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Abstract

How to effectively repair cutaneous wounds and promote skin rejuvenation has

always been a challenging issue for clinical medicine and medical aesthetics. Current

conventional medicines exhibit several drawbacks, including limited therapeutic

effects, prolonged treatment periods, and high costs. As a novel cell-free therapy, the

umbilical cord-derived mesenchymal stem cell (UCMSC) secretome may offer a

promising approach for skin regeneration and rejuvenation. The UCMSC secretome

is a collection of all proteins secreted by mesenchymal stem cells, including condi-

tioned media, exosomes, and other substances. The UCMSC secretome has numer-

ous abilities to accelerate acute wound healing, including high fibroblast and

keratinocyte proliferative activity, pro-angiogenesis, anti-inflammation, anti-fibrosis,

and anti-oxidative stress. Its impact on the four stages of wound healing is mani-

fested by inducing the haemostasis phase, inhibiting the inflammation phase, promot-

ing the proliferation phase, and regulating the remodelling phase. Furthermore, it is

highly effective in the treatment of chronic wounds, alopecia, aging, and skin homeo-

stasis disturbance. This review focuses on the clinical therapies and application pros-

pects of the UCMSC secretome, encompassing its source, culture, separation,

identification, storage, and pretreatment. Additionally, a discussion on the dosage,

administration route, efficacy, and biosafety in the clinical situation is presented. This

review aims to provide scientific support for the mechanistic investigation and clinical

utilisation of the UCMSC secretome in wound healing and skin rejuvenation.

1 | INTRODUCTION

Currently, with patients placing greater emphasis on quality health-

care, how to effectively facilitate wound recovery and improve skin

aesthetics is a prevalent issue that continues to plague clinical treat-

ment.1 Mesenchymal stem cells (MSCs) are applied for a cell-based

treatment method that is attractive in the field of skin regeneration,

due to their helpful properties of multilineage differentiation, immu-

nomodulation, self-renewal, and proliferation stimulation.2 MSCs can

be derived from a variety of sources, including bone marrow, adipose

tissue, umbilical cord, amniotic membrane, and so forth.3,4 UCMSCs

have been shown in dozens of studies to be a prospective and optimal

therapeutic approach in all kinds of MSCs, owing to their advanta-

geous characteristics, including easy extraction, low cost, noninvasive

collection procedures, plentiful cell content, and low immunogenic-

ity.2,5 UCMSCs are mainly isolated from two sections of the umbilical

cord: Wharton's jelly and the umbilical vein endothelium. Due to the

abundance of Wharton's jelly in the umbilical cord, it commonly used
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as the preferred experimental subject.6 Wharton's jelly MSCs have

been found to contribute to skin wound healing.7 And even exosomes

from the acellular gelatinous Wharton's jelly demonstrate effective

cutaneous wound healing abilities.8

The primary way that UCMSCs can promote tissue regeneration

is via the secretion of bioactive factors known as the UCMSC secre-

tome or conditioned medium (UCMSC-CM).9 Therefore, UCMSC-CM

has emerged as a novel and promising treatment option. Not only

does human-derived UCMSC-CM repair skin efficiently, but other

mammalian-derived UCMSC-CM, such as red deer-derived UCMSC-

CM, has demonstrated similar effects in clinical trials for skin repair

after laser resurfacing.10

Skin regeneration is the process of restoring the skin structure

and basic functions, including the repair of acute wounds, burn

wounds, primary wounds, chronic wounds such as diabetic wounds,

and so forth. Skin rejuvenation primarily refers to the recovery of skin

cosmetic functions, such as anti-aging, hair follicle regeneration, whit-

ening, reducing skin sensitivity, and so forth. The effects of the

UCMSC secretome on skin regeneration and rejuvenation can be

characterized as promoting acute wound healing mostly, promoting

chronic wound healing, anti-aging, and hair follicle regeneration.11–14

The yearly expansion in demand for skin repair, as well as the rise in

publications on its positive effects over the last decade, contributed

to the need for this review. The study aims to elucidate the mecha-

nisms, relevant therapeutics, and application perspectives thus far.

The basic concepts, like UCMSC secretome and cutaneous wound,

will then be introduced briefly.

1.1 | UCMSC secretome

The collection of all proteins released by UCMSCs, such as growth

factors, cytokines, chemokines, and so forth, is known as the UCMSC

secretome. Additionally, it broadly refers to all soluble factors and

extracellular vesicles, including metabolites, ions, peptides, microvesi-

cles (MVs), and exosomes. A conditioned medium is the medium that

remains after removing cells from a culture. The secretome is typically

regarded as its principal part or itself, as shown in (Figure 1).15 Multi-

ple physiological processes, including angiogenesis, neurogenesis, tis-

sue repair, immunomodulation, wound healing, and anti-fibrosis, can

benefit from the MSC secretome. Compared to cell-based therapy

with stem cell transplantation, which entails the risk of infection and

pro-tumorigenicity, cell-free therapy with secretome injection is less

immunogenic, safer more trustworthy, less expensive, and more prac-

tical for clinical application.16–18

Umbilical cord MSC-derived exosomes (UCMSC-exo) are a partic-

ular kind of EV. EVs, which are tiny lipid membrane vesicles released

from cells into the extracellular matrix, are involved in a variety of bio-

logical processes, including cellular communication, angiogenesis, cell

migration, the development of tumour cells, and so forth.19,20 EVs are

classified into three subtypes: MVs, exosomes, and apoptotic bodies,

each with its size, content, function, biogenesis, release pathways, and

proteomic profiles, as shown in (Figure 1). EVs are released by almost

all cell types and have been detected in plasma, saliva, milk, serum,

amniotic fluid, lymphatic fluid, and other human bodily fluids. Exo-

somes are typically 30–150 nm in diameter, MVs are 100–1000 nm in

diameter, and apoptotic bodies are 50–5000 nm in diameter.

Exosomes are formed by the inward budding of the limiting mem-

brane of early endosomes, which is followed by the formation of

multi-vesicular bodies that finally mature and are released outside the

cell. MVs and apoptotic bodies are respectively generated by the out-

ward budding and fission of the cell membrane.21,22 Exosomes have

so many useful properties that other secretomes do not have, such as

better stability allowing long-term preservation in vivo, modification

ability with targeting molecules, the homing mechanism that is being

internalised by target cells, and higher loading capacity of protein and

RNAs.17,23 In addition, exosomes endow with abundant DNA, miRNA,

heat shock protein, angiogenesis factor, and so forth. Among them,

exosome-derived transcriptome, which includes circRNAs, lncRNAs,

and miRNAs, is critical in skin repair.24

1.2 | Cutaneous wound

The skin is a complicated organ with two structural layers, the dermis

and the epidermis, separated by a basement membrane.25 A cutane-

ous wound is a pathological condition produced by disease, mechani-

cal, chemical, or physiological injury to the skin. A wound can be

classed as acute or chronic, depending on the cause and recovery

F IGURE 1 Components of the UCMSC secretome. In all figures, a
square with rounded corners stands for the component. The location
of squares stands for the affiliation of different components. The
UCMSC secretome is the collection of all proteins secreted by
UCMSCs, which is generally regarded as UCMSC-CM. UCMSC-EV is
a kind of tiny lipid membrane vesicle in UCMSC-CM. UCMSC-EVs can
be divided into three subtypes: exosomes, MVs, and apoptotic bodies,
with different diameters, respectively, 30–150 nm, 100–1000 nm,

and 50–5000 nm.
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duration of the injury. Chronic wounds recover in more than

3 months. Acute wound is often caused by physical or chemical dam-

age, as well as surgical treatments, whereas chronic wound is typically

caused by diseases such as infections, diabetes, and vascular dis-

ease.26,27 Because the UCMSC secretome has been found to enhance

cutaneous wound healing, it is essential to understand the wound

healing process.23,28

Wound healing is an intricate, dynamic, and harmonious process

that involves 4 distinct and overlapping stages: haemostasis, inflam-

mation, proliferation, and remodelling. During the haemostasis stage,

damaged tissue and cells release vasoactive chemicals that promote

local vasoconstriction, while platelets coagulate, activating the blood

coagulation system and forming clots that stop bleeding and protect

the wounded area. During the inflammation stage, mast cells produce

histamine to increase neutrophil infiltration of the wounded tissue,

and neutrophils begin to clear cellular debris and prevent infection. To

eliminate the residual cellular debris and neutrophils, monocytes

develop into macrophages. During the proliferation stage, keratino-

cytes move to close the wound gap. Fibroblasts move and proliferate

to make granulation tissue and collagen. Subsequently, ECM compo-

nents are deposited by fibroblasts and keratinocytes. New blood ves-

sels are generated by vascular endothelial cells, and cell growth

factors are released by macrophages. During the remodelling stage,

vasculature degenerates. Simultaneously, fibroblasts remodel the

deposited ECM and partially differentiate into myofibroblasts, which

contract to smooth and reduce the wound.29–31

The regulation of gene and protein expression mediate the impact

of the UCMSC secretome on wound healing, which is inhibitory dur-

ing the inflammation stage and promotive during the proliferation

stage, with the latter having the most dominating influence. During

this period, epidermal stem cells, fibroblasts, and immunocytes are

recruited to the wound site, where their coordinated efforts ensure

smooth progression of the entire wound-healing process.32 Further-

more, the UCMSC secretome stimulates the secretion of endogenous

cytokine or growth factor and exerts paracrine effects.33

2 | THE EFFECTS AND MECHANISM OF
UCMSC SECRETOME ON WOUND HEALING

2.1 | UCMSC secretome effects and mechanism
on acute wound

2.1.1 | Haemostasis stage

The effect of the UCMSC secretome in the haemostasis stage has

received less attention in the literature. Yet, UCMSCs have been

found to regulate the balance of the coagulation and anticoagulation

systems as well as cure immune-related thrombophilia.34 Miranda

et al. also discovered that the EGF family in UCMSC-CM increases

autocrine secretion of itself and enhances the promitogenic and

motogenic-inducing capacities of keratinocytes at this stage. G-CSF in

UCMSC-CM is in charge of encouraging the mobilisation of cells

linked to tissue regeneration, such as the proplatelet effect brought

on via the secretion of PDGF and regulating inflammatory cells like

macrophages, neutrophils, and mast cells (Figure 2).35

2.1.2 | Inflammation stage

During this stage, the UCMSC secretome mainly inhibits the excessive

inflammation of wound repair. Thus, if it is used in the treatment, pre-

cautions need to be taken to both actively prevent infection and safe-

guard the surface of a wound. UCMSC-exo has potent

immunomodulatory effects in that it can control the activation of

immune cells and suppress the expression of inflammatory cytokines.

Their mechanisms are summarised in (Figure 3). ICAM-1 is central to

the regulation of the inflammatory process. UCMSC-exo can help

to control inflammation by upregulating the ICAM-1 gene expres-

sion.33 MiRNAs, like miR-21, miR-146a, and miR-181, enriched in

UCMSC-exo, play a major anti-inflammatory role. IL-6 and TLR signal-

ling pathways are potential downstream targets for their activity.36–38

Leukocyte

The primary function of leukocytes is to combat pathogens. Neutro-

phils constitute the majority of leukocytes. Their persistent existence

causes chronic inflammation and chronic refractory wounds, including

diabetic foot ulcers, pressure sores, and leg vein ulcers.31 UCMSC-exo

decreases the total amount of leukocytes and reduces protein expres-

sion of P65 and p-P65. It also downregulates the TLR4 and NF-κB sig-

nalling pathways, thereby inhibiting the release of TNF-α and IL-1β.36

Among them, exosomal miR-21 was shown to silence PTEN and

GSK3β genes, thus inhibiting the function of NF-κB activation.37

T cell

T cells check the skin for infections, release cytokines, and deliver epi-

dermal cell signals, at this stage. In contrast, regulatory T cells (Treg)

possess active regulatory suppression of T cells to function as anti-

inflammatory.31,39 UCMSC-EVs were discovered by Marta et al. to

have the ability to restrain body immunity. The growth of T cells and

the release of cytokines like IL-2, IL-6, TNF-α, and IFN-γ were signifi-

cantly inhibited by UCMSC-EVs.40 In addition, the suppressive impact

of UCMSC-EVs was more prominent compared to adipose or bone

marrow-derived MSC-EVs.41 Mokarizadeh et al. found that MSC-MVs

can inhibit auto-reactive lymphocyte proliferation and stimulate

monocytes to release IL-10 and TGF-β to induce Treg formation.42

UCMSC-exo can promote monocyte-to-Treg differentiation.43 If the

exosome is produced by TGF-β and IFN-γ stimulation, the process will

function more efficiently. The differentiation may be associated with

an increase in several cytokines, such as IDO and IL-10.44

Macrophage

Macrophages are primarily M1 phenotype at this stage. They

phagocytose cellular debris and residual neutrophils, and release

LI ET AL. 3 of 16



F IGURE 2 The effects and
mechanism of UCMSC secretome during
the haemostasis stage. In all figures, the
brown colour stands for the CM effect.
UCMSC-CM during the haemostasis stage
mainly regulates the balance of the
coagulation and anticoagulation systems.
It can lead to wound healing mobilisation
to enhance the amount of PDGF and

platelets.

F IGURE 3 The effects and mechanism of UCMSC secretome during the inflammation stage. (Abbr. SP, signalling pathway) In all figures, the
red, blue, and purple colours, respectively, stand for exosomes, EVs, and MVs effects. In all figures, black spots and dashed underlines stand for
the fact that the substance only affects or is affected by the guided texts, not the whole cell. During the inflammation stage, the UCMSC
secretome can affect inflammatory cell secretion, which causes a reduction of inflammatory factors, an enhancement of anti-inflammatory
factors, and a weakening of antigen presentation. It can also decrease T cell and leukocyte numbers and proliferation and regulate macrophage,
monocyte, and dendritic cell activation and differentiation. Besides, the migration of keratinocytes is promoted.
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pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α, to avoid

infection.31 LPS-preconditioned UCMSCs enhance the paracrine pro-

tective effects and regenerative properties. LPS-preconditioned

UCMSC-derived exosomes also have a superior ability to regulate

inflammation and regeneration, which is linked to a coordinated effect

on macrophages. Because of the increased let-7b content in exo-

somes affected by LPS, exosomal let-7b negatively regulates the

downstream TLR4 signalling pathway to transition macrophages to

the M2 state, balancing the polarisation of macrophages to resolve

chronic inflammation.45 Exosomal miR-181c can attenuate burn-

induced hyperinflammatory reactions in macrophages by downregu-

lating the TLR4 signalling pathway while increasing the expression of

IL-10. IL-10 is considered an anti-inflammatory cytokine.36 Exosomal

miR-146a can also polarise macrophages to the M2 phenotype,

enhancing immunomodulatory functions.46 In addition, UCMSC-EVs

can encourage the differentiation of monocytes into macrophages

with the M2 phenotype.40

Dendritic cell

Dendritic cells can be activated to release IFN-α and IFN-β to induce

acute inflammation. They are primarily involved in antigen presenta-

tion that triggers T-cell responses.31 UCMSC-exo can decrease anti-

gen presentation from dendritic cells to T cells via downregulating

cellular IL-17 and IL-23 secretion. It also prevents dendritic cell matu-

ration and activation to lessen cutaneous inflammation.47 Exosomal

miR-146a, taken up by dendritic cells, limits endotoxin-induced

inflammation in mice and suppresses the expression of inflammation-

related genes like TNF-α, IL-6, and IFN-γ.38

Keratinocyte

At this stage, keratinocytes can secrete pro-inflammatory cytokines

and chemokines to be involved in the inflammatory response. For

instance, the release of CCL20 can recruit Th17 cells to the site of the

injury. Via downregulating the STAT3 signalling pathway, UCMSC-exo

can inhibit the secretion of IL-23 and CCL20 from Keratinocytes

thereby suppressing the inflammatory response.47 Through a chemo-

tactic process, the FGF-2 present in UCMSC-CM is crucial for the

morphogenesis and organisation of suprabasal keratinocytes and also

causes leukocyte recruitment on the endothelium (Figure 3).35

2.1.3 | Proliferation stage

The majority of pertinent papers discussed the promotion during the

proliferation stage, including angiogenesis, re-epithelialization, and so

forth. The most overt proliferative effects were seen in fibroblasts,

epithelial cells, and keratinocytes.48 Likewise, since activated fibro-

blasts are largely responsible for the formation of granulation tissue,

the UCMSC secretome is also strongly favourable to forming granula-

tion tissue Nevertheless, pro-angiogenesis is the predominant func-

tion in the proliferation stage, and their mechanisms are summarised

in (Figure 4).

F IGURE 4 The effects and
mechanism of UCMSC secretome during
the proliferation stage. ①Vascular
endothelial cell: Angiogenesis is the
greatest effect of the UCMSC secretome
at this stage. Not only can it promote
vascular endothelial cell migration and
proliferation, but other skin cells are also
activated to secrete VEGF and promote

angiogenesis. ②Fibroblast and
keratinocyte: Their migration and
proliferation are enhanced to promote
collagen synthesis, ECM deposition, and
re-epithelialization. ③Macrophage: The
phenotype of macrophages changes from
M1 to M2. The UCMSC secretome can
reduce inflammation-related gene and
protein expression.
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Vascular endothelial cell

The UCMSC secretome possesses pro-angiogenic capacity via modu-

lating the proliferation and migration of vascular endothelial cells to

promote vascular sprouting, remodelling, and maturation in the

wound, thereby increasing the number of capillaries and microves-

sels.49 VEGF plays an essential role in angiogenesis and engages in

the VEGF pathway. However, the secretome acted differently in vari-

ous experiments via the same pathway. VEGF-A can be secreted

directly and independently into adjacent cells through the UCMSC

paracrine mechanisms to foster endothelial cell migration. Studies

have demonstrated the UCMSC secretome contains little to no

VEGF-A compared to other sources like bone marrow and adipose

tissue.50–52 On the contrary, Sandra S. Edwards et al. suggested that

UCMSCs are capable of releasing VEGF-A into CM, where it subse-

quently functions as a promoter.53 While Chinnici et al. hypothesised

that their EV-derived miRNAs enhance the endogenous VEGF-A.54

VEGF-A has been revealed to be expressed in a specific temporal pat-

tern in wounds. Capillary development and differentiation are at their

peak 3–7 days after wounding. The pro-angiogenic expression then

steadily declines until it is almost absent during the remodelling

stage.35 Moreover, VEGF-A is unique in that it affects wound healing

in a multiple, compound, cascade reaction pattern, such as vascularity,

epithelialization, and collagen deposition.33

In UCMSC-CM, TGF-β1 assists the angiogenic growth via the

TGF-β/Smad signalling pathway and is required for fibroblast differen-

tiation into myofibroblasts.35,55 IL-8, HGF, and MCP-1 in UCMSC-CM

play a part in driving vascular endothelial cell migration. IL-8 can

induce cytoskeletal rearrangement and directional migration of endo-

thelial cells by activating the р38MAPK signalling pathway.56 The con-

centration of HGF and MCP-1 can affect the migratory capacity of

endothelial cells.50,57

The pro-angiogenic mechanism of UCMSC-exo has received the

most attention. In the study by Yiyao Zhang et al., UCMSC-exo can

control the ERK1/2 pathway to elevate the levels of VEGF secreted

by fibroblasts, keratinocytes, and inflammatory cells for angiogene-

sis.58 Currently recognised pro-angiogenic components found in exo-

somes include Ang-2,59 Wnt-4,49 Wnt-11,60 14-3-3ζ,61 PGE262 and

various MiRNAs, of which miR-146a,46 miR-17-92,63 miR-135b-5p

and miR-499a-3p64 are proven. The most characteristic growth factor,

Ang-2, is a member of the Ang/Tie signalling pathway, one of the key

pro-angiogenic pathways. Ang-2 can be enriched in exosomes and

delivered into endothelial cells to enhance angiogenesis. In vitro, an

experiment has shown that overexpression of Ang-2 in exosomes has

therapeutic and pro-angiogenic benefits on cutaneous wound healing,

whereas knockdown of the Ang-2 gene produces the opposite

effect.59 Exosomal MiR-17-92 can enhance endothelial cell prolifera-

tive and migratory activity and resist cell ferroptosis.63 MiR-135b-5p

and miR-499a-3p, which are highly expressed in blue light-treated

exosomes, induce capillary formation both in vitro and in vivo. They

together inhibit the expression of the MEF2C gene to promote the

proliferative and migratory activity of endothelial cells.64

Additionally, the Wnt/β-Catenin signalling pathway is critical for

angiogenesis. Because the lipid modification of Wnt prevents it from

spreading over a distance among cells, exosome-like particles need to

be the main carriers of Wnt molecules if Wnt/β-Catenin is to have a

long-range effect. The exosomes and EVs can carry Wnt on their sur-

face, thus inducing Wnt signalling activity in target cells. Wnt4,

Wnt11, and 14-3-3ζ in UCMSC-exo can trigger the Wnt/β-Catenin

signalling pathway to support angiogenesis and wound healing. CD29

and α4 integrin may be involved in the Wnt4 activation of this signal-

ling pathway.49,60,61

Fibroblast

The effects of the UCMSC secretome on fibroblasts are mainly to pro-

mote their migration, proliferation, elastin synthesis, and the entire

production of granulation tissue.65,66 With the UCMSC-CM treated,

there is a substantial increase in the number of dermal fibroblasts, cell

viability, total collagen, elastin, and fibronectin levels.33 UCMSC-CM

can activate the expression of genes such as TGF-β2, HIF-1α, and

PAI-1 that are involved in re-epithelialization, neovascularization,

and fibre regeneration.7 As reported by Meirong Li et al., after receiv-

ing UCMSC-CM therapy, the fibroblast-to-myofibroblast differentia-

tion was reduced and the collagen types III and I ratio and the MMPs/

TIMPs ratio of adult fibroblasts were increased. These characteristics

imply that the enhancement of wound repair may result from the

transformation of adult fibroblasts into fetal fibroblasts.65

UCMSC-CM has many beneficial components that enhance fibro-

blasts, such as FGF2, EGF, KGF, and VEGF-A.35,67,68 VEGF-A in

UCMSC-CM can target to stimulate ECM synthesis, granulation tissue

formation, fibroblast proliferation, and migration, deep in the

wound.69 FGF2, EGF, and KGF have been shown to promote fibro-

blasts and keratinocytes proliferative activity, re-epithelialization, and

ECM formation and remodelling.35,67,68 However, dermal fibroblast

responses to UCMSC-EVs and UCMSC-CM vary. A study by Duc

Minh Vu et al. illustrated that UCMSC-EVs cannot significantly pro-

mote proliferative and migratory activity, but only TGFβ-stimulated

UCMSC-EVs exhibit the activity and increase ECM proteins synthesis

to fight against aging.70 In addition, UCMSC-exo can recruit fibro-

blasts and stimulate them to produce NGF, thus promoting cutaneous

nerve regeneration.20

In chronic wounds, prolonged local high glucose microenviron-

ment activates p21 and p16 expression in a ROS-dependent manner

to cause fibroblast senescence. It also slows fibroblast growth, migra-

tion, and differentiation via downregulating the TGF-β/Smad signal-

ling pathway. UCMSC-CM can decrease the ROS overproduction

from fibroblasts, which promotes the function and antagonised the

dysfunction of their differentiation to myofibroblasts.71 UCMSC-EVs

have also been reported to have antioxidant activity which lowers oxi-

dative stress in fibroblasts and heals wounds like diabetic ulcers that

are damaged by cellular oxidative stress.72

Finally, the UCMSC secretome can inhibit keloid. The growth of

keloids is linked to the transformation of normal fibroblast into keloid

fibroblast and the tumour-like proliferative activity. UCMSC-CM can

effectively inhibit the proliferation of keloid fibroblasts.73,74 Besides,

KGF in UCMSC-CM plays a positive effect on reducing scar formation

and may be responsible for its scar inhibitory function.35,67
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MiR-138-5p, contained in UCMSC-exo, plays a key role in reducing

pathological scarring, and it can inhibit scar development by downre-

gulating the SIRT1 gene to reduce the growth of scar fibroblasts.15

Epithelial cell

The UCMSC secretome shows a strong pro-epithelialization at this

stage. In murine experiments, it made faster and thicker epidermal

growth in wounds compared to those without it.75–77 It has been

demonstrated that PDGF, FGF-2, and TGF-β enhance the prolifer-

ation and migration of epithelial cells to form an epidermal layer

and seal the wound.78 The re-epithelialization effect via the

UCMSC secretome may be related to these contained cytokines.

According to an in-vivo experiment, the role of UCMSC-exo in

stimulating Wnt/β-catenin signalling pathway activation is crucial

for the proliferation and re-epithelialization of epithelial cells in

wounds.79

Keratinocytes, the predominant component of the skin epithe-

lium, have significance for re-epithelialization. The UCMSC secretome

mainly promotes the proliferation and migration of keratino-

cytes.28,47,66 Keratinocytes will form cell–cell straps when they

migrate to the wound surface.80 The cell–cell strap is a collagen strap

formed by the cell traction force between keratinocytes. For assis-

tance in cell migration, the cells pull the collagen fibres into a sort of

bundle around themselves, which UCMSC-CM can facilitate.28,81

Furthermore, UCMSC-CM has an even greater capacity to promote

keratinocyte migration than fibroblasts. It contains EGF, FGF-2, and

KGF, which are responsible for the early induction of keratinocyte

migration and function.35 KGF not only boosts keratinocyte prolifera-

tion but also has a footprint on the early function of keratinocytes,

which results in the regulation of VEGF gene expression and plays an

integral part in the pro-angiogenic effect during the proliferation and

remodelling stage.82 UCMSC-exo can sharply boost keratinocyte pro-

liferation and migration in a time- and dose-dependent manner. In

addition, it also prevents H2O2-induced apoptosis in keratinocytes via

raising the levels of PARP-1 and ADP-ribose, which inhibits

AIF-induced nuclear translocation.77

Macrophage

As the anti-inflammatory response subsides, the prevailing phenotype

of macrophages in the proliferation stage changes from M1 to M2,

and their early function changes to vasculature development. Micro-

vascular density is positively correlated with an increase in the num-

ber of macrophages at this stage. Additionally, macrophages can

induce a transition from fibroblasts to myofibroblasts in the middle to

late stages.31 PGE2 derived from UCMSC-CM and UCMSC-exo can

drive M1 macrophages to develop an anti-inflammatory M2 pheno-

type, increasing the amount of M2 macrophages. They may modify

the expression of M2 macrophage-derived cytokines, such as

increased IL-10 and VEGF production and decreased IL-6 and TNF-α

secretion. These alterations in cytokine release can improve the local

microenvironment of vascular endothelial cells, enhance their func-

tion, and hence accelerate angiogenesis and collagen deposition which

aids wound healing.62,83 MiR-146a, a MiRNA in UCMSC-exo that can

help phenotypic switch of M1 to M2 macrophages, can thereby pro-

mote angiogenesis (Figure 4).46

2.1.4 | Remodelling stage

The fundamental role of the UCMSC secretome during the remodel-

ling stage is evident in the inhibition of the differentiation process of

fibroblasts to myofibroblasts and the ability to restrict scar forma-

tion.65,84,85 Although myofibroblasts can shrink the wound and give

the skin greater tension so that it can resume its previous function,

excessive accumulation can lead to further local contracture and fibro-

sis, resulting in scar formation.30 UCMSC-exo can inhibit the produc-

tion of type I and type III collagen by fibroblasts. Through blocking the

TGF-β1/Smad2/3 signalling pathway, fibroblast transition to myofi-

broblasts is prevented.84 Fang et al. took a step further, discovering

that exosomal miRNAs like miR-21, miR-23a, miR-125b, and miR-145

play a vital role in inhibiting this transition via suppressing the TGF-

β2/Smad2 signalling pathway, as shown in (Figure 5).85 UCMSC-exo

may additionally alleviate this transition via downregulating the TGF-

β/Smad signalling pathway to attenuate myofibroblast activation and

collagen deposition, hence reducing dermal fibrosis. As a result, the

antifibrotic effect of the UCMSC secretome at this stage could be

used to treat autoimmune dermal fibrotic diseases.86

The Wnt/β-Catenin signalling pathway is also crucial during the

remodelling stage (Figure 5). The exosomal protein 14-3-3ζ can medi-

ate YAP and p-LATS binding by generating a complex that promotes

YAP phosphorylation, thereby coordinating this signalling pathway to

limit keratinocytes and fibroblasts over-expansion and collagen depo-

sition in skin regeneration. Therefore, UCMSC-exo not only acts as an

‘accelerator’ of the Wnt/β-catenin signal to repair damaged skin

F IGURE 5 The effects and mechanism of UCMSC secretome
during the remodelling stage. UCMSC-exo can lessen the
differentiation from fibroblast to myofibroblast and the cytoactive of
fibroblasts and myofibroblasts, during the remodelling stage, mainly
via the TGF-β/Smad signalling pathway.
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tissues during the proliferation stage but also coordinates the man-

agement of skin regeneration during the remodelling stage via regulat-

ing YAP as a ‘brake’ of this signal.61

2.2 | UCMSC secretome effects and mechanism
on chronic wound

Chronic wounds are those that are older than about 3 months and fail

to restore the anatomical and functional integrity of the wounded

location through a prompt and orderly healing process. Chronic

wounds can be classified into four categories: pressure ulcers, diabetic

ulcers, venous ulcers, and arterial ulcers.87 Contrary to acute wounds,

such as burns and surgical wounds, which can recover on their own,

individuals with chronic wounds, like diabetic trauma, require an

extremely extended period to heal. Therefore, it differs considerably

from an acute wound in terms of the mechanism of wound develop-

ment. Chronic wounds have lower numbers of skin stem cells than

acute wounds and higher quantities of proinflammatory cytokines,

ECM proteases, ROS, and senescent cells.88,89 This dysregulation

keeps the wound from progressing to the proliferation stage and

keeps it stuck in the inflammation stage.90 The UCMSC secretome

has been reported most frequently concerning the management of

arterial and diabetic ulcers.

The main causes of diabetic wounds are multiple drug-resistant

bacterial infections, vasculopathy, hypoxia, and oxidative stress dam-

age to the microenvironment.30,91 The mechanism of the UCMSC

secretome in the treatment of diabetic ulcers is also related to the

amelioration of these reasons. For instance, as was already indicated,

UCMSC-CM and UCMSC-EVs can lower fibroblast ROS generation

and decrease oxidative stress damage from hypoxia. According to the

research by Fong et al., UCMSC-CM was more effective at treating

wounds than UCMSC transplantation at promoting the repair of

diabetic ulcers.92 In a more thorough study, Fong et al. found

that UCMSC-CM treatment of diabetic wounds can improve

re-epithelialization and vascular supply, manifested as the increased

amount of cell density, sebaceous glands, and hair follicles, as well as

the positive expression of ICAM-1, TIMP-1, VEGF-A, and keratinocyte

markers (cytokeratin, involucrin, and filaggrin) in the wound bed.33 In

addition, UCMSC-CM activates macrophage conversion to M2 and

significantly enhances diabetic vascular endothelial cell function,

including production, migration, and chemotaxis.62 UCMSC-exo acts

somewhat similarly to CM in that it accelerates diabetic wound heal-

ing by modulating the ability of vascular endothelial cells to respond

to oxidative stress damage and enhancing angiogenesis.93 Many

experiments confirmed that circHIPK3 is increased in type 2 diabetes

mellitus. Overexpressing UCMSCs-derived exosomal circHIPK3 can

directly bind miR-20b-5p, promoting the synthesis of Nrf2 and

VEGF-A. It enhances revascularization and wound healing, revealing

an attractive therapeutic function in diabetic foot ulcers.94

Lower extremity ulcers, primarily arterial, are brought on by lower

extremity ischemia. Zhang et al. discovered that miR-24 is a key

miRNA component in UCMSC-exo that knockdowns B2M. MiR-24 is

loaded into UCMSC-exo and can be intramuscularly injected into the

site of injury to improve blood perfusion, muscle, and motor function

to prevent the development of arterial ulcers.95

3 | THE EFFECTS AND MECHANISM OF
UCMSC SECRETOME ON SKIN
REJUVENATION

3.1 | UCMSC secretome effects and mechanism
on skin aging

Skin aging is most visually manifested as cumulative changes in skin

structure, function, and appearance, such as increased wrinkles, sag-

ging, decreased elasticity, capillary dilation, and abnormal skin pigmen-

tation. In contrast to other body organs, the skin is not only affected

by the natural aging process but is also more influenced by various

environmental factors, particularly UV radiation.96 The anti-aging

effect of the UCMSC secretome is mainly to reduce UV damage and

weaken photoaging.

According to research on keratinocytes, UCMSC-CM can combat

photoaging by lowering apoptosis, reducing the generation of ROS,

and enhancing cell motility. In this effect, MYC, IL-8, FGF-1, and EREG

are the key genes engaged in anti-photoaging, and C-FOS, C-JUN,

TGF-β, p53, FGF-1, and cell cycle protein A2 are the major proteins

involved in anti-photoaging.97 A study by Liu et al. found that UCMSC

serum-free conditioned medium can prevent UVA- and UVB-induced

photoaging. The principle is that it can minimise UVA-induced cell

mortality by inhibiting UV-induced suppression of SOD and GSH-Px

activities, with blocking the upregulation of malondialdehyde.98

Furthermore, UCMSC-EVs dramatically increase dermal fibro-

blast proliferation, shield cells from UVB-induced cell death and

cell-cycle arrest, decrease the number of senescent cells, and sig-

nificantly limit UVB-induced ROS formation.72 Similar antioxidant

and anti-inflammatory effects were produced by UCMSC-exo on

UV-induced DNA damage and apoptosis. UCMSC-exo contains

14-3-3ζ protein as one of the active components. It can encourage

autophagy activation and exert cytoprotective functions by regu-

lating the SIRT1-dependent antioxidant pathway, thus reducing UV

and H2O2 damage to the skin.99

3.2 | UCMSC secretome effects and mechanism
on hair regeneration

Hair loss is caused by many factors, including hormonal changes,

nutritional deficiencies, genetics, medications, inflammation, injury,

and even surgery.21 The UCMSC secretome may hold the key to find-

ing a non-drug, non-steroidal, and non-aggressive solution to the

problem of treating hair loss. Studies in animals and clinical trials sup-

ported the efficacy of UCMSC-CM for hair regrowth, potentially as a

result of its abundance of growth factors, cytokines, and beneficial

proteins. Positive treatment of hair loss was observed in 86.6% of the
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subjects.100 The study by Dong et al. suggests that the effective com-

ponent in UCMSC-CM may be Wnt7a, which acts synergistically with

UCMSC to promote hair follicle regeneration. The Wnt protein family

is also thought to play a role in the development of skin appendages

like hairs.101

3.3 | UCMSC secretome effects and mechanism
on other skin rejuvenation functions

The UCMSC-CM and UCMSC-exo also both perform a variety of

other tasks to enhance skin health. The study by Park et al. confirmed

that UCMSC-CM has melanin-reducing, anti-cellular oxidative stress

and anti-wrinkle effects. They also identified 18 cytokines associated

with skin condition improvement in UCMSC-CM, including amphiregulin,

bFGF, EGF, GDNF, HGF, IGFBP-4, IGFBP-6, IGF-1, and M-CSF, all of

which can help skin lightening and anti-aging.102 A study by Xin Wang

et al. also found that UCMSC-CM can enhance the skin barrier and

effectively regulate skin cell apoptosis, detoxification, and other physio-

logical functions. It is beneficial for restoring skin homeostasis and has

the potential to treat atopic dermatitis and acne.103 Finally, UCMSC-exo

can reduce skin sensitivity and restore skin barrier function. In clinical

use, it ameliorates roughness, erythema, tension, burning, and itching in

patients with skin sensitivity, and treats melasma.104,105

4 | CLINICAL THERAPEUTICS AND
APPLICATION PROSPECTS OF UCMSC
SECRETOME ON SKIN REGENERATION AND
REJUVENATION

4.1 | Modification and preparation of UCMSC
secretome

The UCMSC secretome has demonstrated recovery capacity in animal

models, such as deep second-degree burn, third-degree burn, and full-

thickness skin injury mice models. It is also beginning to see substan-

tial use in clinical treatment. Modification of the UCMSC secretome

can improve its therapeutic potential, as shown in (Table 1). We will

summarise an outlook on its prospective employment, especially the

modification and preparation of UCMSC secretome from the studies

in vivo.

4.1.1 | Culture condition

The culture condition of UCMSCs has been optimised in some experi-

ments. The exosomes derived from 3D culture or serum-free culture

UCMSCs have a better ability to promote wound healing and

angiogenesis.106,107 A study by Liu et al. note the 3D culture UCMSC-

TABLE 1 Improvement methods of the UCMSC secretome.

References Secretome type
Improvement
method Improvement content Positive effect

[107,108] Exosome Culture mode 3D Wound healing and angiogenesis

[107] Exosome Culture mode Serum-free Reducing UV damage

[109,110] CM, Exosome Culture mode Hypoxia Diabetic wound healing

[19] EV Separation technique Proper TFF Reducing oxidative stress damage

[60] CM Drug stimulation DIM Wound healing

[70] EV Drug stimulation TGFβ Fibroblast proliferative and

migratory activity

[115,116] CM Drug stimulation IFN-γ, TNF-α Wound healing

[117] CM Gene modification Antimicrobial peptide Antibacterial capability

[118] CM Gene modification JAM-A Diabetic wound healing

[119] Exosome Load Iron oxide nanoparticle Recovery efficiency

[120] Exosome Load Endothelial NO synthase Wound healing and remodelling

the immune microenvironment

[58] Exosome Scaffold Nano-hydrogel Wound healing and angiogenesis

[125] Exosome Scaffold PF-127 hydrogel Chronic diabetic wound healing

[126] Exosome Scaffold Gelatin methacryloyl hydrogel Fractional laser injury wound healing

[127] Exosome Scaffold Silk fibroin and sericin

composite hydrogel

Wound healing

[128] CM Scaffold HA gel Treating diabetic foot ulcer

[129] Exosome Scaffold Methacrylated HA Wound healing and angiogenesis

[130] Exosome Combined therapy Aloe-emodin Treating leishmaniasis

[131] Exosome Combined therapy Sponge spicules Treating photoaging

[122] Exosome Combined therapy Microneedle, fractional laser,

or radiofrequency

Treating melasma
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derived exosomes are effective in decreasing the UVB-induced dam-

age and MMPs expression in photoaged keratinocytes.108 Moreover,

hypoxia can enhance the exosome-mediated paracrine function of

MSCs. The UCMSC cultured under hypoxic conditions, as well as their

CM and exosomes, have specific and improved regenerative capabili-

ties on diabetic wounds.109,110 Hendrawan et al. discovered that

hypoxia-induced UCMSC-CM had a larger favourable influence on the

re-epithelialization and collagen formation processes in wound healing

than antibiotic treatment.110 In addition, hypoxic microenvironment

culture can mimic the trauma environment. Zhang et al. demonstrated

that hypoxia-induced UCMSC-exo-derived miR-125b inhibited the

expression of tumour protein p53 inducible nuclear protein 1, thereby

lessening wound hypoxia-induced cutaneous cell apoptosis.109

4.1.2 | Separation technique and storage

There are two main methods for separating umbilical cord stem cell-

derived exosomes from the conditioned medium: ultracentrifugation

(UC) and tangential flow filtration (TFF). Some experiments use a com-

bination of these two methods to improve purity.75 UC is not suitable

for higher purity extraction.23 And the separation yield of utilising

proper TFF is two orders of magnitude higher than that of using

UC.111 It has been reported that TFF-extracted UCMSC-EVs have a

higher recovery rate of keratinocytes with oxidative stress damage

than those extracted using other methods.19 For higher production,

the decomposition of UCMSCs by ultrasonication can produce

UCMSC-EVs, which exhibit the same skin rejuvenating properties.112

The primary approach for identifying UCMSCs and their exosomes is

flow cytometry. Exosomes can be recognised by observing their shape

and size under an electron microscope, and by examining their surface

markers via enzyme-linked immunosorbent assay or western blot-

ting.60,113 UCMSC-EVs can be stored in lyophilization at �20�C and

�80�C for up to 4–6 weeks, maintaining their anti-inflammatory and

vascular activities, miRNAs, and lncRNAs.114

4.1.3 | Preconditioning

Pretreatment of the secretome can improve the efficiency of thera-

pies such as drug stimulation, gene modification, and being loaded by

active ingredients. Numerous experiments make use of drug stimula-

tion of the secretome. For instance, DIM-treated UCMSCs

can increase their CM recovery capacity in wound healing. DIM can

enhance the stemness of UCMSCs themselves through autocrine sig-

nalling of exosome-derived Wnt11.60 TGFβ-stimulated UCMSC-EVs

can exhibit fibroblast proliferative and migratory activity that is not

present without stimulation.70 If UCMSCs are exposed to proinflam-

matory cytokines such as IFN-γ and TNF-α, their CM can be beneficial

for wound healing via enhancing macrophages migration and M2

polarisation.115 Furthermore, a study by Lihui Tai et al. found that

TNF-α-treated UCMSC secretome, which included higher levels of

inflammation-related FGFb, VEGF, PDGF, and IL-6 compared to

untreated group, triggered an increase in MMP13 secretion in

keratinocytes.116

In addition, genetic modifications can bring new functionality.

UCMSCs can generate antimicrobial peptides after being transfected

with the hCAP-18/LL-37 gene. As a result, their CM has antibacterial

capability and promotes wound repair.117 UCMSCs were transfected

with lentivirus vectors carrying the human JAM-A. Their CM

improved wound angiogenesis under hyperglycemia and enhanced

diabetic wound repair, partially by increasing PDGF-BB and VEGF

expression.118

Nanoparticle loading into exosomes can lead to an increase in

their targeting effect. For instance, superparamagnetic iron oxide

nanoparticle-labelled exosomes are intravenously injected into the cir-

culatory system. The nanoparticles can be magnetised by using an

external magnetic guide above the wound and act as a magnet-

guided navigation tool. They allow for better magnetic targeting to

repair a wound, thus improving recovery efficiency.119 Optogenetic

engineering of UCMSC-exo is also possible. NO impacts collagen

remodelling and repairs mechanical strength in wounds and one of

the enzymes responsible for synthesis is NO synthase. The endo-

thelial NO synthase promotes diabetic wound healing, which can

be spontaneously loaded into UCMSC-exo by EXPLOR, a blue

light-mediated reversible protein–protein interaction approach.

Finally, this kind of endothelial NO synthase-loaded exosome has

been shown to remodel the immune microenvironment, which is

beneficial for tissue repair.120

4.2 | Administration and combined therapy of
UCMSC secretome

In animal experiments, the medicine is typically administered subcuta-

neously around the wound bed for convenience and obviousness,

which is called local injection. The medicine's solvent is usually NS or

PBS. In mice and rats, 3–6 injection locations are generally chosen

around the wound area, with 4 injection points being the most popu-

lar choice, that is, four sites on the border of the wound area are cho-

sen to inject equal volumes of the reagent in the directions of east,

west, north, and south.121 The effect of successive small doses is bet-

ter than that of a single large dose. Several studies used intravenous

injection or intradermal injection, but local injection has more benefits

since it prevents immune cell phagocytosis, increases the bioavailabil-

ity of the target tissue, and reduces the therapeutic dose.13 The aver-

age treatment period of these trials is focused on about

14 days.49,79,93

In clinical applications, the UCMSC secretome is employed in

diverse ways, either in combination with biological or artificial

scaffolds, or simply dissolved in NS or PBS. Scaffolds, like the

secretome-containing gel, are typically applied or injected into the

wound, followed by protective fixation for the wound with a wound

dressing or patch to maintain a moist and sterile environment.58,75,76

When directly dissolved, it can be infiltrated percutaneously or

injected intradermally, such as using microneedles.122,123

10 of 16 LI ET AL.



Common materials used for biological or artificial scaffolds are

hydrogels, chitosan, hyaluronic acid (HA), and so forth. Application

combined with scaffolds has more benefits than using them directly.

Scaffolds can mimic the skin ECM to promote the growth and differ-

entiation of cells and tissues. Moreover, scaffolds can provide a micro-

environment suitable for cell adhesion, proliferation, and

differentiation.124 The most widely accepted scaffolds are hydrogels,

which promote proliferation via increasing cell growth rate, bone for-

mation, and vascular anastomosis.75 There are various types of hydro-

gels, such as nano-hydrogel, PF-127 hydrogel, gelatin methacryloyl

hydrogel, and silk fibroin and sericin composite hydrogel. All of the

above hydrogels have been studied and employed as bioactive scaf-

folds for UCMSC-exo to apply on the wound. Thus, they enhance

curative efficiency and enrich the therapeutic roles of exo-

somes.58,125–127 The scaffold can be chosen from HA gel. The loose,

porous, biodegradable, and expandable microstructure of the HA gel

offered a conducive microenvironment. Non-invasive external treatment

of types I and II diabetic foot ulcers can be achieved using UCMSC-CM

in HA gel.128 Methacrylated HA patches are a good alternative as well.

These patches were produced through 3D bioprinting technology. In

comparison to conventional scaffolds and carriers, methacrylated HA

patches loaded with UCMSC-exo exhibit better physical properties,

swelling rates, degradation times, and biocompatibility in treatment, pre-

serving the integrity and bioactivity of UCMSC-exo.129

The secretome therapy combined with other medications and

curative treatments can result in a greater efficacy than secretome

treatment alone, and make a synergistic effect between drugs on

wound healing promotion. For instance, the combination of UCMSC-

exo with aloe-emodin can inhibit leishmaniasis parasites in addition to

promoting wound healing.130 The combination of UCMSC-exo and a

novel microneedle, sponge spicules, could improve the efficiency of

exosome skin absorption by forming microchannels and achieve more

efficacy in photoaging reduction.131 In addition to combining micro-

needles, UCMSC-exo can be combined with fractional laser and radio-

frequency, and they have significantly improved the treatment of

melasma (Table 1).122

4.3 | Clinical therapeutic efficiency and biosafety
of UCMSC secretome

The clinical application of the UCMSC secretome in skin rejuvenation

is currently far more mature than in skin regeneration. In the field of

skin regeneration, the UCMSC secretome is frequently employed in

the clinical treatment of chronic wounds. One phase 2 clinical trial has

demonstrated its effectiveness. A total of 41 chronic ulcers (diabetic

and trophic ulcer) were administered topically by 10% UCMSC secre-

tome gel, which lasted for 2 weeks and 1 month. It turns out that the

considerable reduction in the length, width, and area of the wound

between the time of the UCMSC secretome gel intervention and the

present. Moreover, there was no indication of either local or systemic

adverse effects.132

In the field of skin rejuvenation, the secretome can treat alopecia.

One study demonstrated that after 12 injections with UCMSC-CM

over 3 months, 86.6% of patients experienced a good improvement in

alopecia and 92% were very satisfied with the treatment.100 In a case

report from Korea treated with UCMSCs injections, three patients,

two with alopecia areata and one with alopecia universalis, were trea-

ted. After they received 2–15 rounds of injection treatment over

1–12 months, basically hair growth started after the first round, hair

loss was alleviated at 3 months, and hair loss did not reoccur after the

cure.123

Moreover, the secretome can brighten the skin, enhance the

skin texture, and remove melasma. The general therapy approach

needs to be combined with microneedling. In one report,

30 patients with an average age of 41 were selected to receive five

treatments at 2-week intervals. As a result, there was a significant

decrease in the number of melanin deposits on the face, a reduc-

tion in wrinkles and pores, and an increase in skin elasticity.105

Another study showed effective alleviation of melasma in patients

after 4 treatments each 1 month apart. They also compared the

results of the secretome treatment combined with microneedling,

fractional laser, and radiofrequency, with the highest patient satis-

faction of 86.7% combined with radiofrequency.122 None of the

aforementioned studies reveal any adverse effects brought on by

the secretome.

The UCMSC secretome also has many defects:

1. There are some uncertainties in its function and composition.

On the one hand, its effects are influenced by the secretory

components and content of its donor cells. On the other hand,

the secretome can exert different effects at different stages and

has a double-sided influence. For instance, if TGF-β1 is overex-

pressed in UCMSC-CM due to individual differences in the

donor or variations in culture and extraction methods, it can

affect scar formation during the later stages of wound healing,

but normal amounts can promote angiogenesis.35,84 Exosomal

protein 14-3-3ζ not only acts as an ‘accelerator’ to repair skin

during the proliferation stage but also works as a ‘brake’ during
the remodelling stage.61 Furthermore, the main determinant of

UCMSCs' ability to promote cutaneous wound healing is the

donor's age.13

2. Long-term anti-inflammatory treatment of the wound is prone to

foster infection. Given the anti-inflammatory action of the UCMSC

secretome, further attention is required to keep wounds sterile,

especially chronic wounds.

3. Although the negative consequences of the UCMSC secretome

are rarely discussed in the research, the issue of its biosafety for

drug development still requires attention. Some reports mention

the risk that the secretome may contain carcinogenic components.

Because the secretome can suppress inflammatory cells and

enhance angiogenesis, it is more likely to reduce the human body's

immunocompetence against tumour cells and promote tumour

angiogenesis.13,18
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5 | SUMMARY AND OUTLOOK

The purpose of this review is to discuss the mechanism of UCMSC

secretome to promote skin regeneration and rejuvenation, as well as

the summary of related experimental methodologies and the prospect

of clinical applications.

We can find a wide range of applications for the UCMSC secre-

tome. It can be used as a therapeutic drug by itself, as a vehicle for

active ingredients, or in combination with other treatments to pro-

mote skin regeneration. For example, it can be applied as a carrier for

antimicrobial peptides, which can complement its own ability to play

an antimicrobial role. Or, it can be used through modification or spe-

cialised culture, such as 3D culture or hypoxic condition culture, which

will strengthen its ability to combat oxidative stress and gain other

properties. It is also possible to construct UCMSC-exo-loaded carriers

or change drug delivery, such as hydrogel, to make a colloidal solvent

for the drug. And fix the medication in the form of a wound dressing

or patch at the wound area, additionally switching from the subcuta-

neous injection delivery method to topical skin delivery. These

increase the durability and stability of the secretome. Furthermore, it

is more practical clinically, lowering the risk of infection during inva-

sive procedures and providing protective fixation of the wound. In

clinical practice, it tends to be used in medical settings for long-term

treatments such as the management of chronic wounds, hair loss, and

medical beauty.

The effects of the UCMSC secretome on skin regeneration and

rejuvenation are mainly divided into three aspects: wound healing,

anti-aging, and hair growth. Among these, the promotion of wound

healing is the most important. Its effects and mechanisms on skin

regeneration and rejuvenation can be totally summarised in the fol-

lowing six aspects:

1. The secretome can induce the initiation of wound healing and

migration of keratinocytes during the haemostasis stage.

2. The secretome mainly plays an inhibitory role during the inflamma-

tion stage: it downregulates STAT3, TLR4, and NF-κB signalling

pathways, attenuates the activation and proliferation of leuko-

cytes, T cells, and dendritic cells, and enhances the conversion of

macrophages from M1 to M2. Thus, it reduces the secretion

of inflammatory factors such as IL-1β, IL-2, IL-6, IL-17, IL-23, TNF-

α, and IFN-γ, and increases the release of anti-inflammatory fac-

tors such as IL-10, totally exerting an inhibitory effect on

inflammation.

3. The secretome has the most critical role in the proliferation stage,

mainly acting as a booster: it upregulates VEGF, ERK, MAPK,

Ang/Tie, Wnt/β-catenin, TGF-β/Smad signalling pathways,

increases the migration and proliferation of vascular endothelial

cells, fibroblasts, and keratinocytes, and accelerates the transfor-

mation of fibroblasts into myofibroblasts, thereby enhancing colla-

gen synthesis, ECM deposition, angiogenesis, nerve regeneration,

and re-epithelialization, thus serving as a pro-proliferative and

repair function for wounds.

4. The secretome reduces fibroblast-to-myofibroblast transition by

inhibiting TGF-β/Smad and Wnt/β-catenin signalling pathways

during the remodelling stage, which decreases collagen synthesis,

ECM deposition, and prognostic scar formation.

5. The secretome in chronic wounds not only has the above similar

effects, but also induces macrophage polarisation, regulates the

ability of the skin cells to cope with oxidative stress damage, and

reduces hypoxia-induced apoptosis, thus enhancing angiogenesis

and improving local microcirculation.

6. The secretome has plentiful roles in skin rejuvenation. The anti-

aging aspect acts to resist UV-induced DNA damage and apoptosis

in skin cells and produces antioxidant and anti-inflammatory

effects in the process. The secretome also whitens, anti-wrinkle,

reduces skin sensitivity, and protects the skin barrier. At last, the

secretome promotes hair follicle formation to treat alopecia.

There are still many controversial aspects of UCMSC secre-

tome on skin regeneration and rejuvenation. For instance, it is still

unclear how the secretome modulates the VEGF signalling pathway

to promote angiogenesis. The complex composition of the secre-

tome is susceptible to donor effects leading to concerns about its

biosafety.

In the final analysis, it has been demonstrated that the UCMSC

secretome has outstanding capabilities for skin regeneration and reju-

venation, particularly for promoting wound healing. These abilities are

made possible by the promotion of cell proliferation and angiogenesis,

the development of hair follicles, and its anti-inflammatory, anti-

fibrotic, anti-oxidative, and anti-aging properties. We believe that in

the not-too-distant future, the UCMSC secretome can be well applied

as a novel medication to meet the needs of skin regeneration and

rejuvenation for a wide spectrum of patients in the clinic.
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