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Abstract: Migratory birds are carriers of multidrug resistant pathogenic Escherichia coli. However,
their roles in the dissemination of these resistant pathogens are still being neglected in Bangladesh.
The present study was therefore carried out to detect multidrug resistant E. coli. In addition, these
isolates were also screened for the presence of avian pathogenic E. coli (APEC)-associated virulence
genes. A total of 66 fecal matter samples of migratory birds were screened. E. coli were isolated
and identified by culturing and biochemical tests followed by polymerase chain reaction (PCR).
APEC-associated virulence genes were detected by PCR. Disk diffusion assays were employed to
investigate antibiogram profiles. Bivariate analysis was performed to assess correlations in resis-
tance patterns between antimicrobials and to assess associations between virulence genes of E. coli.
Among the 66 samples assessed by PCR, 55 (83.33%) were found positive for E. coli. Of these 55 iso-
lates, the APEC-associated virulence gene fimC was detected in 67.27% of the isolates, which was
significantly higher than in the cases of iucD (29.09%) and papC (5.45%) genes. In addition, three
isolates were found positive for all three virulence genes, while 23 and 12 isolates were positive for
one and two virulence genes respectively. In the bivariate analysis, significant associations were
detected between fimC and iucD virulence genes. Using the antibiogram, all E. coli isolates were
found to be multidrug resistant (MDR). The isolates exhibited 100% resistance against ampicillin
and erythromycin in addition to varying percentages of resistance against streptomycin, tetracy-
cline, ciprofloxacin, and chloramphenicol. Highly positive correlations between tetracycline and
ciprofloxacin, chloramphenicol and ciprofloxacin, chloramphenicol and tetracycline were observed
by bivariate analysis. To the best of our knowledge, this is the first study that reports APEC-associated
virulence genes of MDR E. coli from migratory birds in Bangladesh. Results indicate that migratory
birds are reservoirs of MDR E. coli isolates carrying APEC-associated virulence genes, which can
seriously contribute to the development of human and animal diseases.

Keywords: migratory birds; E. coli; virulence; APEC; MDR; environment; public health

1. Introduction

There are over 10,000 known species of birds that are distributed globally [1]. Birds
can travel long distances between countries and across continents. Bangladesh is located
in the subtropical region and thus has milder winters than in the northern hemisphere.
During the winter season, migratory birds travel to Bangladesh, and inhabit suitable water
bodies such as ponds, lakes, and rivers. Migratory birds are known to be involved in
the transmission and spread of human and animal pathogens such as bacteria, viruses,
fungi, archaea, and parasites as healthy carriers or as hosts of infected vectors [2,3]. Several
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studies revealed the transmission patterns of bacterial pathogens to aquatic environment
from migratory birds [4,5]. Importantly, bacterial pathogens can be transmitted to humans,
animals, and poultry by ducks and duck-like birds from water bodies contaminated by
fecal matter of migratory birds. In addition, people dwelling around water bodies where
migratory birds take rest, may come in contact with contaminated water that they may
try to use for household or agricultural purposes. Furthermore, when people usually use
contaminated water for dairy or poultry farming, bacterial pathogens can be transmitted
to other humans and animals.

Among the different bacteria transmitted by migratory birds, Escherichia coli are
important commensal avian and human pathogens that exist as part of the microbiota of
the intestinal tract of avian species [6]. Pathogenic E. coli can infect the respiratory tract,
urinary tract, and bloodstream of humans and animals [7]. Strikingly, more than 80% of
urinary tract infections in humans are caused by this microorganism [8].

Avian pathogenic E. coli (APEC) causes avian colibacillosis in poultry, which is an
infectious disease that negatively impacts the poultry sector [9]. It causes yolk sac infections,
pericarditis, synovitis, peritonitis, osteomyelitis, and salpingitis in poultry [10]. The disease
has been associated with several virulence genes, including fimC, fimH, papC, iss, stx1, stx2,
tss, cvi, and iucD [10–13]. Virulence factors include invasins, adhesins, protectins, iron
acquisition systems, and toxins and are crucial for invasion, colonization, and adherence
of the pathogen to the surface of respiratory tract, its resistance mechanisms, its ability to
multiply under iron-restricted situation, and its cytotoxic effects [10,14]. Among virulence
genes, fimC (Type 1 fimbriae C) is responsible for adherence and colonization on epithelial
cells, iucD (iron-uptake systems of E. coli D) is responsible for iron-acquisition, and papC
(pyelonephritis-associated pili C) is responsible for bacterial adhesion [10]. The number and
combination of virulence genes associated with APEC determine its overall virulence [15].

APEC infections are zoonotic in nature and have phylogenic similarities with uropathogenic
E. coli (UPEC) that causes urinary tract infections and with neonatal meningitis E. coli that
causes neonatal meningitis in humans [16,17]. In addition, these strains can share virulence
factors by transmitting virulence genes and plasmids [16]. Furthermore, APEC in meat of
healthy birds can be transmitted to humans via the food chain leading to extraintestinal
diseases and other diseases [18].

Antimicrobial resistance (AMR) is a serious global problem that jeopardizes human,
animal, and environmental health. If not contained by 2050, AMR is estimated to cause
hundreds of millions of human deaths, severe financial losses, and a significant fall in
livestock production [19]. The impact will be severe in low- and middle-income countries
(LMICs) in Africa and Asia including Bangladesh. Migratory birds can spread antibiotic
resistant pathogens over long distances to remote locations and can act as reservoirs of
antibiotic-resistant bacteria [20–22]. They have been recognized as an important source
for the environmental dissemination of AMR [21,23,24]. Multidrug resistant (MDR) E. coli
has been from migratory birds in different parts of the world [25–28]. Fecal transmis-
sion of MDR E. coli from migratory birds to water bodies in different areas has been
reported [29,30].

AMR has been extensively studied in humans, livestock, and poultry. There has been
less focus on AMR in non-typical hosts such as in migratory birds and significant gaps of
knowledge do exist. MDR E. coli has been reported in migratory birds in Bangladesh [25].
However, to the best of our knowledge, there is no data on virulence determinants of
MDR E. coli associated with the APEC pathotype in Bangladesh. In this study, we assessed
the hypothesis that APEC-associated virulence determinants exist in the microbiota of
migratory birds travelling to Bangladesh. In addition to the isolation and identification of
the virulence determinants, we assessed multidrug resistance in these migratory birds.



Antibiotics 2021, 10, 190 3 of 13

2. Results
2.1. Prevalence of E. coli Isolates

Out of 66 samples, the characteristic colonies of E. coli were observed in 62 samples
(93.94%). All 62 isolates were also confirmed to be E. coli by Gram staining and biochemical
tests. PCR results revealed that 55 of the 62 isolates (83.33%) were positive for the malB
gene (585 bp).

2.2. Prevalence of the Virulence Genes Associated with the APEC Pathotype

Of the 55 E. coli isolates, 37 (67.27%), 16 (29.09%), and three (5.45%) were positive for
fimC, iucD, and papC respectively (Table 1). Overall, 38/55 (69.09%) E. coli isolates were
positive for at least one of the three APEC-associated virulence genes. Among the 38 E. coli
isolates harboring APEC-associated virulence genes, three isolates were positive for all
three virulence genes (fimC, iucD, and papC); 12 were positive for two virulence genes (fimC
and iucD), and 23 were positive for a single virulence gene (22 for fimC and one for iucD).
Based on statistical analysis, the prevalence of fimC was significantly higher than the other
two virulence genes (chi-square test, 95% CI, p < 0.001) (Table 1).

Table 1. Prevalence of avian pathogenic E. coli (APEC)-associated virulence genes in E. coli isolated
from fecal matter of migratory birds.

Virulence Gene Occurrence (%) (n = 55) p-Value *

fimC 37 (67.27)

<0.001iucD 16 (29.09)

papC 3 (5.45)
* A p-value less than 0.05 (p < 0.05) was deemed as significant.

2.3. Pearson Correlation Coefficients for Pairs of APEC-Associated Virulence Genes

A bivariate analysis conducted on APEC-associated virulence genes showed a signifi-
cant correlation between fimC and iucD (Pearson correlation coefficient, ρ = 0.447; p = 0.001).
There were weaker correlations between fimC and papC (Pearson correlation coefficient,
ρ = 0.168; p > 0.05) and between iucD and papC (ρ = 0.199; p > 0.05) (Table 2).

Table 2. Pearson correlation coefficients for pairs of APEC-associated virulence genes isolated from fecal matter of migratory
birds.

Statistical Analysis fimC iucD papC

fimC Pearson Correlation Coefficient 1

p-value (two-tailed) -

iucD
Pearson Correlation Coefficient 0.447 ‡ 1

p-value (two-tailed) 0.001 * -

papC Pearson Correlation Coefficient 0.168 0.199 1

p-value (two-tailed) 0.221 0.146 -

* A p-value less than 0.05 (p < 0.05) was deemed as significant; ‡ correlation is significant at the 0.01 level (two-tailed).

2.4. Antibiogram Profiles of Isolated E. coli Associated with the APEC Pathotype

Antibiotic sensitivity test revealed that all 55 E. coli isolates were highly resistant
to ampicillin and erythromycin. The isolates exhibited varying degrees of resistance to
streptomycin (74.55%), tetracycline (63.64%), ciprofloxacin (50.91%), and chloramphenicol
(43.64%). The isolates were highly or intermediately sensitive to ceftriaxone, meropenem,
gentamicin, and colistin. The antibiogram profiles of the isolated E. coli are presented in
Figure 1.
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Figure 1. Antibiogram profiles of E. coli isolated from fecal samples of migratory birds. CIP = ciprofloxacin;
GEN = gentamicin; E = erythromycin; TE = tetracycline; CL = colistin; CTR = ceftriaxone; MEM = meropenem;
AMP = ampicillin; C = chloramphenicol; S = streptomycin.

2.5. Pearson Correlation Coefficients for Pairs of Antibiotics to Assess Antibiotic-Resistant
E. coli Isolates

Pearson correlation tests were used to assess correlations between different antibiotic-
resistant E. coli isolates. There were positive significant correlations between resistance
patterns against tetracycline and ciprofloxacin (ρ = 0.694; p < 0.001); chloramphenicol
and ciprofloxacin (ρ = 0.717; p < 0.001); chloramphenicol and tetracycline (ρ = 0.589;
p < 0.001); and streptomycin and tetracycline (ρ = 0.426; p = 0.001). On the other hand,
there were negative significant correlations between resistance patterns against colistin and
ciprofloxacin (ρ = −0.356; p = 0.008); colistin and tetracycline (ρ = −0.342; p = 0.011);
meropenem and ciprofloxacin (ρ = −0.285; p = 0.035); chloramphenicol and colistin
(ρ = −0.308; p = 0.022); and streptomycin and colistin (ρ = −0.331; p = 0.014) (Table 3).
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Table 3. Pearson correlation coefficients for pairs of antibiotics to assess antibiotic-resistant E. coli isolates from fecal samples
of migratory birds.

Statistical Analysis CIP GEN E TE CL CTR MEM AMP C S

CIP
Pearson Correlation Coefficient 1

p-value (two-tailed) -

GEN
Pearson Correlation Coefficient 0.123 1

p-value (two-tailed) 0.371 -

E
Pearson Correlation Coefficient - a - a - a

p-value (two-tailed) - - -

TE
Pearson Correlation Coefficient 0.694 ‡ 0.099 - a 1

p-value (two-tailed) 0.000 * 0.471 - -

CL
Pearson Correlation Coefficient 0.356 ‡ 0.065 - a −0.342

† 1

p-value (two-tailed) 0.008 * 0.639 - 0.011 * -

CTR
Pearson Correlation Coefficient - a - a - a - a - a - a

p-value (two-tailed) - - - - - -

MEM
Pearson Correlation Coefficient 0.285 † 0.098 - a -0.225 0.098 - a 1

p-value (two-tailed) 0.035 * 0.477 - 0.099 0.477 - -

AMP
Pearson Correlation Coefficient - a - a - a - a - a - a - a - a

p-value (two-tailed) - - - - - - - -

C
Pearson Correlation Coefficient 0.717 ‡ 0.073 - a 0.589 ‡ −0.308 † - a −0.246 - a 1

p-value (two-tailed) 0.000 * 0.598 - 0.000 * 0.022 * - 0.070 - -

S
Pearson Correlation Coefficient 0.261 0.063 - a 0.426 ‡ −0.331 † - a −0.158 - a 0.178 1

p-value (two-tailed) 0.054 0.646 - 0.001 * 0.014 * - 0.250 - 0.195 -

* A p-value less than 0.05 (p < 0.05) was deemed as significant; ‡ correlation is significant at the 0.01 level (two-tailed); † correlation
is significant at the 0.05 level (two-tailed); a cannot be computed because at least one of the variables is constant; CIP = ciprofloxacin;
GEN = gentamicin; E = erythromycin; TE = tetracycline; CL = colistin; CTR = ceftriaxone; MEM = meropenem; AMP = ampicillin;
C = chloramphenicol; S = streptomycin.

2.6. Prevalence of MDR E. coli

All the E. coli isolates (n = 55) were MDR in nature. Overall, 17 antibiotic resistance
patterns were observed among the isolated E. coli. Of them, resistance pattern no. 16 (CIP,
E, TE, AMP, C, S) was the most prevalent (29.09%), followed by pattern no. 3 (E, AMP, S)
in 16.36% of the E. coli isolates. Two isolates exhibited resistance against seven antibiotics
representing six classes (pattern no. 17) (Table 4).
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Table 4. Phenotypic resistance patterns of multidrug-resistant (MDR) E. coli isolated from fecal matter of migratory birds.

Pattern No. Antibiotic Resistance
Patterns

No. of Antibiotics
(Classes)

No. of MDR Isolates
(%)

Overall No. of MDR
Isolates (%)

1 E, TE, AMP 3 (3) 2 (3.64)

55
(100)

2 GEN, E, AMP 3 (3) 2 (3.64)

3 E, AMP, S 3 (3) 9 (16.36)

4 E, CL, AMP 3 (3) 4 (7.27)

5 E, MEM, AMP 3 (3) 2 (3.64)

6 CIP, E, AMP, C 4 (4) 1 (1.81)

7 E, TE, AMP, S 4 (4) 1 (1.81)

8 E, MEM, AMP, S 4 (4) 1 (1.81)

9 GEN, E, TE, AMP, S 5 (4) 1 (1.81)

10 GEN, E, CL, AMP, S 5 (4) 1 (1.81)

11 CIP, E, TE, AMP, C 5 (5) 3 (5.45)

12 CIP, E, TE, AMP, S 5 (5) 6 (10.91)

13 E, TE, AMP, C, S 5 (5) 2 (3.64)

14 E, TE, CL, AMP, S 5 (5) 1 (1.81)

15 E, TE, MEM, AMP, S 5 (5) 1 (1.81)

16 CIP, E, TE, AMP, C, S 6 (6) 16 (29.09)

17 CIP, GEN, E, TE, AMP,
C, S 7 (6) 2 (3.64)

CIP = ciprofloxacin; GEN = gentamicin; E = erythromycin; TE = tetracycline; CL = colistin; CTR = ceftriaxone; MEM = meropenem;
AMP = ampicillin; C = chloramphenicol; S = streptomycin; MDR = multidrug resistant.

3. Discussion

Migratory birds contribute to the circulation and dissemination of different bacteria
including E. coli. As an enteric microorganism, pathogenic E. coli can cause both human
and animal diseases and is known to develop antimicrobial resistance [31]. Since migratory
birds can spread antibiotic-resistant E. coli during migration, we investigated fecal matter
of migratory birds to identify APEC-associated virulence genes.

The 83.33% (55/66) prevalence rate of E. coli in migratory birds was close to the
prevalence rate of a study in Portugal (85.7%) [23], but higher than prevalence rates
reported in other studies in Bangladesh [25,32], Czech Republic [33], Egypt [34], Northern
Italy (33.9%) [35], and Italy (24.31%) [36]. On the other hand, the prevalence rate was lower
than the prevalence rate reported in a study in Saudi Arabia (94%) [26]. These variations
can be due to the variations in detection methods, geographical and seasonal distribution,
sample sizes, and types and species of migratory birds. In addition, stressful conditions that
migratory birds experience during migration may impact the shedding rate of bacteria [37].
The detection of E. coli in the fecal samples of the migratory birds is not unusual because of
commensal nature of this organism in the intestines of humans, animals, and avian species.
In addition, migratory birds usually occupy variegated ecological niches and adapt varying
feeding patterns during their different forms of migration. During these migrations, birds
can host E. coli and contribute to its transmission from one place to another.

This is the first study to detect virulence determinants of MDR E. coli associated with
the APEC pathotype from migratory birds in Bangladesh. Virulence genes are pivotal
for the detection of any pathogenic microorganisms [38]. In the present study, 69.09%
(38/55) E. coli isolates were positive for at least one or more virulence genes. Among
them, the three tested virulence genes (fimC, iucD, and papC) were present together in only
three isolates. However, the prevalence of the fimC (67.27%) gene was higher than iucD
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(29.09%) and papC (5.45%) genes. In addition, there was a significant correlation between
fimC and iucD genes; but none with the papC gene. Previous studies reported the detection
of APEC-associated virulence genes from migratory birds in Italy and Slovakia [39,40].
Both fimC (a chaperone-like periplasmic protein) and papC allow E. coli to adhere to host
cells [41]. The iucD gene contributes to APEC pathogenesis through an iron-acquisition
system and the mediation of aerobactin synthesis [42]. As APEC colonizes its avian hosts,
it can spread through the fecal route to the environment potentially threatening humans,
animals, and other avian hosts [14]. Furthermore, biological and environmental stress
factors can compound the APEC’s threat to the livestock and human population [43].

It is noteworthy that APEC-associated virulence genes isolated from migratory birds
in this study have been previously detected in humans and wild mammals [44]. Thus,
migratory birds can act as potential reservoirs for antibiotic-resistant APEC which, due to
its zoonotic nature, can spread from these birds to the human population [17,22,45]. In line
with earlier studies [45,46], we detected multidrug resistance in the isolated E. coli. All the
E. coli isolates exhibited very high resistance against ampicillin and erythromycin, in ad-
dition to different levels of resistance against streptomycin, tetracycline, ciprofloxacin,
and chloramphenicol. Previous studies reported resistance in E. coli isolated from migra-
tory birds against ampicillin, ciprofloxacin, chloramphenicol, tetracycline, streptomycin,
gentamicin [26,28,33,36,47]. Notably, colistin-resistant and meropenem-resistant E. coli
have also been detected in this study. Colistin is in the reserve group of antibiotics and its
detection in isolated E. coli is alarming. In addition, meropenem is from the carbapenem
group which is typically used for the treatment of serious infections in humans only. Migra-
tory birds might have obtained these resistant isolates from an environment contaminated
with human secretions or excretions. Further studies at the molecular level need to be
conducted to follow up on this finding.

In this study, we reported significant positive correlations (p < 0.05) between the
resistance profiles of ciprofloxacin and tetracycline, chloramphenicol and ciprofloxacin,
chloramphenicol and tetracycline, and streptomycin and tetracycline; significant inverse
correlations were observed in between colistin and ciprofloxacin, colistin and tetracycline,
meropenem and ciprofloxacin, chloramphenicol and colistin, and streptomycin and col-
istin. The significant correlations observed between antimicrobials might be related to the
haphazard use of antibiotics in animals and poultry in areas inhabited by the migratory
birds. Cross-contamination of the environment, such as the water bodies, might also have
played a role.

It is worth mentioning that all the E. coli isolates from migratory birds in this study
were MDR in nature. The detection of MDR E. coli from the migratory birds is not uncom-
mon. Previously, Hasan et al. [25] reported MDR E. coli in fecal samples of migratory birds
in Bangladesh. Similar observations have also been made in other parts of the world [26,28].
Our findings leave open the possibility of long-distance transmissions of MDR bacteria
from their original habitats to far locations, which can be very alarming, especially if the
transmission was to areas in which the public has not been educated about infectious
disease control and prevention [48]. The transmission of resistant E. coli from livestock
to wild birds has previously been reported [49]. It is likely to occur in Bangladesh as
people tend to keep their animals and poultry near water bodies where interaction with
migratory birds is possible. Antimicrobial resistant E. coli has also been detected in wild
mammals [50,51].

Aquatic environments are considered to be hotspots for the transmission of antibiotic-
resistant bacteria such as E. coli [52]. Along this line, previous studies reported that
ducks, which live near water bodies, can transmit antibiotic-resistant bacteria [53,54]. Since
migratory birds carrying antibiotic-resistant E. coli inhabit water bodies, they might be
contributing to the dissemination of antibiotic-resistant E. coli through fecal matter to
the surrounding aquatic environments, which can jeopardize human and animal health
directly or indirectly. One major area of concern is if the resistant bacteria gain entry
into the human food chain. Given all the above, it will be important to control and
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prevent the spread of antibiotic-resistant bacteria from migratory birds to humans, animals,
and other poultry.

4. Materials and Methods
4.1. Study Area

The present study was carried out in Baojani Baor within the Mohammadpur Upazila
(23.4056◦ N, 89.5686◦ E) of the Magura district of Bangladesh (Figure 2) during the period
of November 2019 to November 2020. The area was selected due to the abundance of
wintering migratory birds in this area every year. Humans in the area typically work in
agriculture or animal rearing. In addition, different poultry species are frequently available
in the area.
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4.2. Sampling and Initial Processing

A total of 66 freshly dropped wet fecal samples from migratory birds were collected
from the ground and tree leaves. Based on the procedure of Akter et al. [55], samples
were collected using sterilized cotton buds and were transferred to separate sterilized
zip lock bags with particular tag numbers followed by transferring to the laboratory
while maintaining cold chain throughout. Each sample was added to 5 mL nutrient broth
(HiMedia, India) in a sterilized test tube. All the test tubes containing fecal samples were
then incubated aerobically overnight at 37 ◦C.

4.3. Isolation of E. coli

The isolation of E. coli was done by culturing on Eosin Methylene Blue (EMB) agar
(HiMedia, India) plates. Initially, the overnight grown broth cultures were streaked on
EMB agar plates with sterilized inoculating loops. Subsequently, the inoculated agar plates
were incubated at 37 ◦C for overnight to obtain pure colonies. If needed for securing
pure colonies, subcultures were conducted on EMB agar plates. The growth of single
green-colored metallic sheen colonies on EMB agar plates indicated the growth of E. coli.
The single pure colonies were screened for further confirmation by Gram’s staining tech-
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nique and different biochemical tests including motility test, catalase test, coagulase test,
sugar fermentation tests, methyl red test, Voges–Proskauer test, and indole tests [56–58].

4.4. Molecular Detection of E. coli

The final confirmation of E. coli was done by polymerase chain reaction (PCR) assays
targeting the malB gene (Table 5).

Table 5. Primers used in the present study.

Target Genes Primer Sequence (5’–3’) Amplicon Size
(bp)

Annealing
Temperature (◦C) References

malB F:GACCTCGGTTTAGTTCACAGA
R: CACACGCTGACGCTGACCA 585 55 [59]

fimC F: GGTAGAAAATGCCGATGGTG
R: CGTCATTTTGGGGGTAAGTGC 496 59

[60]iucD F: ACAAAAAGTTCTATCGCTTCC
R: CCTGATCCAGCTGATGCTC 692 55

papC F: TGATATCACGCAGTCAGTAGC
R: CCGGCCATATTCACATAA 483 59

For PCR, the genomic DNA was extracted from pure cultures of E. coli by the boiling
method as previously described [61,62]. In brief, a pure colony from freshly grown culture
was added into 100 µL phosphate buffer solution (PBS) in a sterile Eppendorf tube and
mixed by gentle vortexing. Subsequently, the mixture was boiled and cooled for 10 min in
each step, followed by the centrifugation at 10,000 rpm for 10 min. Finally, the supernatant
was collected (genomic DNA) and stored at −20 ◦C for further use.

The PCR was performed with a final volume of 20 µL containing 4 µL nuclease free
water, 10 µL master mix (2X) (Promega, Madison, WI, USA), 1 µL of forward and reverse
primers, and 4 µL of genomic DNA. After completion, the amplified PCR products were
examined by gel electrophoresis with 1.5% agarose. Finally, staining and visualization of
the amplicon products were done in ethidium-bromide and under an ultraviolet trans-
illuminator (Biometra, Göttingen, Germany). The targeted amplicon sizes were checked
using 1 kb DNA ladder ((Promega, Madison, WI, USA).

4.5. Molecular Detection of APEC-Associated Virulence Genes

In order to detect the virulence determinants of E. coli isolates, three genes (fimC,
iucD, and papC) associated with the APEC pathotype were selected. These genes were
previously reported in APEC isolates from different poultry species [10,18,42,63]. The E. coli
isolates (confirmed by PCR) were screened to detect virulence genes associated with the
APEC pathotype from migratory birds. The presence of the virulence gene iucD indicates
pathogenic E. coli. We listed the primers used in this study along with their target genes in
Table 5.

4.6. Antibiotic Susceptibility Test

The Kirby–Bauer disk diffusion test [64] was used for antibiotic susceptibility test-
ing of isolated E. coli in accordance with the guidelines of the Clinical and Laboratory
Standards Institute [65]. Ten antibiotics belonging to nine antimicrobial classes were
used. Here is a list of the nine classes and their associated antibiotics: fluoroquinolones
(ciprofloxacin—5 µg), aminoglycosides (gentamicin—10 µg; and streptomycin—10 µg),
macrolides (erythromycin—15 µg), tetracycline (tetracycline—30 µg), polypeptides
(colistin—10 µg), cephalosporins (ceftriaxone—30 µg), carbapenems (meropenem—10 µg),
penicillins (ampicillin—25 µg), and amphenicols (chloramphenicol—10 µg). The sensitivity
tests were carried out on freshly-grown bacteria in nutrient broth using Mueller–Hinton
agar (HiMedia, India) plates. The concentration of bacteria was adjusted to 0.5 McFarland
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(HiMedia, India) units before testing. A Multidrug resistant isolate was defined as an
isolate that is resistant to three or more classes of antimicrobial agents [66].

4.7. Statistical Analyses
4.7.1. Descriptive Analysis

Data entry was done using Microsoft Excel 2013 (Los Angeles, CA, USA) and analysis
was performed using the Statistical Package for Social Science- SPSS (IBM SPSS 25, IBM,
Chicago, IL, USA).Variations in the prevalence of APEC-associated virulence genes were
assessed by the chi-square test for goodness-of-fit using SPSS. A p-value less than 0.05 was
considered to be statistically significant.

4.7.2. Bivariate Analysis

Bivariate analysis was performed to assess correlation in resistance patterns in pairs
of antibiotics and for correlation in pairs of APEC-associated virulence genes from the
isolated E. coli. A p-value less than 0.05 (p < 0.05) was deemed statistically significant.

5. Conclusions

This is the first study to detect virulence genes of MDR E. coli associated with the
APEC pathotype isolated from migratory birds in Bangladesh. These migratory birds
might spread antibiotic-resistant E. coli to the environment, which can impact human and
animal health. Active surveillance for migratory birds is important together with the
implementation of the one health approach to control the zoonotic potential of APEC and
to minimize the AMR-associated health hazards [67].
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