated with hormonal status.
Diet seems to be rather dependent on the level of education. (B) The SHAP values clustering on the
whole population highlights the different risk factor combinations that may explain the prediction
of a periodontitis diagnosis. f(x) is the predicted probability of periodontitis. Each variable’s SHAP
contribution on periodontitis prediction is represented in color by subject.

The explanations can also be analyzed at the individual level (individual risk predic-
tion). Figure 7 provides an example of a 28-year-old healthy subject predicted to have a
24% risk of periodontitis. The algorithm interprets the high consumption of dried fruits
or vegetables and the existence of a pathology as an increased risk of periodontitis, while
age, not smoking, or being male (hormonal status not applicable) are interpreted as de-
creased risks of periodontitis (Figure 7A). Figure 7B illustrates a 37-year-old woman with
no periodontitis but predicted to have a 53% risk of developing this pathology. Figure 7C
illustrates a 49-year-old patient with periodontitis-accumulating risk factors, predicted to
have a high risk of periodontitis.
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Figure 7. Explanations at the individual level (individual risk prediction). (A) A 28-year-old healthy
subject predicted to have a 0.24 probability of periodontitis. (B) A 37-year-old healthy subject with a
0.53 probability of periodontitis. (C) A 49-year-old subject presenting periodontitis-accumulating risk
factors and predicted to have a high risk of periodontitis (0.64).

4. Discussion

This study conducted a machine learning analysis based on an innovative strategy
using a wide range of medical and sociodemographic parameters. The results support the
hypothesis that, like many age-related inflammatory chronic diseases, periodontitis can be
associated with a systemic risk profile, with no reference to oral stressors (e.g., poor hygiene).
Conversely, this kind of predictive pattern was not identified for gingival inflammation.
This could be explained by the absence in the database of specific oral hygiene variables
(e.g., plaque index to highlight a putative poor hygiene) able to differentiate dental plaque-
induced gingival inflammations from those preceding periodontitis in susceptible hosts,
which are largely uncorrelated with oral hygiene [21].
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All variables selected by the feature selection algorithm—i.e., age, systemic patholo-
gies, smoking, and female hormonal status—are well-known risk factors for chronic inflam-
matory diseases.

Age is the most critical periodontal risk factor. Indeed, our data confirm that most
patients over 50 years old display periodontal lesions and that the time span from 35 to
50 years of age is critical for individuals at risk of periodontal disease. In addition, following
a trend for increasing life expectancy, periodontitis prevalence is expected to rise, with sig-
nificant consequences on health, given the bidirectional relationships between periodontal
diseases and general pathologies [22]. Unlike the systemic and psycho-sociodemographic
risk factors, the biological mechanisms of aging on the pathophysiology of the periodon-
tium are still poorly understood. However, new hypotheses are emerging concerning
physiological—tissue health-related—adaptations to the accumulation of stressors over
time [23]. The increased prevalence of periodontitis after 50 years of age can be explained
by the notion of reserve depletion (or “allostatic load”) as a result of stressors to the oral
cavity [23–25]. Indeed, early and continuous stressors trigger a set of physiological learning
mechanisms—called “allostatic”—to maintain the functions of the periodontium, starting
at tooth eruption. One explanation for why this mechanism becomes a disease is that the
patient has “drained” his/her ability to adequately respond to repeated stimuli [25,26]. Ad-
ditionally, allostatic load has been cited as the origin of cardiovascular, metabolic, and even
degenerative diseases [27]. On a pathophysiological level, it can also explain the immune
depletion and reduced potential for cell renewal and differentiation and, therefore, the dis-
ruption in the balance between the host and his/her periodontal microbiota [25]. The effect
of life course on periodontal health can be considered an accumulation of stresses over
time with variable intensities, each with a probability of impacting the periodontal patho-
physiology. Since progressive periodontal tissue exhaustion is an essential prerequisite for
the installation of periodontitis [3,26], this implies that structural–functional periodontium
alterations begin to set in slowly, several years before the diagnosis, at around the age of 50.
It is therefore possible that the 35–50 age transition, highlighted by the partial dependence
plot of the contribution of age to periodontitis risk (i.e., the partial dependence plot of
SHAP values for age according to age), corresponds to a population displaying the accu-
mulation of stressor-induced periodontal alterations at a subclinical scale before these turn
into clinically detectable periodontitis. Merging image acquisition and analysis, biological
data (such as proteomics or transcriptomics) and bio–psycho–social data, together with an
ML-based analysis strategy, could help physicians to detect the infra-clinical periodontal
alterations that precede the emergence of periodontitis.

Interestingly, the ML model showed the presence of a systemic disease (such as chronic
inflammatory diseases, e.g., obesity, diabetes, cardiovascular diseases, and metabolic syn-
drome) to be strongly associated with periodontal health deterioration. Indeed, these
conditions are characterized by low-grade inflammation [4,28,29] and were previously
found to be associated with periodontal disease [28,30,31]. In obesity, the visceral adi-
pose tissues secrete inflammatory markers (e.g., cytokines, adipokines) inducing increased
systemic inflammation and oxidative stress disorders, with an enhancement of the host
immune response in the periodontal tissues [28,30,31]. Furthermore, obesity phenotypes
are characterized by reduced bacterial species richness and an increase in some periodontal
pathogens [32,33]. In the same way, type 2 diabetes is associated with an increased expres-
sion of inflammatory cytokines in periodontal tissues and increased inflammation [4], with a
reduction in oral microbial diversity and a surge of periodontal pathogens [34–36]. Further-
more, epidemiological studies have highlighted an association between periodontitis and
cardiovascular diseases (coronary heart disease, cerebrovascular disease, peripheral arterial
disease, rheumatic and congenital heart diseases, and venous thromboembolism) [10,37,38],
both explained by the deleterious effects of oxidative stress [39–41]. Moreover, metabolic
syndrome, combining both cardiovascular diseases and obesity [42], may facilitate a pro-
oxidant state, potentially decreasing the antioxidant capacity of the periodontal tissues [43].
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Overall, it was recently shown that the systemic dysimmunity resulting from metabolism
disorders contributes to sustained periodontium inflammation [44].

Smoking, one of the most important periodontal risk factors used by our algorithm,
is shown to increase the development and progression of periodontal diseases [4,45],
with peripheral vasoconstriction, dysfunction of neutrophils and T cells, production of
proinflammatory cytokines, increased permeability of the airway mucosa, and changes in
the airway epithelial barrier function [46,47]. Moreover, the proliferation, chemotaxis and
attachment of periodontal stromal progenitors are inhibited by nicotine [29]. Smoking also
selects specific periodontal pathogens, including Porphyromonas gingivalis, Treponema
denticola, and Tannerella forsythia [4]. While gender, per se, was not shown to be an
explanatory factor of the algorithm, ascertaining a woman’s hormonal status is important to
maintain algorithm accuracy. There is substantial evidence to demonstrate that sex steroid
levels greatly influence periodontal health. Indeed, sex hormones are fundamental to
skeletal development, vascularization, bone homeostasis, and immune function, including
cytokine production [6,48,49]. Age-associated reductions in sex steroids provide insight
into the increased susceptibility to periodontitis and alveolar bone loss, particularly among
women [48].

Surprisingly, perceived stress is not a key contributor for the prediction model. Al-
though it has been suggested that stress influences periodontitis occurrence, its role in this
disease pathophysiology remains debated [50,51]. We do not know whether it impairs the
host response at a purely physiological level, causing, for example, impaction of the inflam-
mation pathways, or whether stressed individuals have behavioral traits that induce higher
levels of periodontal risk (e.g., smoking, diet, oral hygiene) [52]. It is also possible that
stress is hidden by or intertwined with other stress-related variables, such as socioeconomic
background [50,53].

As correlation matrix shows, there are multiple interrelationships between the different
risk factors for periodontitis. The model considers the interactions between the different
factors. However, one must be careful not to infer causality. Future investigations on animal
models and the use of recent algorithms dedicated to causality will help to understand the
etiopathogenesis of periodontal diseases.

Although a broad recruitment was carried out, the population was drawn from a
single hospital recruitment center, whose population may differ slightly from a population
received in private practice.

5. Conclusions

The onset of periodontitis was shown to be influenced by multiple factors in an
interwoven and heterogeneous fashion, making it far from being deterministic. As such,
the development of numerical tools capable of predicting the probability of periodontitis
offers significant insights in the personalized medicine context. Unlike previous models,
the proposed machine learning approach provides a risk score for periodontitis based
on individual features, without calling for local or intra-oral factors. Subjects prone to
periodontitis could be detected using artificial intelligence by responding to a complex
spectrum of determinants combining biological, clinical, and sociodemographic factors.
Implemented within the care path, this algorithm could reinforce the diagnostic arsenal of
practitioners to identify patients at risk of periodontal disease, paving the way for targeted
prevention strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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tion by age, Figure S2: UMAP clustering of the subjects’ data, Table S1: Medical and sociodemographic
characteristics of the study population, Table S2: performance of the Multilayer Perceptron model for
each category of periodontal health to predict.
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