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Antibiotics have been used extensively for growth promotion in poultry, along with

other food production animals, as well as therapeutically to treat infectious diseases.

However, with concerns over selection for drug antibiotic resistant bacteria the practice

of using subtherapeutic doses of antibiotics is under increased scrutiny. Consequently,

we assessed the impact of the commonly used antibiotic bacitracin methylene

disalicylate (BMD) on the gastrointestinal microbiota of chickens. For this we administered

therapeutic doses of BMD as a feed additive and 16s rRNA gene amplicon sequencing

to measure changes in taxonomic abundance on the distal colon and cecal microbiota

of young broiler chickens. While BMD treatment was found to impact the abundance of

selected taxa and overall beta diversity, significant changes were, in general, limited to the

colon of the treated birds. Selected taxa at the phylum, class, and genus levels that were

most impacted were identified. The composition of the cecum remained relatively stable

in BMD-treated animals. As poultry production practices seek alternatives to growth

promoting antibiotic feed additives, manipulation of the gastrointestinal microbiota holds

promise. These results suggest that targeting the cecum may offer a means to promote

changes to the microbiota that maximize the benefits for the hosts.
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INTRODUCTION

Along with therapeutic use, antibiotics are well-established for their ability to promote growth
through improved weight gain and feed efficiency in livestock (1), including in broiler chickens
(2). In poultry, bacitracin methylene disalicylate (BMD) is commonly used for growth promotion
(3). Compared to other growth promoting antibiotics, such as virginiamycin, BMD is a relatively
narrow spectrum antibiotic that targets primarily gram-positive bacteria, including Streptococci,
Staphylococci, Clostridia, Fusobacterium, and Actinomyces. BMD interferes with protein synthesis
and cell wall production and induces cell lysis in these microorganisms (4, 5). The antibiotic is not
well-absorbed by the intestine and therefore primarily acts on bacteria in the gastrointestinal (GI)
tract of the animals through delivery as a feed additive (6).
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Feeding chickens low doses of BMD benefited the birds,
including increased villus height throughout the small intestine
and improved digestion of dietary components that correlated
with increased body weight and feed consumption (7).

BMD is also used as to treat and prevent necrotic enteritis
caused by Clostridium perfringens (8, 9), which is a cause of
significant economic loss in the poultry industry (10). While
antibiotic growth promoters make important contributions to
the overall efficiency of livestock production, they are also
not without their concern as sub-therapeutic doses used are
also associated with selection and spread of drug resistant
bacterial pathogens (11, 12). Concerns over widespread use of
antibiotics in agriculture has prompted a ban on their use in
the European Union with increased scrutiny for their use in the
United States (13).

Given the importance of poultry for human nutrition and
the food animal industry world-wide, emphasis has been placed
on characterizing the chicken microbiome as a means to
improve our understanding of antibiotic growth promotion
and to identify alternative strategies that do not select for
drug resistant bacteria (14–18). Toward this, numerous studies,
representing a variety of methods, have assessed the impact of
antibiotic treatment on the microbiota of poultry (7, 9, 19–32).
In general, these studies have shown that growth-promoting
antibiotics can have significant effects on the structure and
function of the microbiota colonizing the GI tract. As to be
expected with a list of wide-ranging studies, there are few
bacterial taxa that are consistently altered by antibiotics that can
explain their growth promoting activities since the composition
and activity of the chicken microbiome is highly dependent
on environmental conditions, feed composition and method
of assessment of the microbioal communities. Interestingly,
however, chicken microbiota studies have revealed that BMD,
along with other growth-promoting antibiotics, can deplete
species of Lactobacillus, as well as other probiotic species
(32, 33). This observation has led to the suggestion that a
reduction in bile-salt hydrolase activity encoded bymany of these
bacteria may contribute to growth promotion by reversing the
negative effects on fat metabolism of these enzymes (34). Clearly
additional studies are needed to better understand how changes
to the microbiota by low-dose antibiotics contribute to animal
growth enhancement.

To further out understanding of how the growth promoting
feed additive BMD impacts the chicken microbiota, we have
focused on distinguishing between the effects of the antibiotic on
cecal vs. colon bacterial populations. These two compartments of
the chicken digestive tract are colonized with distinct microbial
communities (35, 36). Also, while metabolism and adsorption
of macronutrients occurs primarily in the colon, fermentation
of complex polysaccharides occurs primarily in the cecum (14,
15, 36). Because of these spatial and functional differences,
we sought to determine the extent to which BMD impact the
microbiota of the distinct compartments of the GI tract. For
this, we conducted 16s rRNA gene amplicon taxonomic profiling
of the microbiota of the distal colon and cecum from young
broiler birds using therapeutic doses (8, 37) of the antibiotic to
accentuate differences in microbial composition in the GI tract.

MATERIALS AND METHODS

Animal Model and Housing
This study was carried out with the approval of the Iowa State
University Institutional Animal Care and Usage Committee
under protocol number 6-11-7167-G. The design followed
a necrotic enteritis model, however, no pathogens were
administered to the chickens and only antimicrobial feed
additives were added to the experimental group.

Approximately 30 day old jumbo Cornish/Rock broiler chicks
were obtained from Welp Hatchery (Bancroft, IA) and housed
in pens created by tying two 32′′ × 8′ × 1/8′′ (81 cm × 2.45m
× 0.3 cm) pegboards together to form a circle. This circular pen
was divided into three equally sized areas with similar pegboard
material. Each pen was bedded using ∼3′′ (7.5 cm) of wood
shavings. Heat lamps were made available for each pen. One two-
gallon, galvanized waterer and one galvanized metal feeder were
supplied to each pen.

Groups of 15 birds were housed in the pens described. On
days 1–7, each group received 1 kg of a low-protein chick starter
(LPF) once a day. On days 8–10, each group was given 1 kg of a
high protein feed (HPF) once a day. On days 11–18, the control
group remained on the same HPF feed while the challenge group
received the HPF supplemented with BMD (200 g/ton). On these
days, each group was fed 1 kg HPF with or without BMD twice
a day. On day 19, the chicks were euthanized and samples were
collected. Distal colon and cecal contents were collected and
stored at−80◦C until total DNA was isolated.

DNA Isolation
Total genomic DNA was extracted using the PowerSoil DNA
Isolation Kit (MoBio, Carlsbad, CA). The manufacturer’s
protocol was followed with the exception of the initial vortexing
step, which was extended to 20min to thoroughly homogenize
the samples. Purified genomic DNA extracts were quantified
using a Quibt 2.0 Fluorometer (Life Technologies, Carlsbad, CA),
and DNA stored at−20◦C in the provided 10mM Tris buffer.

Sequencing and Analysis
PCR amplification of the variable regions 3–5 of
the 16S rRNA gene was done using region specific
primers 357F (CTCCTACGGGAGGCAGCAG)−926R
(CCGTCAATTCMTTTRAGTTT). Amplicon sequencing was
performed at the Research and Testing Laboratory (Lubbock,
TX) using the Roche 454 Titanium platform.

The resulting DNA sequences were analyzed using QIIME
(Quantitative Insights into Microbial Ecology) (38). The reads
were first demultiplexed and binned per sample. The reads were
also quality filtered during this step to remove poor quality
sequences using default quality filtering values. Denoising of
the 454 reads was performed using Denoiser (39). Chimeric
sequences were identified using USEARCH and removed (40,
41). The remaining sequences were clustered into OTUs at 97%
similarity using USEARCH and the open reference OTU picking
strategy in QIIME. Sequences were aligned to the Greengenes
(13_5) rRNA sequence core reference database using PyNAST
(42, 43). Taxonomic assignments were made using the RDP
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Classifier 2.2 at a 97% similarity to the Greengenes reference
database (44). Phylogenetic trees were built using FastTree 2.1.3
(45). Alpha and beta diversity, analysis of similarity (ANOSIM)
and Adonis tests were generated using QIIME. PCoA plots were
generated using Emperor in QIIME (46). Mann–Whitney U-
tests were performed on taxonomic summaries using a custom R
script (R Project) developed at the Institute of Genome Sciences
at the University of Maryland-Baltimore. Sequence reads have
been submitted to NCBI’s short read archives.

RESULTS

Alpha and Beta Diversity
A total of 79,670 sequences were analyzed using QIIME. After
filtering based on quality scores, 73,529 sequences corresponded
to 619 OTUs with an average of 2,298 ± 1,335 sequences
per sample.

Figure 1 summarizes the alpha diversity measurements
used to determine the extent to which BMD altered the
composition of the microbiota. This included measurements
of observed OTUs (1A), Faith’s phylogenetic diversity (1B),
Shannon (1C), and Simpson (1D) alpha diversity indices to
compare treatment groups. Non-parametric two-sample t-tests
were used to identify significant differences among the groups.
While significant differences in OTUs were not observed among
the groups by the Simpson and Shannon diversity metrics
(data not shown), differences were noted by Faith’s phylogenetic
diversity (Table 1).

Within the BMD treated group, the distal colon showed higher
phylogenetic diversity compared to the cecal samples (p= 0.036).
The phylogenetic diversity of the colon of the BMD treated
birds was also greater than the same samples from the control
group (p = 0.006). This could indicate the BMD treatment is
causing a few OTUs to become depleted hence allowing for other

FIGURE 1 | Comparison of the composition of the microbiota in treatment groups. (A) Observed OTUs. (B) Faith’s phylogenetic diversity. (C) Shannon alpha diversity

index. (D) Simpson alpha diversity index. Treatment groups include: BMD treated, cecum (red line); BMD treated, distal colon (blue line); Control, cecum (orange line);

Control, distal colon (green line).

TABLE 1 | Significant differences among the treatment and control groups as assessed by Faith’s phylogenetic diversity non-parametric two-sample t-tests.

Group 1 Group 2 Group 1 mean Group 1 std Group 2 mean Group 2 std t statistic p-value

Control-cecum BMD-cecum 5.48 1.13 7.32 2.41 −1.80 0.66

BMD-cecum BMD-colon 7.33 2.41 11.86 1.76 −3.89 0.04

Control-cecum Control-colon 5.48 1.13 5.77 1.32 −0.43 1

BMD-colon Control-colon 11.86 1.76 5.76 1.32 7.30 0.01
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FIGURE 2 | Unifrac PcoA plots of the treatment groups. (A) Weighted (B) unweighted. Treatment groups include: BMD treated, cecum (red squares); BMD treated,

distal colon (blue triangles); Control, cecum (orange triangles); Control, distal colon (green circles).

FIGURE 3 | Relative abundance at the phylum level for each of the treatment

groups. Specific phyla are shown in the key on the right.

unique OTUs to establish or increase in their proportion within
the community.

Figure 2 shows the weighted (abundance considered) Unifrac
PcoA beta diversity plots of the treatment groups (Figure 2A),
while Figure 2B shows the unweighted (abundance independent)
plots. In the weighted Unifrac PCoA analysis, cecal samples from
both treated and control groups showed greater similarity than
samples from the colon. Conversely, the colon samples of the
control and BMD groups showed greater variability, with less
distinct clustering. Also, the control samples from the colon
clustered closer to each other and also closer to the cecal samples
than the BMD colon samples.

The unweighted Unifrac PCoA plots showed that treatment
influenced the dissimilarity of the samples more than GI tract
location as samples in each group were not clustered as tightly
as the weighted PCoA. Analysis of similarity (ANOSIM) and
Adonis tests were performed on the weighted and unweighted
Unifrac distances obtained from the beta diversity workflow in
QIIME. The ANOSIM test based on both treatment and GI
location resulted in a p-value of 0.001 and a test statistic of
0.379 for weighted and a p-value of 0.001 and test statistic of
0.556 for unweighted Unifrac analysis. These metrics indicated
that the grouping based on the variables of treatment and
GI location is weak (i.e., the differences can be explained by
randomness). Adonis tests also based on both treatment and GI
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TABLE 2 | Bacterial taxa with significant differences in abundance in pairwise comparisons between treatment groups as determined by Mann–Whitney U-tests.

Taxonomic rank Treatment Groupsa Taxa with significant differences Mann–Whitney p value

Control BMD

Co Ce Co Ce

Phylum Proteobacteria 0.043

Class Bacilli 0.019

Class Clostridia 0.007

Genus Lachnospiraceae 0.008

Genus Oscillospira 0.008

Genus Erysipelotrichaceae cc_115 0.034

Genus Enterococcus 0.009

Genus Peptostreptococcaceae 0.035

Genus Lachnospiraceae 0.049

aCo, colon; Ce, cecum. Filled cells show pairwise comparisons associated with significant differences in taxonomic abundance.

location resulted in a p-value of 0.001 and an R2 value of 0.441
for weighted and a p-value of 0.001 and R2 value of 0.404 for
unweigthed Unifrac analysis.

Relative Abundance
Differences in relative abundance among all the treatment groups
at different taxonomic levels were assessed using Mann–Whitney
U-tests. Figure 3 shows the taxonomic summary for each group
at the phylum level andTable 2 shows the p-values for theMann–
Whitney U-tests for phylum level differences. As evident, the
dominant phylum for each treatment group in both the distal
colon and cecum was Firmicutes (96.5–98.7%), with other phyla
including Proteobacteria (0.9–3.0%), Actinobacteria (0.1–0.5%),
and Bacteroidetes (∼0.1%).

At the class level (Table 2), Bacilli were depleted in the
cecum of the control fed group compared to the distal colon
site (p = 0.01865) and Clostridia were enriched in the cecum
of the control birds compared to the distal colon (p = 0.007).
Figure 4 shows the relative abundance of the classes from each
treatment group. The Firmicutes Clostridia and Bacilli were
the dominant class (77.7–94.5 and 2.0–15.6%, respectively),
with the remaining classes including Erysipelotrichi (1.5–3.2%),
Gammaproteobacteria (0.9–2.9%), and Actinobacteria (0.1–
0.5%). The Clostridia appeared to comprise a greater relative
abundance in the cecum (84.3–94.5%) of both treatment groups
compared to the distal colon (60.2–87.2%). There were no
significant differences between the cecal samples of the control
and BMD treated groups or the cecal samples and the distal colon
samples of the BMD group.

Selected genera were also significantly altered by the BMD
treatment (Table 2). Specifically, two genera, Oscillospira and an
unnamedmember within the Erysipelotrichaceae family (cc_115),
were depleted in the distal colon of the BMD supplemented group
compared to the distal colon of the control group (p = 0.008
and 0.034, respectively). Conversely, an unknown genus in the
family Lachnospiraceae was enriched in the distal colon of
the BMD treated group compared to the distal colon of the
control group (p = 0.008). The same microorganism was also
depleted in the cecum compared to the colon of the BMD

FIGURE 4 | Relative abundance at the class level for each of the treatment

groups. Specific classes are shown in the key on the right.

treated birds (p = 0.049). Only an unknown genus in the family
Peptostreptococcaceae was depleted in the cecum of the BMD
treated group compared to the cecum of the control group
(p= 0.034). Figure 5 summarizes the genera that comprised each
of the treatment groups and reveals that no one genus dominated
in abundance.

DISCUSSION

Consistent with previous studies, the distal GI tracts of the birds
surveyed here were dominated by Firmicutes (Figure 3), which
included the classes Clostridia and Bacilli. Members of the phyla
Proteobacteria, Actinobacteria, Bacteroidetes, and Tenericutes
were also detected (47–49). The differences in the distribution
of the microbiota were more evident at the class and genus
level with the greatest changes observed in the distal colon in
the BMD treated birds. Faith’s phylogenetic diversity revealed an
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FIGURE 5 | Relative abundance at the genus level for each of the treatment groups. Specific genera are shown in the key on the right.

increase in diversity in the colon of the BMD treated birds. One
explanation for this is that the antibiotic treatment depleted some
gram-positive species that allowed others to expand in their place
without significantly altering the total number of OTUs observed
within the samples. In general, the composition of cecal samples
showed more similarity than samples recovered from the distal
colon for both the control and BMD treated birds. There were
also fewer changes between the cecal samples of the control and
BMD groups compared to the distal colon samples. The observed
differences in the microbial populations and relative stability of
the cecum is consistent with previous studies comparing cecal
populations and feces in broiler chickens (36), and indicates
that the cecal microbiota is buffered to some extent from the
antimicrobial effects of BMD. This likely holds true for other feed
additives in chickens (31, 50).

Individual variation was more also evident in the distal colon
samples than the cecal samples. Bird to bird variation is not
uncommon in chickens and may be explained by the immediate
environment having significant impact on how domestic fowl
acquire their microbiota over maternal sources as is observed
in most mammals. Chicks hatched in commercial settings are
typically not exposed to the hen’s microbiota post hatching,
therefore colonization depends on environmental factors and
could be affected by the surroundings, litter management
practices, and contact with other chicks (50, 51).

As cited in the introduction, there have been several
studies showing that sub-therapeutic doses of antibiotics can
alter the microbiota. To enhance these effects, we used a
BMD dose considered to be therapeutic designed to reduce
potential pathogens during outbreaks of GI diseases such
as necrotic enteritis (8, 37). At this dosage, the Phylum
Proteobacteria was reduced (p = 0.04) in the distal colon of
the BMD treated birds when compared to the control. BMD
treatment also decreased Oscillospira, Peptostreptococcaceae, and
an unknown Erysipelotrichaceae in the colon of the birds, while
only Peptostreptococcaceae was depleted in the cecum of the
BMD group.

Between treatment groups, the control samples clustered
closer together in the Unifrac PCoA plots compared to the
BMD groups. The individual variation among birds, as well
as variability in feed consummation may have contributed
to the lack of tight clustering in the BMD groups. “Pecking
order” among the birds may also influence feed (and BMD)
consumption within the groups (52).

In general, few OTUs were significantly different between the
control and BMD treated group in the distal colon. While the
more proximal GI has greater susceptibility to antibiotics than
the distal GI, this may also indicate the bacteria in the distal
colon of the chicks have a higher proportion of bacteria that are
resistant to bacitracin (22, 53, 54).
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These results have implications for development of new
strategies as use of antibiotics for growth promotion is
being phased out of commercial use. Specifically, selective
manipulation of the microbiome through alternative
supplementation is growing in interest as an alternative
to antibiotics (55, 56). This can include the use of
beneficial bacteria as probiotics, prebiotic supplementation,
phytobiotics, or enzymes (30). Antibiotic alternatives can
confer resistance to colonization of pathogens through
competitive inhibition, decreasing pH of the GI tract, or
by contributing to overall animal health through immune
modulation (55, 57, 58).

Probiotics can consist of one or more Gram-positive
bacteria, such as Lactobacillus, Enterococcus, or Bacillus, as
well as multiple strains of the same species. For example,
Nisbet found administration of 29 microorganisms from
ceca of older, Salmonella free chicks protected 1-day old
chicks from various enteric pathogens (59, 60). Probiotics
also have potential to replace growth-promoting antibiotics
as evidenced by studies showing broilers fed Bacillus subtilis
daily had increased weight gain and improved feed conversion
ratios than the control animals (58). Additional benefits
of probiotics include enhanced production of short chained
fatty acids (butyrate, acetate, and proprionate) in broilers
fed non-digestible carbohydrates or oligosaccharides that are
fermented by members of the microbiota, as well as enhanced
protection and antimicrobial production (30). Prebiotics can
increase adaptive immune responses when administered in
ovo and aided in intestinal development in newly hatched
chicks (61).

The relative stability of the chicken microbial community in
the cecum compared to the distal colonmay prove to be beneficial
to production practices that seek to exploit the microbiome to
enhance production. For example, modern poultry production
typically prevents contact between chicks and older birds. This
means the chicks are exposed to environmental bacteria rather
than those associated with a healthy bird. Cecal transplants, or
beneficial bacteria sourced from the cecum, could be used as
“seeds” for post hatched chicks. While more studies are needed,
the cecal microbiota presents itself as a potential source for
colonizing newly hatched chicks with a healthy, chicken specific
community that can speed GI development and help prevent
diseases such as necrotic enteritis.
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