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A hallmark of infection by respiratory viruses is productive

infection of and the subsequent destruction of the airway

epithelium. These viruses can also target other stromal cell

types as well as in certain instances, CD45+ hematopoietic cells

either resident in the lungs or part of the inflammatory response

to infection. The mechanisms by which the virus produces

injury to these cell types include direct infection with cytopathic

effects as a consequence of replication. Host mediated

damage is also a culprit in pulmonary injury as both innate and

adaptive immune cells produce soluble and cell-associated

pro-inflammatory mediators. Recently, it has become

increasingly clear that in addition to control of excess

inflammation and virus elimination, the resolution of infection

requires an active repair process, which is necessary to regain

normal respiratory function and restore the lungs to

homeostasis. The repair response must re-establish the

epithelial barrier and regenerate the microarchitecture of the

lung. Emerging areas of research have highlighted the

importance of innate immune cells, particularly the newly

described innate lymphoid cells, as well as alternatively

activated macrophages and pulmonary stem cells in the repair

process. The mechanisms by which respiratory viruses may

impede or alter the repair response will be important areas of

research for identifying therapeutic targets aimed at limiting

virus and host mediated injury and expediting recovery.
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Introduction
The respiratory tract (RT) is a dynamic organ whose role

in gas exchange is vital for life. Because a large volume of
www.sciencedirect.com 
air is exchanged by the lungs (i.e. up to 10 L/min), the

lungs are continuously exposed to microbial and chemical

insults [1]. The importance of respiratory viruses (RV) as a

major threat to mankind is evidenced by the outbreak of

infection by the Severe Acute Respiratory Syndrome

coronavirus (SARS-CoV), the sporadic human infections

with high pathogenic avian H5N1 influenza, and the

recent pandemic caused by swine origin influenza

H1N1 infection. As more and more evidence has

emerged, it is becoming increasingly clear that the patho-

genicity associated with RV infection reflects not only the

efficiency of virus replication and the tropism of a given

virus/strain for particular cell types within the RT but also

the magnitude and characteristics of the host anti-viral

immune response. Recovery from RV infection requires

the elimination of virus/virus-infected cells, the resol-

ution of injury-associated inflammation, and importantly,

cellular and molecular repair mechanisms necessary for

restoration of normal lung structure and function. This

review will first briefly summarize virus and host immune

mediated damage to the RT and then focus on recent

findings implicating specific cell types in repair and

recovery from pulmonary injury following RV infection.

Virus induced respiratory tract inflammation
and injury
A variety of RT cell types can potentially serve as targets

of infection by RV. These include lung resident cells,

most notably: firstly, airway and alveolar respiratory epi-

thelial cells (REC) whose destruction (or dysregulation)

can, if severe, compromise respiratory function and sec-

ondly, hematopoietic origin (bone marrow-derived

CD45+) inflammatory and immune cells which can, like

virus, induce tissue damage and compromise lung func-

tion potentially triggered following infection of RT resi-

dent or recruited CD45+ cells by certain RV (Table 1).

For example, SARS-CoV and Type A Influenza virus

(IAV) can productively infect certain REC types trigger-

ing extensive necrosis and apoptosis of infected cells

which in turn results in the accumulation of cellular debris

leading to edema and mucous production within the

airways [2��,3]. SARS-CoV has been reported to have a

cellular tropism either for alveolar REC or more recently,

respiratory epithelial stem cells involved in REC regen-

eration (see below) [4–6]. SARS-CoV exploits the angio-

tensin-converting enzyme 2 (ACE2), a negative regulator

of the renin–angiotensin system for blood pressure

homeostasis, as a receptor for entry into epithelial cells
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Table 1

Direct effects of virus infection on respiratory tract target cells

Target Cell: Primary E ffect: Direct Consequences: 

Cell Death 
(i.e. Apoptosis/Necrosis) 

- Accumulation of Cellular Debris 
Compromised Lung Function and Gas Exchange -

- Loss of Barrier Function & Epithelial Integrity  
- Stimulation (or Suppression) of Epithelial Stem Cell  

Response 
Respiratory Epithelium 

Induction of Innate Viral Recognition Pathwa ys 
(e.g. PAMP Receptors) 

- Anti-Viral Stat e 
Cytokine/Chemokine/IFN Production -
Mucus Production -

Cell Death  
(i.e. Apoptosis/Necrosis) 

- Accumulation of Cellular Debris 
- Inhibition of Viral Clearanc e 

Induction of Innate Viral Recognition Pathwa ys 
(e.g. PAMP Receptors) 

- Activation/Maturation (e.g. RDCs, Macrophages) 
- Anti-Viral Stat e 

Cytokine/Chemokine/IFN Production -
Reduced Immune Suppression  -

     (e.g. Alveolar Macrophages)

Hematopoietic Cells 
(e.g. Macrophages, 
Neutrophils, RDCs) 

Migration  
(e.g. Macrophages, RDCs) 

- Induction of Adaptive Immune R esponses 
- Systemic Spread (i.e. H5N1, SARS-CoV) 

PAMP = pathogen associated molecular pattern; RDCs = respiratory dendritic cells.
[7,8]. Subsequent downregulation of ACE2 expression

following SARS-CoV infection of REC has been linked to

increased lung edema and severe acute lung injury

[7,9,10].

In most instances, productive infection of REC by RV is

necessary for virus propagation and as a consequence,

contributes to RT inflammation/injury. However, infec-

tion of bone marrow-derived CD45+ RT resident cells

(e.g. respiratory dendritic cells (RDCs)) and recruited

inflammatory myeloid lineage cells (e.g. inflammatory

mononuclear cells and possibly neutrophils) may pro-

foundly influence the course and ultimate outcome of

RV infection [11,12�]. Both SARS-CoV and highly patho-

genic avian H5N1 IAV can productively infect cells of

hematopoietic origin, which may account for the propen-

sity of these agents to leave the RT and disseminate

systemically [13–15]. RV infection of resident RDC and

alveolar macrophages results in the engagement of intra-

cellular pathogen associated molecular pattern (PAMP)

receptors (e.g. TLR and/or RLR) and initiates robust

cytokine production [11,16]. Of note, the infection of

RDC by IAV may also be a pivotal step for the activation

of the CD8+ T lymphocyte response [17]. However, one

or more subsets of RT resident RDC, notably RDC

expressing CD103 may be specialized to take up viral

antigen without infection and efficiently initiate an adap-

tive immune response [18]. Interestingly, alveolar macro-

phages, through a mechanism dependent on TLR3

engagement, inhibit RDC activation during SARS-CoV

infections, which in turn results in lymphopenia and

prolongation of virus-induced inflammation [19�]. During

the evolution of virus infection, infection of or at least

viral antigen uptake by CD45+ inflammatory cells in the

infected RT may also serve as a potent stimulus for the

development of an excessive host immune response
Current Opinion in Virology 2012, 2:233–241 
through interaction of these RV antigen expressing

inflammatory cells with adaptive immune effector T

lymphocytes [20,21�].

Host immune mediated respiratory tract
inflammation and injury
Engagement of epithelial and hematopoietic cell PAMP

receptors by viral proteins and nucleic acids during in-

fection upregulates a number of chemoattractant

mediators (e.g. MCP-1 and KC), which recruit various

innate immune cell types. While contributing to viral

clearance, these innate immune cells are also notable for

their role in promoting pulmonary tissue damage

[11,16,22,23]. Excessive accumulation of neutrophils

and inflammatory mononuclear cells (a heterogeneous

cell type encompassing monocytes and TNF/inducible

nitric oxide synthase producing DCs (tipDCs)) is strongly

correlated with severe lung pathology in cases of human

SARS-CoV, avian influenza, and respiratory syncytial

virus (RSV) infections [24–26]. In murine models of

RV infection, however, it is clear that the extent of

inflammatory cell infiltration into the RT alone is not

the sole factor accounting for host-mediated pulmonary

injury [27��,28]. Rather, RT damage is linked to the

characteristics of the soluble and cell-associated inflam-

matory mediators produced or expressed by innate

immune cells (Table 2). Release of soluble factors by

phagocytic cells (e.g. pro-inflammatory cytokines and free

radicals) can damage bystander un-infected cells in

addition to infected cell targets resulting in excessive

pulmonary tissue damage [29,30�]. Also, inflammatory

mononuclear cells express the surface molecule TNF-

related apoptosis-inducing ligand (TRAIL) which can

induce apoptosis in cells expressing the corresponding

ligand(s) as can occur in IAV infection [31�]. Because un-

infected REC express TRAILs, albeit at lower levels than
www.sciencedirect.com
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Table 2

Immune mediators of pulmonary injury during respiratory virus

infection

Soluble mediators Cell-associated mediators

Chemokines Fas ligand

- for example, MCP-1,

MIP1a, KC

- Expressed by pDCs, T cells

- Leukocyte recruitment - Induce epithelial cell apoptosis

Cytokines Perforin/granzymes

- for example, IL-1, IL-6, TNF - Expressed by T cells, NK cells

- Induce epithelial cell apoptosis - Induce epithelial cell apoptosis

- Fever promotion - Stimulate cytokine release

- Trigger mucous production

- Stimulate cytokine release

Interferon TRAIL

- for example, IFNa, IFNb,

IFNg, IFNl

- Expressed by inflammatory

mononuclear cells, T cells

- Induce epithelial cell apoptosis - Induce epithelial cell apoptosis

- MHC upregulation

- Stimulate cytokine release

Proteases

- for example, MMP, plasminogen

- Disrupt extracellular matrix

- Promote viral replication

Free radicals

- for example, H2O2, NO�, O2
�

- Induce epithelial cell apoptosis

KC (CXCL1) = keratinocyte derived chemokine; MCP-1 (CCL2) = mo-

nocyte chemoattractant protein-1; MHC = major histocompatibility

complex; MIP1a (CCL3) = macrophage inflammatory protein-1;

MMP = matrix metalloproteinases; pDCs = plasmacytoid dendritic

cells; TRAIL = TNF-related apoptosis-inducing ligand 2.
IAV-infected alveolar REC, inflammatory mononuclear

cells have the potential to indiscriminately eliminate

REC, contributing to increased airway permeability

and alveolitis. While exuberant neutrophil and inflamma-

tory mononuclear cell accumulation and activation does

enhance pulmonary inflammation and excess mortality in

murine models of IAV infection, the depletion or absence

of these innate immune effector cells can paradoxically

result in augmented tissue damage, possibly reflecting the

contribution of these innate immune cells directly to IAV

clearance or feedback control of the host immune

response [32–36]. Thus, not surprisingly, the role of

innate immune cells in virus clearance and/or tissue

damage in the RT undoubtedly represents a complex

interplay between the host and the particular infecting

RV. Thus, there is a delicate balance between the extent

of accumulation of innate immune cells in the infected

RT and the activation state of the cells, which is in part

controlled by the properties of the infecting RV.

The adaptive immune response to primary RV infection

consists of infiltrating antigen-specific T lymphocytes and

humoral immunity. These adaptive immune components

gain access to the RT several days post infection and
www.sciencedirect.com 
typically are associated with RV clearance. As with innate

immune cell types, T lymphocytes employ a variety of

soluble and cell-associated mediators that contribute to

RV elimination and inflammation (see Table 2). CD8+ T

lymphocytes, and to a lesser extent CD4+ T lymphocytes,

employ cell-associated mediators (e.g. perforin/granzyme,

FasL) to trigger apoptosis in target cells [21�,37]. Since

cytolysis induction requires engagement of the T

lymphocyte antigen receptor by the viral peptide/MHC

molecule complexes, T cell-mediated apoptosis is largely

limited to the RV-infected cells. With one notable excep-

tion [38], T lymphocyte mediated cytolysis is considered

to play a minor role in the development of tissue injury

produced by adaptive immune cells during RV infection

[39,40]. In contrast, T cell derived soluble inflammatory

mediators (e.g. TNF, MIP-1a, IFNg) can damage un-

infected cells within the RT and augment the infiltration

of injury-promoting innate immune cells. The extent of

this pro-inflammatory cytokine production may ulti-

mately be determined by viral tropism of infiltrating

CD45+ inflammatory cells. Our laboratory and others have

recently noted that co-stimulation, along with antigen, is

required to drive effector T cell pro-inflammatory cyto-

kine responses and proliferation within the RT during

IAV infections [20,21�,41]. Because co-stimulatory mol-

ecule expression is principally limited to hematopoietic

cells, the ability of a particular RV to infect these

recruited CD45+ inflammatory cells may be an important

factor in determining the extent of adaptive immune

mediated tissue damage during RV infection.

Factors regulating pulmonary inflammation
The factors controlling the extent of pulmonary inflam-

mation during RV infection have been recently reviewed

[42,43]. For adaptive immune cells, it is the encounter of

the antigen receptor with its target viral antigen that

ultimately controls the number and function of these

cells. Likewise for innate immune cells, it is the presence

of mediators produced by responding adaptive cells and/

or engagement of intracellular sensors within innate

immune cells in the infected RT by viral PAMPs that

regulates the response of these effector cells. Therefore,

it is the cessation of virus replication and the elimination

of viral antigen that is the primary factor controlling both

host and virus induced injury and inflammation. Further-

more, the downregulation of co-stimulatory receptors/

ligands on immune cells and the upregulation of inhibi-

tory receptors (e.g. NKG2A, CD200R) and their ligands

on CD45+ immune cells (and in some cases CD45�REC)

may be important factors in controlling excess inflam-

mation during respiratory viral infections [44–46].

There is also important regulatory elements within the

immune response that dampen ongoing inflammation

during RV infection. First, a number of regulatory cyto-

kines are produced to attenuate an inflammatory

response. Effector T lymphocytes, in conjunction with
Current Opinion in Virology 2012, 2:233–241
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their production of pro-inflammatory cytokines, have been

noted to produce high levels of the regulatory cytokine IL-

10 during IAV and RSV infections [47,48�,49]. Blockade of

IL-10 signaling during the effector T cell phase of influ-

enza infection increases pro-inflammatory cytokine pro-

duction and mortality [48�]. In addition, release of active

TGF-b can reduce inflammation and increase survival

during RV infection [50,51]. As another facet for inflam-

mation resolution, Foxp3+ regulatory T (Treg) cells can

dampen anti-viral responses, notably in RSV and IAV

infections, by regulating the extent of adaptive immune

responses within the RT [52–56]. Thus, regulatory

elements within the anti-viral immune response and event-

ual viral clearance ultimately curtail the extent of pulmon-

ary inflammation. The subsequent steps of repairing and

re-modeling the RT following RV infections, however, are

not as fully understood and appreciated.

Re-establishing the epithelial barrier and
maintaining barrier integrity
A hallmark of RV infection is replication of virus in and

the subsequent destruction of the airway epithelium.

Therefore, by necessity, the repair of the epithelium is

essential for recovery. The stages of airway repair have

been studied in great detail for a variety of chemically

induced injury models [57,58]; however, the unique set of

conditions imposed by RV infection (e.g. viral load and

the tropism of a given RV for a particular RT cell type)

can potentially modify the repair process in ways that are

not well understood.

New research has highlighted the importance of initiating

and maintaining a proper repair response during and

following respiratory virus infection and has demon-

strated a renewed interest in an active repair process,

rather than simply a passive dampening of inflammation.

RV infection, including IAV and SARS-CoV, results in

large numbers of apoptotic and necrotic epithelial cells,

leaving denuded basement membranes of the upper and/

or lower airways. In addition to virus-induced cell death,

infiltrating leukocytes secrete large quantities of matrix

metalloproteinases (MMP) that damage and degrade the

basement membranes of the endothelium and epi-

thelium, which results in the loss of the microarchitecture

of the conducting airways and alveoli. Therefore, the lung

must initiate a robust repair response to reconstitute the

extracellular matrix, return to homeostasis, and rebuild

barrier function. Furthermore, impaired repair processes

in the RV-infected lung may also enhance susceptibility

to secondary microbial infection.

The restoration of the respiratory epithelium following

injury can be divided into three sequential stages: provi-

sional matrix deposition, epithelial proliferation, and epi-

thelial differentiation. In order for new epithelial cells to

regenerate, fibroblasts and epithelial cells surrounding the
Current Opinion in Virology 2012, 2:233–241 
infected foci secrete a provisional matrix made predomi-

nantly of the structural protein fibronectin [59]. TGFb,

another potent stimulator of the fibro-proliferative

response, is released by virally infected epithelial cells

[60], which can subsequently stimulate secretion of provi-

sional matrix proteins from fibroblasts and other non-

hematopoietic cell types. Upon completion, the newly

formed extracellular matrix can provide a platform for

epithelial progenitor cells to proliferate and give rise to

new epithelial cells that can regenerate those lost to in-

fection. A myriad of factors regulate pulmonary epithelial

proliferation, most notably TGFb [58]. It was recently

found that the transcription factor Elf3 is an upstream

inducer of TGFbII receptor expression and important

for bronchiolar airway cell proliferation [61]. Finally, once

the cells have proliferated to cover the denuded areas, they

then receive signals (e.g. Notch-dependent and Smad-

dependent signaling) to differentiate into the specific cell

types found within the airways [62–64]. Thus, there are

many pathways that converge to mount a proper repair

response in the infected RT; however, emerging studies

have highlighted the role of the innate immune system and

distinct stem cell populations in this process.

The role of the innate immune system: the
second act
Although the innate immune system plays a clear role in

the induction of inflammation and injury associated with

RV infection during the acute phase, a number of studies

have demonstrated the importance of innate immune

cells, particularly of the newly described family of innate

lymphoid cells (ILC), to the maintenance and regener-

ation of mucosal epithelia.

Lymphoid tissue inducer (LTi) cells, first described as

CD3�CD4+ lineage negative cells, are important for the

development of lymphoid tissues via the production of

lymphotoxins [65–67]. Recently, they have been shown

to secrete the ‘tissue-protective’ cytokine IL-22 in adult

mice [68]. IL-22 levels are reduced in the IAV-infected

lung; however, levels return to baseline immediately

following virus clearance from the lung [69]. Although

IL-22 does not seem to have any direct anti-viral proper-

ties in the lung, it does stimulate pulmonary epithelial

cells to upregulate antibacterial genes, such as lipocalin-2,

and may be essential for resistance against many Gram

negative bacterial pneumonia [70]. IL-22 can also protect

airway epithelial cells from apoptosis, which is correlated

with increased levels of the anti-apoptotic genes Bcl2 and

Bcl2l1 [71]. Thus, IL-22 may be an important factor in

maintaining the epithelial barrier. LTi-like cells, which

are phenotypically similar to LTi cells but also express

the NK cell receptor NKp46 in adults (often referred to as

NKR+LTi, ILC22, or NK22), are also potent producers of

IL-22. To date, ILC22 cells have been best described in

the intestinal lamina propria but can be found in the liver

and mesenteric lymph nodes [72]. However, as more is
www.sciencedirect.com
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learned about inducible bronchi associated lymphoid

tissue (iBALT) [73,74], ILC22 cells may very well be

found within these structures in the lungs and contribute

to repair. NK cell receptor (CD161)-expressing innate

lymphoid cells have also been identified in humans;

however, these cells functionally more resemble the

innate lymphoid cell type 2 [75], described below.

As another member of the innate lymphoid family,

natural helper cells or innate lymphoid cell type 2

(ILC2), were variously described by several groups

[76��,77–79]. These ILC2 are potent producers of type

2 cytokines, namely IL-5 and IL-13. Although originally

described in fat associated lymphoid clusters [76��], these

ILC2 have been identified in many organs including the

spleen, bone marrow, and various regional lymph nodes.

Of interest, a relatively large number are also found

within the RT [78,80]. The ability of these cells to secrete

large quantities of IL-5 and IL-13 (on the order of 30 ng

per 5000 cells) has made them a target for limiting virus

induced asthma exacerbations [81]. However, ILC2 are

also essential for epithelial integrity, lung function, and

proper airway remodeling during IAV infection via their

secretion of the epidermal growth factor ligand, amphir-

egulin [82�]. Amphiregulin can limit lung inflammation

during bleomycin-induced injury [83]; however, this new

demonstration of its role in actively participating in and/or

regulating airway repair following RV infection merits

further research. In addition to amphiregulin, it is also

formally possible that ILC2 are secreting other factors

that directly or indirectly modulate the repair response.

ILC2 are early producers of the type 2 cytokine IL-9 [84],

which although a culprit in asthma and allergy, can

protect epithelial cells from apoptosis by upregulating

Bcl2 [85]. ILC2 are located near the bronchi and bronch-

ioles [80] and thus are well situated to mediate the repair

response following a RV infection. ILC2 produce large

amounts of IL-5 and IL-13 when stimulated by IL-33 or

IL25. IL-33 is present in the IAV-infected lung, with the

predominant sources being necrotic epithelial cells [86],

alveolar macrophages [81], and NKT cells (Gorski and

Braciale; unpublished observation). Thus, IL-33 may be

the signal to initiate ILC2 into the repair phase. Whether

IL-25 has a direct role in RV infection, outside of virus

induced asthma exacerbation [87], is not yet clear.

The propensity of innate immune cells to produce pre-

dominantly type 2 cytokines in order to orchestrate a

pulmonary repair response rather than simply exacerbate

asthma is not outside the realm of possibilities. Type 2

immune responses can also be thought of as a reparative

response [88]. Type 2 immune responses largely depend

on signaling through the IL-4R alpha chain. Both IL-4

and IL-13 signal through IL-4Ra, and mice deficient in

IL-4Ra have delayed wound repair responses [89,90]. In

addition, IL-13 is highly pro-fibrotic, which when present

in small amounts and under tight regulation, may be able
www.sciencedirect.com 
to promote a repair response, particularly in generating a

provisional matrix. Signaling through the IL-4Ra via IL-4

and/or IL-13 is also important for the generation of

alternatively activated macrophages (so-called ‘M2’

macrophages) [91]. M2 are known to be anti-inflamma-

tory and involved in tissue repair in a variety of injury

models [92]. M2 express a set of signature molecules

including arginase, Ym1/Chi3I3, Fizz1, and MRC1. Argi-

nase in particular is known to be involved in the synthesis

of collagen [93] and thus may again be important in

provisional matrix deposition. M2 expressing arginase

and Ym1 are significant contributors to lung fibrosis,

but this effect is dependent on the pro-inflammatory

Ly6Chi monocytic subset [94]. Therefore, in the right

context (i.e. in the absence of strong inflammation as

occurs following virus clearance in the lung), M2 may

have a role to play in promoting a reparative response. In

support of this hypothesis, M2 generation during RSV

infection was found to limit inflammation, and in their

absence, there was sustained epithelial cell damage in the

infected lung [95�]. The generation of M2 during RSV

infection was found to be IFNb dependent, which was

essential for regulating IL-4, IL-13, and IL-4Ra expres-

sion, thereby providing a link between RV infection and

the induction of M2. Thus, viruses that inhibit the

interferon response, such as IAV and RSV, could poten-

tially interfere with the proper repair response via inhi-

bition of M2 generation [96].

Activating stem cells
The epithelial proliferation and differentiation phase of

repair requires the presence of a pulmonary progenitor

cell that is either resident in the lung or recruited follow-

ing RV infection. These progenitor cells give rise to the

specialized epithelial cells that will regenerate on the

denuded areas of the lung. Interest in the role of stem cell

activation following RV infection has increased recently

with the better characterization of region-specific stem

cell populations that can regenerate different cell types of

the lung. The factors that regulate pulmonary stem cells,

both their activation and/or recruitment, are not well

understood, and the study of this population is further

complicated by the lack of defined surface markers.

Multi-potent progenitor cell populations, such as ‘bronch-

ioalveolar stem cells (BASC)’ have been identified in the

lung [97]. These cells have been described as

CD45�CD31�CD34+Sca-1+, although many groups main-

tain that this set of markers represent a heterogeneous

population of stem cells that differentially give rise to

various lung cell types [98,99]. BASC have been charac-

terized as being able to repopulate both bronchiolar and

alveolar epithelia [97,100]; however, recent studies show

that distinct progenitor cells can exist for both of these

regions as well as the trachea [2��,101,102]. Of relevance,

SARS-CoV has been shown to infect BASC and therefore,

could potentially contribute to virus-induced pathology via
Current Opinion in Virology 2012, 2:233–241
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a mechanism that inhibits pulmonary repair [103]. Since

many RV have the ability to infect the lower airways, in the

case of severe disease, understanding the mechanisms of

how BASC and/or other regional stem cell populations are

regulated is paramount to expediting the repair response.

In support of the regional specific stem cell populations,

Kumar et al. found that following H1N1 influenza infection

of mice, p63+ progenitor cells, which are thought to mark

basal cells in the trachea [104,105], begin forming clusters

around damaged foci into distinct keratin 5+ (Krt5+) pods

[2��]. Within these pods, distal airway stem cells (DASCs),

distinct from the upper airway stem cell populations, are

capable of differentiating into cells that appear to be of

alveolar lineage. What factors and mediators control the

DASC differentiation event are not known. This becomes

of further importance during secondary bacterial infection,

particularly following the 2009 H1N1 influenza pandemic,

where loss of epithelial repair mechanisms was shown to be

a major contributor to pathogenesis, as opposed to a heigh-

tened inflammatory response [106].

Summary
A part of RV pathogenesis is damage to lung epithelium,

either directly or via immune-induced damage, and in the

process, viruses can impede epithelial repair mechanisms.

The absence of a proper repair response can lengthen

morbidity and can certainly contribute to an increase in

mortality. Understanding the mechanisms that contribute

to an appropriate reparative response following RV in-

fection will undoubtedly provide insight about the inap-

propriate (i.e. over-exuberant, disregulated, or prolonged)

repair response that leads to pulmonary fibrosis or asthma

exacerbations. We argue that an active repair process,

which includes the cooperative action of innate immune

cells and regional stem cells that maintains barrier integ-

rity under homeostatic conditions and reestablishes it in

the event of epithelial loss associated with RV infection,

must be considered to be an essential part of the overall

host response to both RV and other infections of the RT.
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