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Discordant associations of educational attainment
with ASD and ADHD implicate a polygenic form of
pleiotropy
Ellen Verhoef 1,2, Jakob Grove 3,4,5,6, Chin Yang Shapland 7,8, Ditte Demontis 3,4,5,

Stephen Burgess 9,10, Dheeraj Rai11,12,13, Anders D. Børglum 3,4,5 & Beate St Pourcain 1,11,14✉

Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are

complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal

striking similarities but also differences, including strong, discordant polygenic associations

with educational attainment (EA). To study genetic mechanisms that present as ASD-related

positive and ADHD-related negative genetic correlations with EA, we carry out multivariable

regression analyses using genome-wide summary statistics (N= 10,610–766,345). Our

results show that EA-related genetic variation is shared across ASD and ADHD architectures,

involving identical marker alleles. However, the polygenic association profile with EA, across

shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent

effects. At the single-variant level, our results suggest either biological pleiotropy or co-

localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the

polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable

genome-wide correlation between ASD and ADHD and is consistent with effect cancellation

across EA-related regions.
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Autism Spectrum Disorder (ASD) and Attention-Deficit/
Hyperactivity Disorder (ADHD) are genetically complex
childhood-onset neurodevelopmental conditions1,2 that

often co-occur3. Approximately 15–25% of individuals with
ADHD show ASD symptoms, and ~40–70% of individuals with
ASD have a comorbid ADHD symptomatology3, although
knowledge of shared aetiological mechanisms is scarce.

Like many other complex psychiatric disorders, ASD and
ADHD are highly polygenic, and the majority of genetic influ-
ences can be attributed to common genetic variation4. There is
increasing evidence from twin and genome-wide association
studies (GWAS)5,6 suggesting genetic links between ASD and
ADHD symptoms, both throughout population variation7–13 and
at the clinical level14. The largest and most recent cross-disorder
GWAS reported at least a hundred loci (as tagged by single
variants) with pleiotropic effects on more than one disorder,
including ASD and ADHD4. A model of single-nucleotide poly-
morphism (SNP)-based genetic correlations among multiple
psychiatric disorders, using exploratory factor analyses and
genomic structural equation models, showed that both ASD and
ADHD are part of the same cluster of early-onset neurodeve-
lopmental disorders4. The existence of genetic links between these
disorders is further strengthened by the familial co-aggregation of
both clinical disorders in large register-based studies15 and the
identification of shared copy number variations, suggesting
similar biological pathways16.

Estimates of genetic correlations between ASD and ADHD
diagnosis range from 0.36(95%-confidence interval(CI):
0.26–0.46)17 in molecular studies to 0.87(95%-CI: 0.77–1.0)18 in
twin analyses19. Evidence for genetic links between ASD and
ADHD symptom co-occurrence can be even stronger in
population-based samples8. However, when both, clinical ASD
and clinical ADHD, are investigated with respect to a third
genetically complex trait, some differences in the genetic archi-
tecture become apparent. Each disorder, when predicted with
GWAS variants, reveals an opposite genetic correlation with
cognitive functioning and educational attainment (EA). While
increased polygenic ADHD risk has been linked to lower cogni-
tive abilities and EA20,21, increased polygenic ASD risk has been
associated with higher cognitive functionality and EA17,20,22. This
discordant association pattern is most discernible for measures of
years of schooling and college completion17,21. Observational
research in ADHD strongly confirms the associations with lower
school performance and educational outcomes23. Reports of
academic achievement in ASD are more variable24, although
high-functioning individuals can obtain higher-order qualifica-
tions, despite disadvantages in the labour market25.

The mechanisms underlying the discordant polygenic asso-
ciation pattern with EA are not yet known and may involve
different biological effects, including pleiotropy. Following Solo-
fiev and colleagues26, we define biological pleiotropy as processes
where the same gene has a direct biological influence on more
than one phenotype. In contrast, spurious pleiotropy involves
multiple sources of bias that cause a false association between a
gene and multiple phenotypes26. Different causal risk variants in
high linkage disequilibrium (LD) with the same marker are
described as co-localising variants26. We do not consider
mechanisms of mediated pleiotropy, i.e. an indirect association
between a genetic variant and a further phenotype that arises due
to causal associations between phenotypes26, as this mechanism
would imply concordant associations between EA and both ASD
and ADHD risk. An overview of candidate mechanisms under-
lying discordant genetic associations is shown in Fig. 1.

First (scenario I), the set of underlying causal variants linking
ASD to EA might be independent of the set of causal variants

linking ADHD to EA. Here, independent GWAS marker alleles
may tag independent ASD and ADHD risk alleles, either residing
within regions of low LD at the same gene locus (biological
pleiotropy, Fig. 1a) or at different loci (no pleiotropy, Fig. 1b).
Second (scenario II), discordant genetic association patterns with
EA may arise because of ascertainment bias during the recruit-
ment of ASD and ADHD cases (Fig. 1c). In the US, the pre-
valence of ASD has been associated with higher parental socio-
economic status (SES)27. In a large population-based study in
Sweden, where free ASD services are available to all regardless of
SES, an association between lower SES and higher ASD risk28 has
been observed. In contrast, children in low SES families are
consistently more likely to receive a diagnosis of ADHD than
children in high SES families29. Third (scenario III), opposite
GWAS marker alleles may tag opposite causal ASD and ADHD
risk alleles at the same risk variant (biological pleiotropy, Fig. 1d),
or they may tag independent ASD and ADHD risk alleles, either
within the same gene (biological pleiotropy, co-localising variants,
Fig. 1e), or at different loci in high LD (spurious pleiotropy, co-
localising variants, Fig. 1f). The most recent GWAS across mul-
tiple psychiatric disorders identified several loci with opposite
directional allelic effects at the 10−6 P-value threshold4. None of
these loci were shared between ASD and ADHD4 though these
effects may become more prevalent when applying less stringent
GWAS marker selection criteria. Fourth (scenario IV), identical
GWAS marker alleles may tag independent ASD and ADHD risk
alleles due to high LD26, either at the same locus (biological
pleiotropy, co-localising variants, Fig. 1g) or at different loci
(spurious pleiotropy, co-localising variants, Fig. 1h). The vast
majority of trait-associated loci across the genome is associated
with multiple traits and each physical location can contain mul-
tiple groups of variants with independent genetic effects30,31.
Hence, the distribution of genetic effects across the same GWAS
marker alleles might differ for ASD and ADHD risk and, con-
sequently, shape polygenic associations with a third phenotype,
such as EA. Finally (scenario V), risk alleles might be shared
across ASD and ADHD liability but exert, because of biological
pleiotropy, different genetic effects. Here, different single-variant
genetic effects may lead to different polygenic associations with
EA (Fig. 1i), as captured by identical GWAS marker alleles. Note
that in the absence of pleiotropy, identical ASD and ADHD risk
alleles would lead to a concordant and not a discordant polygenic
association with EA.

In this work, we (i) study evidence for genetic mechanisms
presenting as discordant polygenic association pattern with EA,
specifically with respect to ASD and ADHD risk, and (ii) identify
and annotate underlying ASD and ADHD risk variants. We
model polygenic relationships between ASD, ADHD and EA
using a multivariable regression (MVR) technique, a multivariate
methodology based on summary statistics adopted from a causal
modelling approach32. Without making causal inferences, as we
allow for biological pleiotropy, this method can simultaneously
estimate polygenic ASD and ADHD association with EA, while
controlling for bias that may arise when adjusting for heritable
covariates33. Specifically, we model polygenic links with EA as
aggregate effects of independent genetic variants, and, subse-
quently, compare the direction of effect at the polygenic and
single-marker level. The selection of genetic variant sets follows
guidelines established for polygenic scoring methods34, without
generating accumulated risk allele scores. To this end, we study
SNP estimates from existing GWAS summary statistics for EA,
ASD and ADHD (Table 1) using a bidirectional MVR approach
(Fig. 2) and assess evidence in support of genetic mechanisms as
outlined in Fig. 1, except for hidden ascertainment bias (scenario
II). Here, we show that EA-related genetic variation is shared
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Fig. 1 Candidate mechanisms underlying discordant genetic association patterns with educational attainment. Discordant associations with educational
attainment, such as observed for ASD versus ADHD risk, may arise due to different mechanisms. Scenario I: Independent markers tag independent ASD
and ADHD risk alleles, either (a) at the same gene locus in regions with low linkage disequilibrium (LD) or (b) at different loci. (c) Scenario II:
Ascertainment bias during the recruitment of cases may lead to an artificial association of ASD with higher socio-economic status (SES) and ADHD with
lower SES (non-testable). Scenario III: Opposite alleles at the same marker may tag opposite ASD and ADHD risk alleles at (d) a single risk variant, or
independent ASD and ADHD risk alleles within (e) the same gene or (f) different genes in high-LD regions. Scenario IV: Identical marker alleles tag
independent ASD and ADHD risk alleles, either (g) within the same gene or (h) at different genes in high-LD regions. (i) Scenario V: Identical marker
alleles tag identical ASD/ADHD risk alleles (biological pleiotropy). Within each subfigure, one or more observed marker allele is shown in linkage
disequilibrium with one or more ASD and ADHD risk allele. ADHD Attention-Deficit/Hyperactivity Disorder, ASD Autism Spectrum Disorder, GWAS
genome-wide association study, LD, linkage disequilibrium, SES socio-economic status.

Table 1 Sample description.

Source Phenotype Consortium GWAS Imputation reference panel N

Clinical sample ASD iPSYCH ASD(iPSYCH,woADHD)17 1000 Genomes phase 3 32,985 (10,321 cases)
Clinical sample ASD PGC ASD(PGC)35 1000 Genomes phase 1 (v3) 10,610 (5,305 cases)
Clinical sample ADHD iPSYCH ADHD(iPSYCH)21 1000 Genomes phase 3 37,076 (14,584 cases)
Population sample Years of schooling SSGAC EA(SSGAC)44 1000 Genomes phase 3a 766,345

All individuals were of European descent.
ADHD Attention-Deficit/Hyperactivity Disorder, ASD Autism Spectrum Disorder, EA educational attainment, iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, PGC
Psychiatric Genomics Consortium, SSGAC Social Science Genetic Consortium, woADHD without ADHD.
aPredominantly 1000 genomes phase 3, see Lee et al.44.
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across ASD and ADHD architectures, involving identical alleles at
the same markers. Despite positive genetic correlations at the
single-variant level, these shared marker alleles contribute to
discordant and, thus, independent polygenic associations of EA
with ASD versus ADHD risk.

Results
Identification of genetic mechanisms underlying discordant
polygenic association patterns with educational attainment.
We investigated polygenic relationships between ASD, ADHD
and EA with a weighted MVR framework (‘Methods’, Formulae

Fig. 2 Multivariable regression models. Acyclic graphs illustrating the multivariable regression (MVR) design for (a) a set of independent ASD-related
variants Gi (ASD-MVR) and (b) a set of independent ADHD-related variants Gj (ADHD-MVR). For both MVR models, increaser marker alleles (Gi or Gj)
were aligned to ASD (β̂ASD), ADHD (β̂ADHD) and EA (β̂EA) GWAS SNP estimates, capturing genetic association at the single-variant level. Using a
bidirectional MVR framework (ASD-MVR; ADHD-MVR), the aggregate association effect with EA across all variants was simultaneously estimated for
ASD risk (θASD; θ#ASD) and ADHD risk (θADHD; θ*ADHD), including a regression intercept (θ0*; θ0#). *Estimation of polygenic risk effects using alleles that
were selected to increase liability for ASD, but are shared, by position, with ADHD risk. #Estimation of polygenic risk effects using alleles that were selected
to increase liability for ADHD, but are shared, by position, with ASD risk. (c) ASD-MVR (θ̂ASD; θ̂*ADHD) and ADHD-MVR (θ̂ADHD; θ̂#ASD) effects as change
in years of schooling per increase in log odds of ASD or ADHD liability. Multivariate inverse-variance-weighted regression estimates and corresponding
95% confidence intervals (bars) are shown. Individual effect estimates, standard errors and corresponding P-values (t-statistic, two-sided test) are
provided in Supplementary Table 3. All tests passed the multiple-testing threshold of P < 0.0023. Gi was selected from ASD(iPSYCH, woADHD) and Gj

from ADHD(iPSYCH), both at Pthr < 0.0015 and Pthr < 0.05. ASD (β̂ASD), ADHD (β̂ADHD) and EA (β̂EA) SNP estimates were extracted from ASD(iPSYCH,
woADHD; N= 32,985), ADHD(iPSYCH; N= 37,076) and EA(SSGAC; N= 766,345) GWAS statistics respectively. 3D scatter plot of (d) ASD-MVR (Gi;
Pthr < 0.0015) and (e) ADHD-MVR (Gj; Pthr < 0.0015), as shown in (c). The regression plane reflects the estimated MVR effects for ASD-MVR (θ̂ASD;
θ̂*ADHD) and ADHD-MVR (θ̂ADHD; θ̂#ASD), respectively. Source data are provided as a Source data file. ADHD Attention-Deficit/Hyperactivity Disorder,
ASD Autism Spectrum Disorder, EA educational attainment, MVR multivariable regression, Pthr, P-value threshold, SNP single-nucleotide polymorphism.
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1–4), analogous to Mendelian randomization (MR) approaches32,
studying sets of independent subthreshold GWAS markers as
selected for polygenic scoring analyses34. Given that disorder-
related GWAS markers can be identified with respect to both
ASD and ADHD risk, we adopted a bidirectional approach with
two complementary MVR designs:

(1) For an ASD-MVR model (Fig. 2a), we selected a set of
independent subthreshold variants from ASD GWAS
summary statistics, Gi (with i= 1, …, m SNPs), across
different P-value selection thresholds. Each ASD-increasing
marker allele was aligned to an ASD (β̂ASD), ADHD
(β̂ADHD) and EA (β̂EA) SNP estimate, and the aggregate
association effect with EA across all alleles was simulta-
neously estimated for ASD (θ̂ASD) and ADHD (θ̂*ADHD)
risk. The “*” symbol indicates the estimation of a polygenic
risk effect with EA, here (θ̂*ADHD), using alleles that were
selected to increase liability for ASD, but are shared by
position, here with ADHD risk.

(2) For an analogous ADHD-MVR model (Fig. 2b), we used a
set of independent subthreshold variants from an ADHD
GWAS summary statistics, Gj (with j= 1, …, n SNPs), also
generated across different P-value selection thresholds.
Similarly, each ADHD-increasing marker allele was aligned
to an ASD (β̂ASD), ADHD (β̂ADHD) and EA (β̂EA) SNP
estimate and their joint association with EA was simulta-
neously estimated for ASD (θ̂#ASD) and ADHD risk
(θ̂ADHD). The ‘#’ symbol indicates the estimation of a
polygenic risk effect with EA, here (θ̂#ASD), using alleles that
were selected to increase liability for ADHD, but are shared
by position, here, with ASD risk.

ASD- and ADHD-MVR models, and modifications thereof,
were implemented in multiple stages of the study (Supplementary
Fig. 1). ASD (β̂ASD), ADHD (β̂ADHD) and EA (β̂EA) SNP estimates
were extracted from GWAS summary statistics based on non-
overlapping samples or cases, as provided by large consortia
(Table 1).

As part of discovery analyses (Supplementary Fig. 1a–b), we
first investigated whether discordant association patterns with EA
involve independent markers that tag independent ASD and
ADHD risk alleles (scenario I, Fig. 1a, b) or identical markers
(scenario III–V, Fig. 1d–i). For this, we analysed a series of ASD-
MVR (Fig. 2a) and ADHD-MVR models (Fig. 2b) using ASD (Gi)
and ADHD (Gj) variants sets as selected from ASD(iPSYCH,-
woADHD) and ADHD(iPSYCH) GWAS summary statistics,
respectively (11 P-value selection thresholds: 5 × 10−8 < Pthr < 0.5;
multiple-testing-adjusted significance threshold: 0.0023 (0.05/22);
shown for simplicity at Pthr < 0.05 and Pthr < 0.0015). These
bidirectional MVR analyses, based on SNP estimates from
ASD(iPSYCH,woADHD) and ADHD(iPSYCH) and EA(SSGAC)
summary statistics, showed that inverse polygenic associations
with EA can be captured for both, ASD and ADHD risk, using
the same set of genetic variants, irrespective of the selection of Gi

and Gj variants sets (Supplementary Tables 1–2). For example, for
ASD-MVR (Gi: Pthr < 0.0015, NSNPs= 1,973, Fig. 2c, d, Supple-
mentary Table 3), we observed evidence for a positive ASD
association with EA, with an 0.009 increase in years of schooling
per log-odds in ASD liability (ASD-MVR θ̂ASD= 0.009 (SE=
0.003), P= 0.002). Simultaneously, the same ASD-related risk
alleles captured a negative association between ADHD and EA
with a 0.029 decrease in years of schooling per log odds in ADHD
liability (ASD-MVR θ̂*ADHD=−0.029 (SE= 0.004),
P < 1 × 10−10). ADHD-MVR findings revealed a complementary
association profile (Fig. 2). For ADHD-MVR (Gj: Pthr < 0.0015,

NSNPs= 2,717), this corresponds to an 0.012 decrease in years of
schooling per log odds in ADHD liability (ADHD-MVR
θ̂ADHD=−0.012(SE= 0.003), P= 4 × 10−5), and an increase in
0.022 years of schooling per log odds in ASD liability (ADHD-
MVR θ̂#ASD= 0.022(SE= 0.003), P < 1 × 10−10) (Fig. 2c, e,
Supplementary Table 3).

Increasing the number of variants in Gi and Gj using more
relaxed selection criteria (e.g. Pthr < 0.05) boosted the statistical
power (Fig. 2c, Supplementary Table 1–3). Compared to
univariable regression models (see ‘Methods’), the simultaneous
estimation of polygenic ASD and ADHD effects on EA improved
the model fit: multivariable models explained up to 3% more
variation in genetically predictable EA, with only modest evidence
for multi-collinearity (Supplementary Table 3, variance inflation
factor (VIF) ≤ 1.2). Hence, the identification of discordant EA-
related association profiles for ASD and ADHD risk captured by
the same set of genetic markers is inconsistent with mechanisms
involving independent ASD and ADHD genetic markers
(scenario I, Fig. 1a, b).

Shared EA-related genetic variation across ASD and ADHD
genetic architectures could be encoded via opposite ASD and
ADHD risk alleles (scenario III, Fig. 1d–f), or identical ASD and
ADHD risk alleles at the same GWAS marker (scenario IV/V,
Fig. 1g–i). Within a next step, we therefore restricted discovery
ASD (Gi) and ADHD (Gj) variant sets to markers carrying the
same risk-increasing allele for both disorders (termed here forth
concordant variants; ~80% of discovery Gi and Gj sets at
Pthr < 0.0015 and Pthr < 0.05). MVR analyses with concordant
variants confirmed the robustness of identified MVR effects, with
little evidence for attenuation (multiple-testing-adjusted signifi-
cance threshold: 0.0023, Supplementary Table 4). The corre-
sponding bivariate relationships between SNP estimates for ASD,
ADHD and EA (Supplementary Fig. 2) illustrate the positive
correlation between ASD (β̂ASD) and ADHD (β̂ADHD) risk allele
effects, but their inverse association with EA (β̂EA), consistent
with a positive LDSC genetic correlation between both disorders
(Supplementary Table 5), and opposite genetic correlations with
EA (Supplementary Table 6). Thus, discordant polygenic
association with EA can be independently encoded across a set
of shared ASD- and ADHD-related marker alleles. These findings
are inconsistent with scenario III (Fig. 1d–f), implicating opposite
alleles at the same marker. Instead, they suggest that identical
marker alleles either tag independent ASD and ADHD risk alleles
(scenario IV, Fig. 1g–h) or that they tag identical ASD/ADHD
risk alleles that exert different effects due to biological pleiotropy
(scenario V, Fig. 1i).

Next, we followed up MVR discovery findings by replacing
ASD SNP estimates (β̂ASD) from ASD(iPSYCH,woADHD) with
SNP estimates from the independent ASD(PGC) sample (Supple-
mentary Fig. 1c, d). We repeated ASD-MVRs and ADHD-MVRs
with the same sets of variants as studied in the discovery MVR
analyses (Gi and Gj at Pthr < 0.0015 and Pthr < 0.05, multiple-
testing-adjusted significance threshold: 0.0125 (0.05/4)) and
confirmed the discordant genetic association pattern with EA at
Pthr < 0.05 (Supplementary Table 7). Here, using ADHD-MVR,
ADHD-related risk alleles (Gj, Pthr < 0.05) captured a positive
association between ASD and EA (θ̂#ASD= 0.003(SE= 4 × 10−4),
P < 1 × 10−10), despite zero genetic correlations between
ADHD(iPSYCH) and ASD(PGC)(Supplementary Table 5). As a
validation step, we confirmed the positive association of polygenic
ASD risk with EA using ASD(PGC) SNP estimates (Gi at
Pthr < 0.05: θ̂ASD= 0.005(SE= 0.001), P < 1 × 10−10, Gi at Pthr <
0.0015: θ̂ASD= 0.01(SE= 0.003), P= 0.003). Association patterns
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remained largely unchanged when the analyses were repeated with
concordant variant sets, confirming the robustness of our findings
(multiple-testing-adjusted significance threshold: 0.0125, Supple-
mentary Table 8). The attenuation of signal, compared to
discovery MVR findings, is consistent with the limited power of
ASD(PGC)35 and the smaller number of aligned risk alleles across
ADHD and ASD using the ASD(PGC)(~50%) compared to the
ASD(iPSYCH,woADHD)(~80%) sample (Supplementary Note 1).
Thus, our findings, validated by the use of different GWAS
summary statistics, suggest that discordant, and thus independent,
genetic association patterns with EA are encoded across identical
GWAS marker alleles that carry either subthreshold ASD or
ADHD risk. A combination of ASD and ADHD risk effects across
these identical ASD and ADHD marker alleles may therefore lead
to the cancellation of polygenic association effects with EA. This is
consistent with the substantially decreased genetic correlation with
EA for both, a combined ASD(iPSYCH,woADHD)+ADHD(iP-
SYCH) sample, and a combined ASD(PGC)+ADHD(iPSYCH)
sample, when meta-analysing respective summary statistics while
allowing for sample overlap (Fig. 3).

Identification of high-confidence genomic regions. To identify
genomic regions that contribute to discordant association pat-
terns with EA, we applied the gwas-pw method36. Dividing the
genome into approximately independent LD blocks, this method
estimates the posterior probability that a given genomic region
contains shared or non-shared genetic effects for two complex
traits, while correcting for sample overlap36. In particular, gwas-
pw can identify LD blocks carrying genetic markers associated
with both ASD and ADHD risk due biological pleiotropy (sce-
nario V, Fig. 1i) or high-LD co-localisation (scenario IV, Fig. 1g,
h), and distinguish them from LD blocks carrying multiple
genetic markers that are each associated with a different disorder
(co-localisation in the presence of low/moderate LD)36. Analysing
ASD(iPSYCH,woADHD) and ADHD(iPSYCH) statistics, we
identified evidence for shared genetic effects assuming a model of
biological pleiotropy/high-LD co-localisation at three indepen-
dent genomic regions (posterior probability > 0.9, Supplementary
Fig. 3a). Each of these LD blocks harbours genes that have pre-
viously been linked to either ASD or ADHD risk at the genome-
wide or suggestive level17,21, or, potentially, involve single-variant
co-localisation37: chromosome 1p21.3 (1,734 kb: PTBP217,
PTBPLP, 7SK, DPYD37, DPYD-AS137), chromosome 5q14.3
(1,500 kb: TMEM161B21, TMEM161B-AS121, LINC0046121,
MIR9-221, MEF2C21, AL050132) and chromosome 20p11.22-23
(1524 kb: PLK1S1(KIZ)17, BC042893, BC034426, XRN217, NKX2-
2, NKX2-417, Nkx2_2as, PAX137, LOC100270679, CR627206,
LOC284788) (Supplementary Fig. 4). Given the polygenic nature
of our findings, we selected independent ASD-related (NSNPs=
465) and ADHD-related (NSNPs= 481) variants from each LD
block (LD-r2 < 0.25 within ±500 kb), beyond the assumption of a
single causal locus, and repeated ASD-MVR and ADHD-MVR
models without applying a P-value threshold (Supplementary
Fig. 1e, f). The analyses across the three LD regions largely
confirmed the discordant polygenic association of ASD and
ADHD risk with EA (Supplementary Table 9). However, com-
pared to discovery analyses (Supplementary Table 3), MVR
effects were weaker and the polygenic ASD effect as estimated
with ASD-MVR only passed the nominal significance level
(multiple-testing-adjusted significance threshold: 0.0023, Sup-
plementary Table 9). Within variant-based gwas-pw analyses, the
strongest signal was observed for rs4916723 (posterior probability
of 0.78), residing on chromosome 5, but did not pass stringent
identification criteria (i.e. a posterior probability of >0.9). It is
possible that, given the conservative correction of sample overlap,
gwas-pw is partialling out also genuine polygenetic correlations
between disorders36. Thus, the number of subthreshold variants
and genomic regions contributing to discordant association pat-
terns with EA might be considerably larger and, consequently, the
power of identifying variants of small effects decreased.

Carrying out gwas-pw with ASD(PGC) and ADHD(iPSYCH)
GWAS summary statistics did not result in the identification of
genomic regions with pleiotropic/high-LD co-localisation signals
(posterior probability <0.5, Supplementary Fig. 3b), largely
reflecting the low power of the ASD(PGC) sample (posterior
probability for ASD effects <0.1, Supplementary Fig. 3b).

Identification of single variants. Adopting a complementary
strategy to identify variants contributing to the discordant poly-
genic overlap with EA, we applied a conditional P-value thresh-
olding approach. Here, we systematically assessed the overlap
between ASD (Gi) and ADHD (Gj) variant sets, based on
ASD(iPSYCH,woADHD) and ADHD(iPSYCH) summary statis-
tics, by creating a grid of marker subsets (Supplementary Fig. 1g,
h). Starting with ASD-related alleles (Gi: Pthr < 0.0015, NSNPs ≤
1,973), we, conditionally, filtered for joint association with
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Fig. 3 Genetic correlations with educational attainment for ASD+ADHD
cross-disorder meta-analyses. Genetic correlations (rg) of educational
attainment (EA) with ASD, ADHD and combined ASD+ADHD risk were
estimated using unconstrained Linkage Disequilibrium Score correlation67.
Genetic correlations with EA(SSGAC; N= 766,345) were estimated for (a)
ASD(iPSYCH, woADHD; N= 32,985), ADHD(iPSYCH; N= 37,076) and a
combination of these summary statistics (cross-disorder meta-analysis),
and, analogously, for (b) ASD(PGC; N= 10,610), ADHD(iPSYCH,
N= 37,076) and a combination of these summary statistics (cross-disorder
meta-analysis). Cross-disorder meta-analyses were conducted with
METACARPA, allowing for sample overlap61. LDSC correlation estimates
with 95% confidence intervals (bars) are shown. Individual genetic
correlation estimates, standard errors and corresponding P-values (Z-
statistic, two-sided test) are provided in Supplementary Table 6. All tests
passed the multiple-testing threshold of P < 0.002. Source data are
provided as a Source data file. ADHD Attention-Deficit/Hhyperactivity
Disorder, ASD Autism Spectrum Disorder, iPSYCH The Lundbeck
Foundation Initiative for Integrative Psychiatric Research, PGC psychiatric
genetics consortium, rg genetic correlation, SSGAC Social Science Genetic
Association Consortium, woADHD without ADHD.
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ADHD risk at six different thresholds (0.0015 ≤ Pthr < 0.5),
resulting in six Gi|j subsets (Fig. 4a). These sets captured
4.2–46.3% of the discovery Gi markers. Vice versa, we created six
conditional ADHD variant subsets (Gj|i), based on joint associa-
tion with ASD risk, representing 3.1–37.5% of the discovery
ADHD variant set Gj (Pthr < 0.0015, NSNPs ≤ 2,717, Fig. 4b). As all

conditional variant sets are nested within each other, we applied
the multiple-testing-threshold for discovery analyses (0.0023).

Fitting a series of MVRs with conditional variant subsets Gi|j

and Gj|i, increased the size of estimated polygenetic association
effects with EA up to five times compared to the polygenic effects
observed in discovery analyses, with non-overlapping 95%
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confidence intervals (Fig. 4c, Supplementary Tables 10–11). The
largest association effects with EA were identified with the most
stringently defined Gi|j and Gj|i sets, meeting a joint selection
threshold of Pthr < 0.0015 for both, ASD and ADHD risk. For
example, using ASD-MVR with conditional subsets Gi|j (NSNPs=
83, Pthr < 0.0015 for ASD and ADHD risk), we estimated ASD
effects of 0.15(SE= 0.025)(P= 1 × 10−7) and ADHD effects of
−0.15(SE= 0.025) (P= 1 × 10−7) years of schooling, per log odds
in ASD and ADHD liability, respectively (Fig. 4c, Supplementary
Table 10). Findings for ADHD-MVR with Gj|i were highly similar
in size and strength (Fig. 4c, Supplementary Table 11).

At the joint selection threshold of Pthr < 0.0015 for both, ASD
and ADHD risk, Gi|j (4.2% of Gi) and Gj|i (3.1% of Gj) comprise
the same 83 loci, based on 30 identical and 53 tagged proxy SNPs
(LD-r2= 0.6, 500 kb window), of which 99% carry the same risk-
increasing allele for both disorders (Supplementary Data 1). The
83 loci were spread across the genome (Fig. 5a), including SNPs
residing within the three high-confidence gwas-pw LD regions,
and mapped to at least 52 genes based on position (RefSeq genes,
Build37, Supplementary Data 2). This combination of 83 marker
alleles is unlikely to arise due to chance, as shown by
permutations (Supplementary Table 12, empirical P < 2 × 10−4),
and suggests locus specificity. Nine of 83 loci represent previously
reported GWAS signals (Fig. 5a), including the strongest single-
variant gwas-pw signal rs4916723 (see above). This SNP is
associated with ADHD risk21, neuroticism38 and alcohol
consumption39, and has been recently identified as a pleiotropic
locus contributing risk to multiple psychiatric conditions4

(Supplementary Data 2). rs4916723 locates within an intronic
region of the LINC00461 gene, the promoter region of the pri-
miR-34b/c gene and about 108 kb downstream of the MIR9-2
gene. Furthermore, using FUMA40 software, we found the
strongest enrichment for microRNA targets when screening the
Molecular Signature Database (v7.0), WikiPathways (v20191010)
and reported genes from the GWAS Catalog (e96_2019-09-24),
rendering patterns of spurious pleiotropy of unconnected genes
less likely and strengthening support for the regulatory role of
micro RNAs in disorder and behaviour. The most strongly
enriched genetic feature includes MIR19A/19B targets (false
discovery rate (FDR)-adjusted P-value= 7.7 × 10−4) at genes
such as CACNAC1 and ERBB4 (Fig. 5b). In addition, we found
enrichment for MIR9 targets (FDR-adjusted P-value= 0.028)
(Fig. 5b) and 16 further categories, including for example genes
related to intelligence (FDR-adjusted P-value= 0.0048) (Supple-
mentary Table 13).

Specificity analyses. Next, we investigated whether MVR findings
for EA (dependent variable) extend to general intelligence, using
summary statistics from intelligence(CTG) instead of EA (Sup-
plementary Fig. 1i–j, Supplementary Table 14). These analyses

confirmed discordant association patterns for both ASD and
ADHD risk (multiple-testing-adjusted significance threshold:
0.0125 (0.05/4), Supplementary Table 15), suggesting gen-
eralisability of our findings to cognitive functioning.

Finally, we assessed whether EA-related variation across ASD
and ADHD genetic architectures is shared with adult-onset
psychiatric conditions, such as MDD, schizophrenia or BD
(Supplementary Fig. 1k–l, Supplementary Table 14, multiple-
testing-adjusted significance threshold: 0.0042 (0.05/12)). These
exploratory analyses showed that several adult-onset disorders
share EA-related variation with either an ASD or ADHD genetic
architecture, or both, including discordant association patterns
(Supplementary Fig. 5, Supplementary Tables 16–17, Supple-
mentary Note 2). Meta-analysing summary statistics for disorder
pairs with discordant EA-related polygenic effects, while allowing
for sample overlap, accurately predicted attenuation of genetic
correlations with EA (Supplementary Fig. 6).

MVR effects estimated within specificity analyses agreed with
corresponding LDSC genetic correlations (Supplementary
Tables 5–6, 18).

Discussion
Using a multivariate analysis approach, we investigated genetic
mechanisms embedded in ASD and ADHD genetic architectures
that present as discordant polygenic association pattern with EA.
We found strong evidence that EA-related genetic variation is
shared across ASD and ADHD architectures, consistent with
biological pleiotropy or high-LD co-localisation of genetic effects
at the same subthreshold ASD- or ADHD-risk associated marker
alleles. Discordant EA-related association patterns for ASD and
ADHD genetic effects were (i) reciprocally detectable with MVR
using either ASD- or ADHD-related risk alleles as selected for
polygenic scoring approaches34 (ii) replicated at Pthr < 0.05 using
ASD(PGC) summary statistics, (iii) consistent with the previously
reported genetic overlap between EA, ASD and ADHD17,21, and
(iv) independent of the harmonisation of GWAS marker alleles
according to ASD or ADHD risk.

Discordant polygenic association with EA, across the same
variants, was detected for both ASD and ADHD risk using
independent samples, with little evidence for variance inflation or
attenuation of signal in multivariate analyses. The observed
polygenic effects are, thus, fully independent, irrespective of
positive or zero genetic correlations between ASD and ADHD.
The discordant polygenic association patterns remained robustly
detectable when markers with alleles conferring opposite direc-
tional ASD and ADHD effects were excluded. At the single-
variant level, these findings are either consistent with identical
ASD and ADHD risk alleles that reflect biological pleiotropy,
including special cases of GxE41 (scenario V, Fig. 1i), or they
suggest independent causal ASD and ADHD alleles that reside in

Fig. 4 Identification of single variants using conditional P-value thresholding. Acyclic graphs illustrating the multivariable regression (MVR) design for
(a) a set of independent ASD-related variants Gi, given joint association with ADHD variant set Gj (ASD-MVR with Gi|j) and (b) a set of independent
ADHD-related variants Gj, given joint association with ASD variant set Gi (ADHD-MVR with Gj|i). Here, Gi|j and Gj|i are illustrated as subsets (concentric
circles) of Gi and Gj across a grid of six P-values thresholds (0.0015 < Pthr < 0.5), based on ASD(iPSYCH, woADHD) and ADHD(iPSYCH) summary
statistics. (c) ASD-MVR (θ̂ASD; θ̂*ADHD) and ADHD-MVR (θ̂ADHD; θ̂#ASD) effects as change in years of schooling per increase in log odds of ASD or ADHD
liability (for the definition of θ̂*ADHD and θ̂#ASD, see Fig. 2). SNP sets Gi|j and Gj|i were selected from ASD(iPSYCH, woADHD) and ADHD(iPSYCH), as
shown in (a, b). SNP estimates for ASD (β̂ASD), ADHD (β̂ADHD) and EA (β̂EA) were extracted from ASD(iPSYCH,woADHD; N= 32,985), ADHD(iPSYCH;
N= 37,076) and EA(SSGAC; N= 766,345) GWAS statistics respectively. Multivariate inverse-variance-weighted regression estimates and corresponding
95% confidence intervals (bars) are shown. Individual effect estimates, standard errors and corresponding P-values (t-statistic, two-sided test) are
provided in Supplementary Tables 10–11. All MVR effects passed the multiple-testing threshold of P < 0.0023, except for ADHD effects estimated with
ADHD-MVR (Gj|i: ADHD Pthr < 0.0015; ASD Pthr < 0.05), which were present as trend (P= 0.01). Source data are provided as a Source data file. ADHD
Attention-Deficit/Hyperactivity Disorder, ASD Autism Spectrum Disorder, EA educational attainment, MVR multivariable regression; Pthr P-value
threshold, SNP single-nucleotide polymorphism, woADHD without ADHD.
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close proximity within the same gene (high-LD co-localisation,
scenario IV, Fig. 1g), adhering here to a wider gene-based defi-
nition of biological pleiotropy. ASD and ADHD risk alleles might
even be fully independent of each other, despite correlations
across single marker effects, due to patterns of high LD42 between
each risk allele and the assessed marker. Thus, while the same
GWAS marker alleles each tag an infinitesimally small increase in
risk for both disorders, they also contribute to aggregate asso-
ciation patterns that, jointly, differ in their polygenic nature,
suggesting an overarching polygenic form of pleiotropy.

Consequently, once ASD and ADHD summary statistics are
meta-analysed, discordant polygenic association effects across
EA-related regions may result in a cancellation of signal and
attenuate the genetic overlap with EA, as observed in this work.
This implies that polygenic pleiotropy across EA-related genomic
regions may affect the detectable genomic overlap between ASD
and ADHD architectures, consistent with reports of positive
genetic correlation between ASD and ADHD only, once latent
genetic socio-economic status variance has been partialled out43.
Our exploratory analyses furthermore suggest that EA-related
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Fig. 5 Characterisation of loci (N = 83) contributing to polygenic pleiotropy. (a) Chromosomal position and (b) functional enrichment for micro-RNA
targets of variants selected at a joint P-value threshold for both ASD and ADHD (Pthr < 0.0015). For enrichment analyses variants were mapped to 52
genes, and, of those, 45 were aligned to unique Ensembl IDs (v92) and subjected to gene-set enrichment analysis (requesting at least 5 overlapping genes)
within the Molecular Signature Database (v7.0), WikiPathways (v20191010) and reported genes from the GWAS Catalog (e96_2019-09-24) using FUMA
software (v1.3.6a). Evidence for enrichment was assessed using competitive gene-set analysis as implemented in MAGMA (v1.08) using a one-sided
hypergeometric test. The false discovery rate (FDR) was controlled using the Benjamini–Hochberg procedure (FUMA, v1.3.6a). The strongest evidence for
enrichment was found for micro RNA target TTTGCAC_MIR19A_MIR19B (Enrichment TTTGCAC_MIR19A_MIR19B PFDR-adjusted= 7.7 × 10−4, out of 515
genes). Among other categories, enrichment was also found for ACCAAAG_MIR9 (Enrichment ACCAAAG_MIR9 PFDR-adjusted= 0.028, out of 500 genes).
Source data are provided as a Source data file. ADHD Attention-Deficit/Hyperactivity Disorder, ASD, Autism Spectrum Disorder, GWAS genome-wide
association study, MVR multivariable regression, Pthr P-value threshold; SNP, single-nucleotide polymorphism.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26755-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6534 | https://doi.org/10.1038/s41467-021-26755-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


polygenic pleiotropy might contribute more widely to the genetic
architecture of several adult-onset disorders.

Against the shared polygenic background involving several
thousands of subthreshold ASD- and/or ADHD-risk associated
variants, a small fraction (<5%, NSNPs= 83) passed a joint ASD
and ADHD risk variant selection threshold (Pthr < 0.0015) and
captured considerably larger polygenic effects than observed in
discovery analyses. This set of loci encompasses variants from
genomic regions on chromosome 1, 5 and 20 that were identified
with high posterior probability for pleiotropy or high-LD co-
localisation using gwas-pw36 and harbours known GWAS signals
for ASD17, ADHD21 and EA44. Biological annotation of the 83
loci suggested a role for microRNA genes. One of these loci is
rs4916723, the single variant with the highest posterior prob-
ability for pleiotropy/high-LD co-localization as identified by
gwas-pw, which resides near/within LINC00461, pri-miR-34b/c
and MIR9-2 genes. miR-9 couples brain neurogenesis and
angiogenesis in vertebrates, and is involved in a conserved tran-
scriptional cascade that is critical for brain development45.
Consistently, mapping the full set of 83 loci to at least 52 genes,
the strongest enrichment was found for MIR19A/19B target
genes. miRNAs are key regulators of many biological processes in
neurodevelopment46 and involve post-transcriptional regulation
of gene expression (often through gene silencing), while their
expression can also be shaped by environmental signals46. The
identified enriched miRNA targets encode, for example, biological
signalling proteins such as the calcium voltage-gated channel
subunit alpha1C (CACNA1C) and the tyrosinkinase ERBB4,
which have been previously associated with both ASD and
ADHD as well as other disorders35,47,48.

Ultimately, an enrichment in miRNA targets is consistent with
multiple regulatory sites in close genomic proximity (scenario IV,
Fig. 1g) or different regulations of the same site (scenario V,
Fig. 1i), but not with spurious pleiotropy due to functionally
unrelated causal genetic variants in high LD (scenario IV,
Fig. 1h). Thus, our results provide support for a recently proposed
class of genetic influences for psychiatric illness which does not
confer broad liability to disorder but is thought to shape the
phenotype expression through direct and interactive genetic
effects or environmental factors4. As construed by the omnigenic
model49, such ‘peripheral’ genetic influences, acting through trans
effects, could control shared ADHD/ASD ‘core’ variation.

Adopting a statistical framework developed for Mendelian
Randomization analyses32, this study disentangled ASD and
ADHD effects at the same GWAS marker allele and identified
independent polygenic associations with EA for ASD and ADHD
risk. Evidence for discordant EA-related associations for ASD and
ADHD encoded at the same GWAS marker alleles was replicated
using two independent ASD collections (variant selection
threshold Pthr < 0.05). This suggests that our findings are robust
and unlikely to be affected by diagnostic classification systems for
clinical ASD, routes of patient ascertainment or association
analysis designs. Moreover, we show here that patterns of poly-
genic pleiotropy become detectable once SNP estimates from
multiple disorders are modelled simultaneously, using multi-
variate approaches that can detect and de-stratify polygenic sig-
nals. For example, across iPSYCH samples discordant ASD and
ADHD association effects with EA increased in strength and size
once modelled in a multivariate compared to a univariate
regression framework (Supplementary Tables 3–4) indicating
here, potentially, negative confounding effects. The possibility
that our findings are affected by ascertainment bias (scenario II,
Fig. 1c) is not very likely, as we observed little evidence for
negative covariance or attenuation of signal when ASD and
ADHD risk effects were modelled simultaneously. Furthermore,
ASD and ADHD symptom heterogeneity may shape the genetic

overlap between neurodevelopmental disorders, EA and
cognition-related traits17,50 and future studies with access to this
information are warranted to fully understand the underlying
complexity of multivariate inter-correlations. Finally, ADHD-
MVR, but not ASD-MVR analyses, may suffer from winner’s
curse51 due to a lack of an independent ADHD sample. In
addition, the candidacy of miRNAs functionality underlying
polygenic pleiotropy requires replication in larger ASD and
ADHD cohorts that are currently not yet publicly available.

Our findings show that EA-related polygenic variation is
shared across ASD and ADHD genetic architectures and that
combinations of the same risk alleles, through mechanisms
consistent with biological pleiotropy or high-LD co-localisation at
the single-variant level, can encode ASD-related positive and
ADHD-related negative associations with EA, without involving
further loci. These independent aggregate effects across shared
EA-related marker alleles suggest a polygenic form of pleiotropy
that shapes the detectable genome-wide genetic overlap between
ASD and ADHD and is consistent with effect cancellation across
EA-related regions.

Methods
Data sets. Genome-wide SNP information on EA, intelligence and neu-
ropsychiatric disorders was obtained from GWAS summary
statistics17,20,21,35,44,52,53 (Table 1, Supplementary Table 14).

EA and intelligence. GWAS summary statistics on years of schooling (excluding
23andMe) were obtained from the Social Science Genetic Association Consortium
(SSGAC, https://www.thessgac.org/, Table 1)44. EA was coded according to the
International Standard Classification of Education (1997) scale44 and analysed as a
quantitative variable defined as an individual’s years of schooling. Participants were
>30 years of age at the time of assessment and of European ancestry. The meta-
analysis consisted primarily of population-based cohorts, but also included family-
based and case-control samples. 55.2% of participants were female. For most
cohorts, genome-wide data were imputed to a 1000 genomes project version 3
reference template44.

GWAS summary statistics on intelligence20 were retrieved from the Complex
Trait Genetics (CTG) lab (https://ctg.cncr.nl/software/summary_statistics,
Supplementary Table 14). Participating cohorts were primarily population-based.
Each cohort assessed intelligence with different instruments that were re-defined to
index a common latent factor of general intelligence20. Participants had a wide age
range (from 5 to 98 years), 51.2% were female and all of them were of European
descent. Genome-wide data were predominantly imputed to the Haplotype
Reference Consortium (HRC) reference panel20.

ASD and ADHD. GWAS summary statistics for ASD and ADHD were accessed
through the Danish Lundbeck Foundation Initiative for Integrative Psychiatric
Research (iPSYCH, http://ipsych.au.dk/) using samples from the Danish Neonatal
Screening Biobank hosted by Statens Serum Institute17,21,54 (ASD(iPSYCH,
woADHD), ADHD(iPSYCH), Table 1). iPSYCH adopts a case-control design
(26.6% female ASD-cases17, 21.6% female ADHD-cases21) with shared controls
(~49% female)17,21, all of European ancestry with age ranges spanning infancy to
adulthood17,21. ASD samples were restricted to ASD-cases without (wo) an addi-
tional ADHD diagnosis (ASD(iPSYCH,woADHD), Table 1) to avoid overlap with
ADHD(iPSYCH). However, ADHD-cases may have an additional ASD diagnosis.
Information on ADHD cases without ASD was not available.

ASD cases and ADHD cases were diagnosed according to ICD-1055 and
identified using the Danish Psychiatric Central Research Register56. Registry-based
ASD diagnoses were validated previously17,21. Controls were randomly selected
from the same nationwide birth cohort and did not have a diagnosis of ASD or
ADHD or moderate-severe mental retardation (F71-F79)17,21,54. The median age at
first diagnosis of ASD was 10 years. Genotyping was performed using the Illumina
Infinium PsychArray BeadChip and genotypes were imputed to a 1000 Genomes
template (Phase3, release 02-05-2013). Genotyping, quality control, imputation
and genetic association analysis were carried out using the Ricopili pipeline with
standard PGC settings17,21.

Independent ASD GWAS summary statistics were obtained from the
Psychiatric Genomics Consortium (PGC, www.med.unc.edu/pgc/). They were
based on a case-control/pseudo-control design and all individuals were ≥3 years of
age and of European ancestry (ASD(PGC), Table 1). Information on the male-
female ratio was not available35. A consensus ASD diagnosis was made using
research standard diagnoses and expert clinical consensus diagnoses. The majority
of ASD-cases (94.1%) also had a clinical diagnosis based on the Autism Diagnostic
Interview-Revised57 or the Autism Diagnostic Observation Schedule58. Genome-
wide data were imputed to a 1000 Genomes reference template (Phase1 v3). Note
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that the sample size for ADHD(iPSYCH) is about three times compared to
ASD(PGC).

Sample overlap. GWAS summary statistics for ASD(PGC)35, ASD(iPSYCH,
woADHD)17 and ADHD(iPSYCH)21 (Table 1) were independent from EA44 and
intelligence20. ASD(PGC), ADHD(iPSYCH) and ASD(iPSYCH,woADHD)17

GWAS statistics have independent case samples; iPSYCH controls were shared
across reported ASD(iPSYCH,woADHD) and ADHD(iPSYCH) summary
statistics.

Specificity analyses including other psychiatric disorders. To assess the specificity of
MVR association profiles, we also investigated GWAS summary statistics for
MDD52, schizophrenia (SCZ)53 and BD53. Cases were identified based on inter-
national consensus criteria. For MDD, cases were identified based on a lifetime
diagnosis of MDD, established using DSM-III, DSM-IV, ICD-9 and/or ICD-10
criteria or self-report52. For SCZ, the majority of cases were diagnosed using DSM-
III, DSM-III-R, DSM-IV, ICD-10, and SCID criteria53,59. BD cases were diagnosed
according to DSM-III, DSM-IV-TR, DSM-IV, SCID, ICD-10 or RDC criteria53,60.
For all three data sets, genotype imputation was performed using the IMPUTE2/
SHAPEIT pipeline against the 1000 Genomes Project (v3) template. Summary data
were obtained from the PGC (www.med.unc.edu/pgc/, Supplementary Table 14),
all based on participants of European ancestry. For these analyses, the sample
overlap is more pronounced, as some cohorts, such as UKBiobank, are shared
across EA, MDD, SCZ or BD summary statistics (but not ASD and ADHD).
Presented MVR studies for adult-onset disorders have thus an exploratory char-
acter only. However, the case overlap of ASD(iPSYCH,woADHD) and
ADHD(iPSYCH) with MDD, SCZ or BD cases is at most 2%, similar to recent
cross-disorder analyses4 (Table 1, Supplementary Table 14). Likewise, iPSYCH
controls were shared across reported ASD(iPSYCH,woADHD), ADHD(iPSYCH),
MDD, SCZ and BD summary statistics, as in recent cross-disorder analyses4.

Cross-disorder meta-analyses. For genetic correlation analyses with EA, cross-
disorder GWAS summary statistics were derived for pairs of disorders that reveal
opposite genetic association patterns with EA across shared marker alleles, as
predicted with MVR. This included four effect-size based meta-analyses, allowing
for sample overlap: (i) ASD(woADHD, iPSYCH) and ADHD(iPSYCH); (ii)
ASD(PGC) and ADHD(iPSYCH); for specificity analyses only, we also analysed
(iii) ASD(woADHD, iPSYCH) and MDD (PGC); and (iv) ADHD(iPSYCH) and
BD(PGC), as integrated within METACARPA software61.

SNP-heritability and genetic correlations. SNP-h2, the proportion of phenotypic
or liability variance tagged by SNPs on genotyping arrays, was estimated for EA,
intelligence and psychiatric disorders using linkage disequilibrium score (LDSC)
regression62 (Supplementary Table 19). To estimate SNP-h2, genome-wide χ2-
statistics are regressed on the amount of genetic variation captured by each SNP62,
while the intercept of this regression minus one is an estimator of the mean
contribution of confounding bias to the inflation in the mean χ2-statistic62. SNP-h2

was calculated on the liability scale for psychiatric disorder samples, assuming a
population prevalence of 0.012 for ASD17, 0.05 for ADHD63, 0.162 for MDD64,
0.007 for SCZ65 and 0.006 for BD66.

In extension, unconstrained LDSC correlation67 analysis was applied to
estimate bivariate genetic correlations (rg) among psychiatric disorders, between
psychiatric disorders (including cross-disorder meta-analyses) and EA, as well as
between psychiatric disorders and intelligence (Supplementary Tables 5–6, 18).
This involves a regression of the product of test statistics on LD score and captures
the extent of shared genetic influences between phenotypes assessed in different
samples67. The multiple-testing-adjusted significance threshold was determined at
0.002, correcting for a total of 25 LDSC correlation analyses in this work.

All analyses were performed with LDSC software62,67 (v1.0.0) and based on the
set of well-imputed HapMap3 SNPs and a European reference panel of LD
scores67.

Multivariable regression analyses. We adopted a bidirectional inverse-variance
weighted regression framework, MVR, analogous to statistical models proposed for
multivariable MR32. This approach was implemented using GWAS summary
statistics, often described as Egger regression32. Here, MVR analyses do not infer
causality as we allow for biological pleiotropy. We apply this method to simulta-
neously estimate genetic ASD and ADHD risk associations with EA. We control for
collider bias that may arise when adjusting for heritable covariates33 by studying
relationships between genetically predicted phenotypes only.

Discovery analyses (Supplementary Fig. 1a, b). As a first step, we selected ASD-
related (Gi) and ADHD-related (Gj) variant sets, according to guidelines for
polygenic scoring methods34. ASD-related variant sets Gi (with i= 1, …, m SNPs)
and ADHD-related variant sets Gj (with j= 1, …, n SNPs) were selected from
ASD(iPSYCH,woADHD) and ADHD(iPSYCH) GWAS statistics respectively,
using 11 different P-value thresholds (Pthr, 5 × 10−8; 5 × 10−7; 5 × 10−6; 5 × 10−5;
0.0005; 0.0015; 0.005; 0.05; 0.1; 0.3; 0.5). All variant sets were restricted to common
(minor allele frequency>0.01), independent (LD-r2 < 0.25 within ±500 kb) and

well-imputed (imputation quality(INFO) > 0.7) SNPs. Next, corresponding SNP
estimates for ASD (β̂ASD,) ADHD (β̂ADHD) and EA (β̂EA) were extracted from
ASD(iPSYCH,woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS statistics.
Then, we fitted an ASD-MVR for each ASD variant set Gi, as follows:

β̂EAi
¼ θ0* þ θASDβ̂ASDi

þ θ*ADHDβ̂ADHDi
ð1Þ

weights ¼ seðβ̂EAi
Þ�2 ð2Þ

where β̂EAi
(dependent variable) are SNP estimates for EA, β̂ASDi

(independent

variable) are SNP estimates for ASD and β̂ADHDi
(independent variable) are SNP

estimates for ADHD. Within this MVR framework, based on ASD variant set Gi,
θ0* is the regression intercept, θASD the ASD effect and θ*ADHD the ADHD effect,
weighted by the inverse variance of the dependent variable, consistent with the
statistical framework of Egger regression based MVR analyses32. The intercept θ0*
is an estimate of αi’32, the direct pleiotropic influences between the analysed var-
iants Gi and EA that are neither captured by θASD nor θ*ADHD.

Similarly, for each ADHD variant set Gj, an ADHD-MVR was fitted as follows:

β̂EAj
¼ θ0# þ θADHDβ̂ADHDj

þ θ#ASDβ̂ASDj
ð3Þ

weights ¼ seðβ̂EAj
Þ�2 ð4Þ

where β̂EAj
(dependent variable) are SNP estimates for EA, β̂ADHDj

(independent

variable) are SNP estimates for ADHD and β̂ASDj
(independent variable) are the

SNP estimates for ASD. For this MVR framework, using ADHD variant set Gj, θ0#
is the regression intercept, θADHD the ADHD effect and θ#ASD the ASD effect. The
intercept θ0# is an estimate of αj’32, the direct pleiotropic influences between the
analysed variants Gj and EA that are neither captured by θADHD nor θ#ASD

Reported MVR effects (θ̂) present changes in years of schooling, either per
increase in log odds ASD or ADHD liability, pooled across the variant set. The
overall MVR model fit was compared to univariable models (see below) using
likelihood-ratio tests, as implemented in the R:stats library (Rv3.5.1). Collinearity
between independent variables was assessed by the VIF(R:car library (Rv3.5.1)).

Multivariable MR Egger-related approaches with intercept terms, including
MVR analyses applied in this study, are sensitive to allelic alignment. It has been
recommended to orient all variants with respect to the genetic association with the
independent variable of primary interest32. Thus, SNP estimates were aligned to
increase ASD risk in ASD-MVRs and ADHD risk in ADHD-MVRs. For simplicity,
MVR findings in the main manuscript are presented for two P-value thresholds
only: Pthr < 0.0015, consistent with conservative selection thresholds recommended
for polygenic scoring approaches34, and Pthr < 0.05, a less stringent threshold that
has been previously selected to study polygenic scores in complex psychiatric
disorders59, to increase the statistical power and precision of MVR estimates. In
total, 22 tests were performed as part of discovery analyses (two MVR models
across 11 variant sets), resulting in a multiple-testing-adjusted significance
threshold of 0.0023.

To assess whether EA-association patterns with ASD and ADHD were driven
by variants that encoded opposite risk alleles for each disorder (scenario III,
Fig. 1d–f), discovery MVR analyses were repeated with concordant variant sets.
Concordant variant sets (Pthr < 0.0015 and Pthr < 0.05) were created by restricting
ASD variant sets Gi and ADHD variant sets Gj to variants with the same risk-
increasing allele for both ASD and ADHD risk. Consequently, by design, SNP
estimates were aligned to increase both ASD and ADHD risk in these analyses. As
all variant sets were nested within the variant sets used for discovery analysis, the
same multiple-testing-adjusted significance threshold was applied (0.0023).

Follow-up analyses with ASD(PGC) (Supplementary Fig. 1c, d). To replicate MVR
findings, ASD-MVR and ADHD-MVR were conducted using ASD SNP estimates
(β̂ASD) from ASD(PGC), instead of ASD(iPSYCH,woADHD), for ASD and ADHD
variant sets from the discovery analyses selected at Pthr < 0.0015 and Pthr < 0.05.
Within ASD-MVR, SNP estimates were aligned to increase ASD risk as observed in
ASD(PGC). In total, four tests were performed (two MVR models across two
variant sets), resulting in a multiple-testing-adjusted significance threshold of
0.0125.

As for discovery analyses, concordant variant sets were created by restricting
ASD (Gi) and ADHD (Gj) variant sets to variants with the same risk-increasing
allele for ASD and ADHD risk (multiple-testing-adjusted significance threshold
0.0125).

ASD-MVR and ADHD-MVR analyses using variants from LD blocks with high
posterior probability for pleiotropy or high-LD co-localisation (Supplementary Fig.
1e, f). Gwas-pw36 (v0.21) analyses were based on summary statistics for (i)
ASD(iPSYCH,woADHD) and ADHD(iPSYCH), and (ii) ASD(PGC) and
ADHD(iPSYCH), without applying P-value selection criteria. After dividing the
genome into approximately independent LD blocks, gwas-pw estimates the pos-
terior probability that a given LD block contains: (model 1) a genetic variant
associated with ASD, (model 2) a genetic variant associated with ADHD, (model 3)
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a genetic variant associated with both disorders, reflecting biological pleiotropy
(scenario V, Fig. 1i) or high-LD co-localisation (scenario IV Fig. 1g, h), or (model
4) multiple genetic variants that are each associated with a different disorder (co-
localisation in the presence of low/moderate LD). Evidence for model 3 and model
4 was evaluated at a stringent posterior probability threshold (>0.9), and correction
for overlapping samples between summary statistics was applied based on LDSC
genetic correlation estimates (Supplementary Table 5), consistent with author
recommendations36. From the identified LD blocks, we extracted independent
ASD- and ADHD-related variants (LD-r2 < 0.25 within ±500 kb), and carried out
ASD-MVR and ADHD-MVR as described for discovery analyses above (Supple-
mentary Fig. 1e–f). To enhance stringency, we applied the multiple-testing-
adjusted significance threshold of 0.0023, as derived for discovery analyses.

Identification of single variants using conditional P-value thresholding (Supple-
mentary Fig. 1g, h). To identify variants underlying the discordant EA-related
association patterns for ASD and ADHD genetic risk, we systematically assessed
overlap between ASD (Gi) and ADHD (Gj) variant sets. Overlapping independent
SNPs associated with both ASD and ADHD risk were identified using PLINK
(v1.90b3w, https://www.cog-genomics.org/plink2; 500 kb and LD-r2 ≥ 0.6), starting
with ASD and ADHD variant sets from discovery analyses at Pthr < 0.0015. For
each variant set (ASD (Gi, NSNPs = 1,973) and ADHD (Gj, NSNPs = 2,717)), we
identified SNPs that were, conditionally, also associated with the other disorder
across six different P-value thresholds (0.0015; 0.005; 0.05; 0.1; 0.3; 0.5). This
resulted in six subsets for ASD-related variants (Gi|j) and six subsets for ADHD-
related variants (Gj|i). As conditionally selected variant sets are nested within each
discovery set Gi and Gj, respectively, the multiple-testing-adjusted threshold for
discovery analyses was applied (0.0023). Note that the notation of conditional
variant sets has no mathematical meaning.

To assess whether association with EA across the set of 83 identified loci (Gi|j,
Gj|i, ASD and ADHD Pthr < 0.0015, NSNPs = 83) may occur by chance, we
performed a permutation analysis. For each permutation, 83 independent SNPs
were randomly selected from Gi (Pthr < 0.0015, ASD(iPSYCH, woADHD)) for
ASD-MVR, and, likewise, from Gj (Pthr < 0.0015, ADHD(iPSYCH) GWAS) for
ADHD-MVR. Corresponding SNP estimates for ASD (β̂ASD), ADHD (β̂ADHD) and
EA (β̂EA) were extracted from ASD(iPSYCH, woADHD), ADHD(iPSYCH) and
EA(SSGAC) GWAS statistics, respectively. In total, 10,000 permutations were
carried out for both, empirical ASD-MVR and ADHD-MVR analyses.

Specificity analyses related to general intelligence (Supplementary Fig. 1i, j). ASD-
MVR (Gi discovery set; Pthr < 0.0015 and Pthr < 0.05) and ADHD-MVR models (Gj,
discovery set; Pthr < 0.0015 and Pthr < 0.05) were fitted to genetically predictable
general intelligence as outcome (β̂Intelligence) instead of EA (β̂EA), using Intelligen-
ce(CTG) GWAS summary statistics. For these four additional tests (two MVR
models across two variant sets), we applied a multiple-testing-adjusted significance
threshold of 0.0125.

Specificity analyses related to risk for other psychiatric disorders (Supplementary Fig.
1k, l). To assess whether ASD- (Gi) and ADHD-related variant sets (Gj), encode
also discordant EA-related association patterns for adult-onset neuropsychiatric
disorders (MDD, SCZ or BD), we carried out sensitivity analyses. For risk-related
alleles within the discovery sets Gi and Gj (at Pthr < 0.0015 and Pthr < 0.05), we
extracted SNP estimates for MDD (β̂MDD), SCZ (β̂SCZ) or BD (β̂BD) from GWAS
summary statistics for MDD(PGC), SCZ(PGC), BD(PGC), respectively. Using
ASD-MVR, polygenic ASD effects with EA (θASD) were estimated simultaneously
with the polygenic effect of another psychiatric disorder (θ*MDD, θ*SCZ or θ*BD).
Likewise, using ADHD MVR (θADHD), polygenic ADHD effects on EA were
simultaneously estimated with risk effects for other psychiatric disorders (θ#MDD,
θ#SCZ or θ#BD). In total, 12 sensitivity analyses were performed, leading to a
multiple-testing-adjusted P-value threshold of 0.0042.

Univariable regression models. To assess the robustness of MVR findings,
weighted univariable models were included in discovery, follow-up and specificity
analyses (see above, Supplementary Fig. 1a–f, i–l). Univariable regressions include
the same dependent variable as MVR (EA or general intelligence), but estimate
only one polygenic disorder-related effect. Univariable and MVR model fit was
compared using a likelihood-ratio test as implemented in the R:stats library
(Rv3.5.1).

SNP annotations. The 83 loci identified using a conditional thresholding approach
(see above, ASD Pthr < 0.0015 and ADHD Pthr < 0.0015) were annotated (Supple-
mentary Data 2). Frequencies for the modelled allele were extracted from the
Haplotype Reference Consortium r1.168 and GWAS hits (P < 5 × 10−8), as recor-
ded in the GWAS Catalog, were identified using the UCSC Genome Browser data
integrator tool, build 37 (https://genome.ucsc.edu/cgi-bin/hgIntegrator). Finally,
SNPs were mapped to 52 RefSeq gene IDs (genome build 37) based on positional
mapping using PLINK software (v1.90b3w, https://www.cog-genomics.org/plink2,
0 kb gene window), similar to the default options in MAGMA gene-enrichment
software69.

Gene-set enrichment analyses. Gene-set enrichment (>5 overlapping genes,
FDR-adjusted P-values) was conducted with respect to pre-defined gene-sets
derived from the Molecular Signature Database (v7.0), WikiPathways
(v.20191010), or the GWAS Catalog (v.e96_r2019-09-24). Enrichment analysis was
carried out with MAGMA69 (v1.08) using a one-sided hypergeometric test, as
implemented in FUMA40 software (v1.3.6a, https://fuma.ctglab.nl/), by mapping
identified genes for the 83 loci (see above) to unique Ensembl IDs (v92). The False
Discovery Rate (FDR) was controlled using the Benjamini–Hochberg procedure
(FUMA, v1.3.6a).

All used web resources are listed in Supplementary Note 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Publicly available GWAS summary statistics were retrieved for ASD(PGC): http://www.
med.unc.edu/pgc/files/resultfiles/pgcasdeuro.gz, EA(SSGAC): https://www.dropbox.com/s/
ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0, Intelligence(CTG): https://ctg.cncr.
nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip, MDD(PGC): https://doi.org/
10.6084/m9.figshare.14672082, SCZ(PGC) and BD(PGC): https://doi.org/10.6084/
m9.figshare.14672019. In order to ensure that there is no conflict with ongoing projects,
collaborations and iPSYCH’s data sharing policies, restrictions apply to the availability of
summary statistics from the iPSYCH sample. For access to these data, researchers should
prepare a short application briefly describing the proposed study. Response will typically be
within 2 weeks. Access to individual level data will in addition require institutional
collaboration agreement and data use agreement following GDPR. Contact the lead
principal investigator A.D.B. (anders@biomed.au.dk) for access requests. The data generated
in this study are provided in the Supplementary Information/Source Data file. Source data
are provided with this paper.
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