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Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the 
irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by 
an exposure to radioactive elements and has been linked to the occurrence of chronic 
diseases, such as leukemia and cardiovascular diseases. Though epidemiological 
research is indispensable for predicting and dealing with LDR-induced abnormalities in 
individuals exposed to LDR, little is known about epidemiological markers of LDR 
exposure. Moreover, difference in the LDR-induced molecular events in each organ has 
been an obstacle to a thorough investigation of the LDR effects and a validation of the 
experimental results in in vivo models. In this review, we summarized the recent reports 
on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive 
understanding of the biological effects of LDR. We suggested that LDR basically caused 
the accumulation of DNA damages, controlled systemic immune systems, induced 
oxidative damages on peripheral organs, and even benefited the viability in some organs. 
Furthermore, we concluded that understanding of organ-specific responses and the 
biological markers involved in the responses is needed to investigate the precise biological 
effects of LDR.

Keywords: low-dose radiation, human, animal model, organ-specificity, biological marker

INTRODUCTION

Ionizing radiation (IR) is a high energy radiation that can change the status of intracellular 
nucleotides, proteins, and organic molecules by generating reactive oxygen species (ROS; 
Kim et  al., 2019). Its effect exhibits a dose-dependently increase, and high dose radiation 
(HDR) has been utilized for eliminating inoperable cancer cells and keloid scars in patients 
(Rödel et  al., 2017). Conversely, low-dose radiation (LDR) exposure occurs during clinical 
diagnoses – such as X-ray radiography and computed tomography (CT) – continuous nuclear 
work, or after nuclear accidents (Maqsudur Rashid et al., 2019). Although there are controversies 
regarding the definition and effects of LDR, many experimental studies consider IR under 
0.5  Gy as LDR and have demonstrated that individuals exposed to LDR show significant 
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health risks, including the occurrence of leukemia and 
cardiovascular diseases (Pearce et al., 2012; Siegel et al., 2017). 
However, the precise molecular mechanisms activated in 
response to LDR exposure are still elusive.

As the effects of LDR on humans are subtle and are generally 
represented as chronic effects, current studies have concluded 
the effects based on epidemiological studies in human and 
animal populations exposed to radiation from nuclear power 
plants (Boice et  al., 2019). However, the results of these 
epidemiological studies are very limited and have identified 
very few epidemiological markers for further investigations 
(Braga-Tanaka et  al., 2018). Many experimental studies have 
explored LDR-induced molecular markers in mouse and cell 
models and emphasized organ-specific sensitivities and responses 
in the expression patterns of these markers (Lee et  al., 2006). 
Therefore, it is important to comprehend these studies in the 
context of alterations in biological events and markers in 
response to LDR exposure from the viewpoint of dose‐ and 
organ-specificity.

Although little is known about the mechanism of LDR 
exposure, many studies reported DNA damages, oxidative stress, 
and pro-inflammatory responses as major mediating events 
induced by an LDR exposure. Accumulations of the oxidative 
stresses and persistent pro-inflammatory responses cooperatively 
alters the cellular and mitochondrial redox balance, forms 
oxidized nucleotides, and impairs the DNA repair capacity, 
which results in DNA damages (Dąbrowska and Wiczkowski, 
2017; Czarny et al., 2018; Moloney and Cotter, 2018). Previous 
studies showed that genes in euchromatic regions were more 
susceptible to both HDR‐ and LDR-induced DNA damage, 
double-strand break, and r-H2AX accumulation (Puck et  al., 
2002; Lafon-Hughes et  al., 2008; Sak et  al., 2015). Therefore, 
LDR-induced stresses convergently led to the permanent changes 
in the cells. Therefore, we  focused on the risk of biological 
effects derived from the LDR exposure and suggested the 
phenotypic marker expressions.

In this review, we  summarized the studies on LDR-induced 
biological effects in humans, which have been supported by 
various mouse and cell models. We  arranged these effects 
according to dose‐ and organ-specificity, with descriptions based 
on significantly altered expressions of biological markers and 
related molecular mechanisms.

THE EFFECTS OF LDR IN HUMANS

The harmful effects of LDR were first reported by some 
epidemiological studies on individuals who were occupationally 

or accidently exposed to LDR. At that time, the studies warned 
that LDR could induce DNA damage and its related responses, 
which highlighted the need for investigations on LDR exposure-
induced molecular changes. First, we  discussed studies 
encompassing changes in people exposed to LDR.

A study evaluated the occurrence of mutations in hypoxanthine-
phosphoribosyltransferase (HPRT) in workers engaged in the 
clean-up after the nuclear accident at the Chernobyl nuclear 
power plant (Thomas et  al., 2002). Results showed that LDR 
(0.09–0.11 Gy) significantly increased deletion mutants in HPRT 
in peripheral blood cells, and that the mutation frequency declined 
with time following exposure. This study stressed the importance 
of early detection of LDR-induced DNA damage, which reduces 
with the passage of time. In addition, the same study found 
that the gene expression profile induced by 0.025  Gy was not 
significantly different from that induced by 0.1 Gy, which suggested 
a high sensitivity of humans to LDR exposures. LDR also alters 
gene expression through epigenetic regulation; global methylation 
levels were lower and chromosome aberrations higher in radiation-
exposed workers than that in controls (Lee et al., 2015). Although 
LDR-induced ROS in humans has not been that well-studied, 
individuals exposed to LDR (0.004  Gy/year) showed increased 
H2O2 production and antioxidant expression, and their cells 
showed susceptibility to apoptosis (Russo et  al., 2012).

Studies on people exposed to LDR after the Chernobyl nuclear 
power plant disaster showed that LDR  >  0.01  Gy increased 
the expression of cytokine receptors and growth factors in blood 
monocytes, which suggested LDR induces the inflammatory 
responses (Albanese et al., 2007). The importance of LDR-induced 
biological aberrations was also supported by analyses of severe 
chronic symptoms presented by individuals exposed to the 
radiation. An epidemiological investigation about the effects of 
LDR – by European project toward low dose research toward 
multidisciplinary integration (DoReMi) – revealed that the risk 
of leukemia and solid tumors increased in response to exposure 
to LDR  <  0.1  Gy, and that the risk of pediatric leukemia, brain 
tumor, and cardiovascular disease increased after CT scans with 
a radiation strength of 0.03–0.06  Gy (Pearce et  al., 2012; Hall 
et al., 2017). In addition, the Chernobyl accident victims showed 
that enhanced CAP-Gly domain-containing linker protein  
2 (CLIP2) expression derived from chromosomal mutation in 
7q11.23 region (Kaiser et al., 2016). In the context of physiological 
malfunction, chronic LDR exposure in contaminated region 
resulted in increased microvessel density through stabilization 
of hypoxia-inducible factor-1 alpha via the activation of Ras/
Raf signaling (Romanenko et  al., 2012). Hormone levels,  
including those of thyroxin, cortisol, thromboxane B2, growth 
hormone, cAMP, cGMP, and 6-ketoprostaglandin F1, were  
reportedly altered upon LDR exposure in recovery workers  
working at the site of the Chernobyl accident (liquidators;  
Souchkevitch and Lyasko, 1997).

Although these studies highlighted the significant involvement 
of LDR in various symptoms, the underlying molecular 
mechanisms remain elusive due to the lack of studies about 
the biological responses and markers of LDR exposure. In the 
following section, we  have listed and summarized the recent 
experimental studies on LDR exposure for a better understanding 

Abbreviations: BM-MSC, Bone marrow mesenchymal stem cell; COL1A1, Collagen 
type I  alpha 1; CT, Computed tomography; ECM, Extracellular matrix; ERK, 
Extracellular signal-regulated kinases; G-CSF, Granulocyte-colony stimulating 
factor; H2AX, H2A histone family member X; HDR, High dose radiation; HIF-1α, 
Hypoxia-inducible factor-1 alpha; HPC, Hematopoietic cell; HPRT, Hypoxanthine-
phosphoribosyltransferase; HUVECs, Human umbilical vein endothelial cells; IFN, 
Interferon; IL, Interleukin; IR, Ionizing radiation; LDR, Low dose radiation; NF-kB, 
Nuclear factor kappa-light-chain-enhancer of activated B cells; ROS, Reactive oxygen 
species; SOD, Superoxide dismutase; TGF-β, Transforming growth factor beta.
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of the biological roles of the LDR-specific markers. Although 
the conditions of irradiation are quite different in each of 
these mice and cell models, most studies have reported the 
organ-specificity of LDR-induced biological effects. Therefore, 
we  classified the results based on the tissues of interest with 
descriptions of the LDR doses used.

THE ORGAN-SPECIFIC EFFECTS OF 
LDR IN CELL AND MOUSE MODELS

Peripheral Blood Cells
The alterations in biological markers in blood are widely used 
for disease diagnosis due to high sample accessibility and 
variety. Therefore, many studies aimed at identifying the biological 
markers and studying the effects of LDR exposure used blood 
specimens. Collective analysis of peripheral blood cells is useful 
due to its availability. In an analysis of whole white blood 
cells, exposure to LDR < 0.5 Gy resulted in increased expression 
of DNA damage-inducible genes (Ishihara et  al., 2016). In 
particular, it was found that the expression of Ku70, Ku80, 
and H2A histone family member X (H2AX) – but not that 
of γH2AX – was induced in peripheral blood cells upon 
prolonged LDR exposure in a rat model (Zhang et  al., 2016b). 
This was supported by another study that demonstrated increased 
DNA strand breaks, oxidative base damage, and chromosomal 
aberrations with no changes in the amount of oxidized nucleic 
bases, following exposure to LDR (0.05 and 0.1  Gy) in human 
blood cells (Sudprasert et al., 2006). As the expression of DNA 
repair genes, including that of human 8-oxoguanine DNA 
N-glycosylase 1 (hOGG1) and X-ray repair cross complementing 
1 (XRCC1), was downregulated by LDR (0.05  Gy) – which 
further decreased in a dose-dependent manner – LDR was 
suggested to enhance DNA damage and reduce DNA repair 
capacity in peripheral blood cells. In humoral immunity, LDR 
exposure decreased white blood cell and platelets counts along 
with the number of CD3+, CD4+, and CD8+ T cells and CD4+/
CD8+ ratio in peripheral blood cells (Zhang et  al., 2016b). In 
addition, LDR (0.3–0.7  Gy) reportedly reduced leukocyte/
endothelial adhesion through inducing the expression of 
transforming growth factor beta (TGF-β) and interleukin 6 
(IL-6), and inhibited leukocyte infiltration into inflammatory 
site (Roedel et al., 2002). Taken together, LDR could significantly 
regulate the status of peripheral blood cells by inducing DNA 
aberrations, suppressing activation, reducing viability, and perhaps 
inhibiting immunogenicity of peripheral blood cells.

Immune Cells
Having discussed the effects of LDR on whole peripheral blood 
cells, we  focused on studies performed using sorted immune 
cells or cell lines. These studies present information regarding 
cell type-specific molecular events and signaling pathways involved 
in LDR responses in immune cells. In bone marrow mesenchymal 
stem cells (BM-MSCs), LDR (0.1  Gy) slowed the expansion of 
BM-MSCs and induced the differentiation of hematopoietic cells 
(HPCs) into myeloid progenitor cells (CD34+ CD38+ cells) 

through increased expression of IL-6 and decreased expression 
of FMS-like tyrosine kinase 3 ligand (Flt3L; Novershtern et  al., 
2011; Fujishiro et  al., 2017). In contrast, LDR (0.1–0.2  Gy) 
promoted the proliferation of BM-MSCs in a dose-dependent 
manner (Wu et  al., 2011). Further, LDR (0.025, 0.075, and 
0.1  Gy) enhanced the proliferation and mobilization of HPCs 
into peripheral blood through increased granulocyte-colony 
stimulating factor (G-CSF) expression in a mouse model 
(Li et  al., 2004). Although these results could not explain the 
regulation of proliferation in bone marrow stem cells, it is 
commonly believed that LDR enhances hematopoiesis through 
increased secretion of differentiating cytokines.

Innate immunity plays a major role in establishing primary 
defense mechanisms against antigens via inducing the 
inflammatory response, detecting foreign cells and phagocytosis, 
and presenting the antigens to adaptive immune cells. Therefore, 
a change in innate immune cell activity has a direct effect on 
the regulation of systemic immune responses (Zhang and 
Mosser, 2008). In microglial cells, LDR  <  0.5  Gy was found 
to reduce oxidative stress by activating superoxide dismutase 
(SOD) and suppressing the formation of mitochondrial 
permeability transition pore (mPTP; Betlazar et al., 2016). This 
is consistent with findings from another study that showed 
that LDR (0.25 and 0.5  Gy) induced glutathione expression 
through activation of the activator protein 1 and NF-kB pathway 
in macrophages (Kawakita et  al., 2003). LDR  <0.5  Gy reduced 
the expression and secretion of IL-1β, IL-6, and tumor necrosis 
factor α (TNF-α) in macrophages (Li et  al., 2017). In addition, 
LDR exposure also resulted in reduced p65 and extracellular 
signal-regulated kinase (ERK) phosphorylation, suggesting that 
LDR suppresses the dispersion of macrophages. Several studies 
have also demonstrated the significant roles of LDR in the 
regulation of mast cell activation. LDR  <  0.5  Gy had no 
cytotoxic effects on mast cells, but resulted in reduced cytokine 
expression (TNF-α, IL-4, and IL-13), with subsequent suppression 
of allergic response (Joo et  al., 2015). Consistently, 
LDR  <  0.05  Gy reduced histamine, IL-4, TNF-α, and beta-
hexosaminidase expression while LDR  <  0.5  Gy suppressed 
migration and activation of mast cells through downregulation 
of nuclear receptor subfamily 4 group A member 2 (Nr4A2; 
Joo et  al., 2012; Song et  al., 2019). Taken together, studies 
show that the exposure of innate immune cells to LDR can 
lead to the suppression of immunity through regulatory imbalance 
in the levels of inflammatory cytokines and oxidative stress.

On the other hand, investigations regarding the effects of 
LDR on adaptive immune cells are limited. One study 
demonstrated that LDR (0.05 Gy) activated T cells by increasing 
interferon γ (IFN-γ), IL-2 expression, and differentiation rates, 
even in immune-suppressive environments (Chen et  al., 2011, 
2014b). Heat shock protein 70 – whose expression is increased 
by LDR – could aid the delivery of antigenic peptides to T 
cells via indirect antigen presentation pathways (Multhoff et al., 
2015). In B cells, LDR (0.1  Gy) reportedly induced expression 
of miRNAs including let7a, miR-15b, miR-16, miR-21, and 
miR-23b, which commonly target the lipid biosynthetic enzyme, 
glycerol-3-phosphate acyltransferase (GPAT; Tabe et  al., 2016). 
As the expression of GPAT correlates with the immunogenic 
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activity of B cells, LDR might help B cell in acquiring immunity. 
A transcriptome analysis confirmed LDR-induced (0.05  Gy) 
expression of IFN-γ, IL-4, and IL-6 (Cho et  al., 2018). In the 
same study, LDR also induced the expression of genes involved 
in mRNA translation, mitochondrial function, cell cycle 
regulation, and cytokine induction. These studies demonstrated 
that LDR induced acquisition of immunity of T and B cells 
through regulation of both intracellular gene expression and 
cytokine expression. Given that these findings clearly contradict 
the findings of studies conducted in innate immunity cells, 
more strictly-controlled investigations are warranted to elucidate 
the roles of LDR in immunity.

Skin
The skin is the primary recipient of external radiation, and 
many studies have investigated molecular alterations in skin 
models after LDR exposure. In HaCaT cells, LDR (0.1  Gy) 
induced p21 expression and increased keratinocyte differentiation 
(Hahn et  al., 2016). However, in another study, LDR  <  0.1  Gy 
increased the differentiation of HaCaT cells, but suppressed 
p21 expression, remaining the disparity of LDR-induced survival 
changes in HaCaT cells (Son et  al., 2019). In a study on the 
effects of LDR on the survival of HaCaT cells, 0.05 and 0.5 Gy 
of LDR was found to upregulate the expression of TP53, BAX, 
BCL-2, and caspases 2 and 6, leading to cell cycle arrest and 
transduction of pro-apoptotic signals (Furlong et  al., 2013). 
LDR-induced changes were also validated by a metabolomic 
analysis, which showed that LDR (0.03 and 0.1 Gy) significantly 
altered the concentration of metabolites involved in DNA/RNA 
damage and repair and lipid and energy metabolism (Hu et al., 
2012). Although the data are few, these studies suggested that 
LDR could enhance the differentiation of keratinocytes and 
could modulate cell proliferation through cell cycle regulation 
and apoptotic gene expression.

In dermal fibroblasts, the expression of collagen type I alpha 
1 (COL1A1), matrix metalloproteinase-1, growth/differentiation 
factor 15, and Connexin 43 was found to be  increased by 
LDR  <  0.5  Gy (Glover et  al., 2003; Bae et  al., 2015; Sándor 
et al., 2015). Alterations in these molecules indicated that LDR 
could accelerate the remodeling of the dermal matrix. A 
transcriptome analysis performed in primary human skin 
fibroblast compared a list of the most distinctive signaling 
pathways responsive to LDR and HDR (Ding et  al., 2005). 
This study showed that genes related to the regulation of 
extracellular matrix (ECM) were induced by both LDR and 
HDR while genes involved in cytoskeleton and intercellular 
signaling were responsive only to LDR. Given these results, 
LDR exposure specifically enhanced gene expression related 
to ECM remodeling in dermal fibroblasts without significant 
changes in genomic DNA.

Liver
The liver is a major organ that controls systemic metabolism 
and maintains homeostasis in response to external stimuli. 
Many studies implicated LDR as a problematic factor inducing 
significant changes in liver function and deregulating some 

hepatic metabolites involved in homeostasis. Firstly, in a mouse 
model, LDR (0.25 and 0.5 Gy) increased the hepatic expression 
and urine level of hepcidin-2 even after 168  h of irradiation 
(Iizuka et  al., 2016). The increase in urine hepcidin levels was 
related with impairments in iron transport, which was consistent 
with the findings of another study that showed that X-rays 
interfered with the maintenance of iron homeostasis in a mouse 
model (Christiansen et  al., 2007).

In addition, many studies have proposed the principal roles 
for LDR in glucose and lipid metabolism. LDR (0.1 and 
0.5  Gy) inhibited the glycolytic pathway and pyruvate 
dehydrogenase to suppress glucose consumption and inhibited 
lipid metabolism via inactivation of peroxisome proliferator-
activated receptor α and got worse liver inflammation (Bakshi 
et al., 2015). Although it was not clear whether LDR enhances 
or suppresses lipid oxidation, the alterations in hepatic lipid 
metabolism in response to LDR exposure were supported by 
some in vivo studies. Accumulative LDR exposure (total 0.02 
or 0.4  Gy) significantly decreased the expression of genes 
involved in non-esterified fatty acid metabolism ontology in 
mice (Uehara et  al., 2010). In mice exposed continuously to 
LDR, LDR-induced lipid metabolic changes were also found 
to be  influenced by changes in miRNA (miR-21, miR-221, 
miR-421, miR-155, and miR-375) expression (Liang et  al., 
2018). In summary, the studies implied that LDR exposure 
induced liver specific gene alteration leading to imbalanced 
homeostasis with deregulated iron, glucose, and lipid 
metabolism in the liver.

Brain
Although the skull protects the brain from external damages, 
LDR does penetrate and affect the brain. Experimental studies 
have provided various evidences about the occurrence of brain 
damage in response to LDR exposure. A transcriptome analysis 
showed that LDR (0.1  Gy) mediated gene expression change 
related to DNA damage response, ion channels regulation, 
long-term potentiation/depression, and vascular damage in the 
brain tissues of mice (Lowe et  al., 2009). Furthermore, 
LDR-induced (0.1 Gy) DNA damage was validated by increased 
expression of genes involved in DNA repair [protein tyrosine 
phosphatase non-receptor type 1 (PTPN1), PMS2, high mobility 
group nucleosomal binding domain 2 (HMGN2), and interferon 
regulatory factor 3 (IRF3); Birger et  al., 2003; Furusawa and 
Cherukuri, 2010; Yu et  al., 2015; Mojena et  al., 2018]. These 
aberrant changes induced by LDR also led to the activation 
of survival signaling pathway in the brain. LDR  <  0.5  Gy 
induced the expression of cytokine IL-8, leading to the activation 
of NF-κB and upregulation of NF-κB target genes [intercellular 
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 
1 (VCAM-1), and cyclooxygenase-2 (COX2)] in the brain 
(Manna and Ramesh, 2005; Veeraraghavan et  al., 2011). In 
addition, NF-κB activated by LDR (0.01 and 0.5 Gy) reportedly 
increased SOD2 expression, which triggered a NF-κB-SOD2-
NF-κB positive feedback cycle (Veeraraghavan et  al., 2011; 
Bevelacqua and Mortazavi, 2018). Studies also reported that 
the damages induced by LDR resulted in neuronal defects. 
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In a mouse model, LDR (0.075  Gy) decreased cAMP levels 
and cAMP/cGMP ratio in the neurons of the hypothalamus, 
which was related to the suppression of neurite growth and 
regeneration (Wan et  al., 2001; Batty et  al., 2017). An analysis 
of mice exposed to LDR (0.05 Gy) revealed that the expression 
of pre‐ and post-synaptic markers (Synapsin 1, Synaptophysin, 
Synapse-associated protein 97, Debrin 1, and Postsynaptic 
density protein 95) was significantly increased, which may 
cause impairments in cognition and learning (Howe et al., 2019). 
This is consistent with the findings of a study that showed 
that LDR (0.5  Gy) had a profound effect on the brain, as 
evidenced by precursor cell dysfunction and defects in cognition 
(Silasi et  al., 2004). In summary, exposure of brain tissues to 
LDR can result in detrimental biological marker alterations 
mediated by oxidative stress and DNA damage, and possible 
impairment of learning and memory.

Heart
Atherosclerosis is one of the most concerning disease found 
in those exposed to IR (Barjaktarovic et  al., 2013a). Although 
a precise molecular mechanism about this phenomenon has 
not been suggested yet, we summarized previous studies covering 
the effects of LDR on the heart tissues to find a common 
conclusion. Some studies insisted that LDR induced harmful 
effects on cardiac tissue by showing that LDR (0.04  Gy) 
significantly increased oxidative stress and downstream responsive 
protein expressions in cardiac tissues (Barjaktarovic et al., 2013a; 
Horot and Tkachenko, 2017; Seawright et al., 2017). Furthermore, 
LDR-induced oxidative stress was led to non-transient alteration 
in metabolism of cardiac muscles and malfunctioning 
(Barjaktarovic et al., 2013b). In the aspect of metabolic alteration, 
two studies commonly reported LDR suppressed lipid metabolism 
with evidence that LDR (0.28 Gy) increased cardiac expression 
of miRNAs leading to lipid metabolism suppression and chronic 
internal/external LDR exposure (0.1 mGy/day) showed reduced 
lipid catabolism and mitochondrial oxidation (Orekhova and 
Modorov, 2017; Liang et  al., 2018). These oxidative stresses 
possibly mediated heart specific biological effects according to 
a study that LDR (0.2  Gy) induced DNA damage and its 
responsive genes expression in primary human fibroblast cell 
from heart (Grudzenski et  al., 2010). However, completely 
opposite results were suggested in studies to investigate the 
molecular events after LDR exposure in atherosclerosis models. 
LDR under 0.1  Gy was delivered to several cardiovascular 
disease models induced by type 1 diabetes, Apolipoprotein E 
deficiency, and doxorubicin treatment and reduced oxidative 
stress and inflammation in the heart were found in the models 
(Zhang et  al., 2011, 2016a; Mathias et  al., 2015; Jiang et  al., 
2017). Therefore, LDR may be  a threat for the cardiac tissue 
impairment, as well as relieve the cardiac damages through 
regulation of oxidative stress and pro-inflammatory responses.

Thyroid
The thyroid is one of the most sensitive organs against to 
LDR exposure from CT, occupational radiation exposures, or 
nuclear accidents (Sinnott et  al., 2010). Most of the studies 

on the thyroid have assessed the effect of exposure to radiation 
originating from CT, while a few studies reported on the 
biological events induced by experimental LDR. LDR < 0.5 Gy 
could induce increase the significant risk of mediated by ROS 
generation and DNA damage-responsive expressions of γH2AX 
and p-p53 (Ser15) in the thyroid (Kanagaraj et  al., 2015; 
Kurashige et  al., 2017; Visweswaran et  al., 2019).

These damages were validated by histological changes (increase 
in thyroid gland follicle size, nucleic size, colloid density, and 
induction of hemorrhage) and functional changes (reduced 
thyroid hormone synthesis and secretion) in mouse models 
(Nadol’nik et al., 2003, 2005; Pavlov et al., 2013). LDR-induced 
thyroid dysfunctions were also supported by the studies, 
demonstrating unique effects of LDR in autoimmune thyroiditis 
mouse models. In these studies, LDR (0.5  Gy) consistently 
promoted the development of thyroiditis through increased 
autoimmunity; these findings are similar those observed in 
patients exposed to radiation (Nagayama et  al., 2008, 2009). 
Conversely, LDR < 0.1 Gy protected the thyroid from mutation-
induced carcinogenesis (Kaushik et  al., 2019). Taken together, 
LDR can easily damage the thyroid through generation of the 
significant DNA damages, which are determined by the total 
dose of radiation.

Lung
Many studies have shown that the lung ranks among the organs 
that are most resistant to LDR damage. LDR (0.05–0.6  Gy) 
did not induce significant biological damage in the lung (Sypin 
et  al., 2003; Kim et  al., 2007; Jangiam et  al., 2018; Puukila 
et al., 2019). Although many studies opposed it through showing 
LDR (0.1 and 0.2  Gy) reportedly promoted cell death, 
inflammation, ROS generation (lipid oxidation), and DNA 
damage (5-hydroxymethylcytosine); and activated damage 
responses (p53, p38, p21, ERK1/2, NF-κB, TGF-β, etc.) in the 
lung, these studies unanimously agreed that certain irradiation 
conditions resulted in less severe changes in lung than that 
in the liver and the spleen (Sypin et  al., 2003; Avti et  al., 
2005; Lee et  al., 2006; Kim et  al., 2007, 2015; Hong et  al., 
2014; Jangiam et  al., 2018). Moreover, the protective roles of 
LDR in the lung have been demonstrated in various stress 
models. In these studies, LDR up to 0.5  Gy suppressed ROS 
generation, attenuated inflammatory responses (IL-1β, IL-5, 
IL-6, and TNF-α), delayed senescence, and reduced adverse 
effects induced by HDR (Kim et  al., 2007, 2015; Hong et  al., 
2014; Liang et  al., 2016; Velegzhaninov et  al., 2018; Park et  al., 
2019; Son et  al., 2019). Given these results, the lung may 
be  more resistant to LDR exposure than other organs and 
seems to have a high threshold for LDR-induced lung specific 
biological marker alteration. Although the precise reason of 
pulmonary resistance against LDR, it is supposed to be  based 
on the lung-specific antioxidant gene expression to modulate 
oxidative stress (Kim et  al., 2018).

Spleen
The spleen consists of large number of pulps where peripheral 
blood cells get collected, activated, or removed; and molecular 
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crosstalk between the spleen and peripheral blood cells 
determines the systemic immune responses. Similar to the 
reports on LDR-regulated oxidative stress and inflammatory 
signaling in peripheral blood cells, studies on the spleen 
also reported LDR-mediated control of tissue damage. In 
mouse models, LDR (0.02 and 0.2  Gy) protected the tissue 
from oxidative stress by increasing the synthesis and recycling 
of GSH via the expression of glutamate-cysteine ligase modifier 
subunit (GCLM), GSH synthase, and glutathione peroxidase 
(Lee et al., 2013). This antioxidant effect of LDR was validated 
in other studies where LDR  <  0.1  Gy reduced following 
HDR-induced damages (Yoshida et al., 1993; Bannister et al., 
2015). Another investigation on the effect of LDR on 
splenocytes demonstrated that LDR (0.02 Gy) did not induce 
significant damage in cells, and instead slowed the rate of 
clearance and turnover of damaged cells (Bannister et  al., 
2015). As pretreatment with LDR (0.1  Gy) even attenuated 
the stress-induced inflammation of the spleen, the protective 
roles of LDR in the spleen may be  evident (Bannister et  al., 
2015; Son et  al., 2019). However, other studies reported that 
LDR  >  0.1  Gy significantly induced apoptosis in the spleen 
via inducing the expression of p53 and p21 (Lee et  al., 2006; 
Bannister et  al., 2015). A few reports on the relationship 
between the spleen and immune cells also demonstrated the 
protective effects of LDR. LDR  <  0.1  Gy increased the 
percentage of the CD4+ T cell subpopulation while dendritic 
cell and macrophage counts were reduced in response to 
short-term exposures (Song et al., 2015). However, long term 
LDR exposure reduced the percentage of the CD8+ or CD28+ 
T cell subpopulation. Interestingly, the common findings from 
these studies demonstrated a high sensitivity of the spleen 
with respect to LDR-induced effects that are not similar to 
those found in other tissues, such as brain, liver, lung, and 
testis. These results suggest that the LDR induced both 
harmful and beneficial biological effects in the spleen and 
followed a hormesis model of LDR-induced responses with 
a threshold of 0.1  Gy.

Endothelium
The endothelium refers to cells that line the inner surface of 
blood vessels and lymphatic vessels. Endothelial cells are 
composed of simple, single-layered, squamous cells that have 
direct contact with the blood and lymph. As blood cells are 
closely associated with endothelial tissues, the changes in the 
endothelium in response to LDR exposure have been discussed 
here. According to the studies, LDR was found to make human 
umbilical vein endothelial cells (HUVECs) more sensitive to 
pro-inflammatory activation. LDR  <  0.5  Gy could activate 
NF-κB signaling pathway through both increased expression 
and enhanced transcriptional activity (Prasad et  al., 1994; 
Rödel et  al., 2004; Cervelli et  al., 2014). LDR (<0.5  Gy) 
promoted the formation of pro-inflammatory environments 
by an increase in epithelial ICAM-1 expression and an activation 
of the adhesion and migration of leukocytes towards 
inflammatory sites (Voisard et  al., 2007; Cervelli et  al., 2014). 
In addition, LDR induced the expression of pro-inflammatory 

cytokines (IL-8, G-CSF, and platelet-derived growth factor-BB) 
in epithelial cells, which resulted in a microenvironment that 
is highly susceptible to inflammation (Meeren et  al., 1997; 
Schröder et  al., 2019). LDR (0.1  Gy) increased the expression 
of endothelin 1, a pro-inflammatory and fibrotic inducer, in 
HUVECs (Lanza et al., 2007). Further, LDR (0.05 and 0.072 Gy) 
was found to induce proliferation and migration through ERK 
signaling in endothelial progenitor cells; this result serves as 
an evidence for LDR-induced endothelial inflammation (Wang 
et  al., 2019). With the pro-inflammatory responses, LDR 
(<0.5  Gy) could induce double-strand breaks of DNA and 
activate DNA damage responses in endothelial cells supported 
by a microarray data (Mouw et  al., 2017). Taken together, 
LDR is implicated as a major inductor of cellular and 
environmental inflammation response and DNA damages in 
the endothelial tissue.

Osteoblast/Clast
Regulation of the balance between osteoblasts and osteoclasts 
is important for bone growth and maintenance. The best 
microstructure for bone growth is formed through repeated 
formation and absorption. In adults, highly activated osteoclasts 
in bone tissue can induce arthritis and osteoporosis through 
bone absorption and inflammation (Lee et  al., 2017). Studies 
that investigate the effects of LDR on osteoblasts and osteoclasts 
have assessed the alterations in differentiation, proliferation, 
and activity. Irradiation with LDR (<0.5 Gy) resulted in enhanced 
differentiation of osteoblasts (Chen et  al., 2014a; Lima et  al., 
2017; Yang et  al., 2017). It was evidenced by the activation 
of Wnt and NF-κB signaling transduction and the expression 
of differentiation markers [COL1A, alkaline phosphatase, 
osteocalcin (OCN), core-binding factor alpha 1, and 
osteoprotegerin; Xu et  al., 2012; Chen et  al., 2016, 2017; She 
et  al., 2016; Deloch et  al., 2018a]. In addition, LDR  <  0.5  Gy 
was found to increase the proliferation of BM-MSCs and 
osteoblasts, which led to activation of osteoblasts (Chen et  al., 
2014a; Yang et  al., 2017). With respect to osteoclast, multiple 
studies have reported that LDR (0.5  Gy) suppresses the 
differentiation into osteoclasts and bone resorbing activities, 
which led to enhanced bone formation and ameliorated arthritis 
(Deloch et  al., 2018a,b). From these studies, it seems that 
LDR protects and promotes bone growth by regulating genes 
related to supporting the proliferation of osteoblast/osteoclasts.

Testis and Ovary
The testis is a reproductive organ which must be  protected 
from mutations. Testicular tissues are highly vulnerable to 
damages induced by LDR exposure. LDR  <  0.2  Gy increased 
the levels of ROS, which leads to induction of ER stress and 
apoptosis in testicular cells of irradiated mice (Wang et  al., 
2013). Long-term LDR exposure also altered the expression 
of miRNAs to induce apoptosis through oxidative stress in 
mouse testes (Liang et  al., 2018). However, in the state of 
inflammation – in the background of type 1 diabetes – 
LDR  <  0.05  Gy has been reported to attenuate apoptosis in 
mouse testicular tissues (Zhao et al., 2010). Given these results, 
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LDR may pose a major threat to testicular tissue due to aberrant 
gene expression, despite its protective effects with respect 
to hyperinflammation.

Only few studies have assessed the changes induced by 
LDR exposure in other reproductive organs, although the 
changes reported were significant. LDR (0.05  Gy) protected 
oocytes from HDR exposure-induced DNA damage (Jacquet 
et  al., 2008). Conversely, LDR (0.1  Gy) significantly reduced 
the number of follicles as both short‐ and long-term effects 
(Kimler et  al., 2018). In addition, LDR (0.36  Gy) reduced 50% 
of the germ cells in ovaries of prenatal and neonatal mice 
(Rönnbäck, 1983). Taken together, LDR also showed hormetic 
effects in the ovary, while the effective threshold was further 
lower than that in other organs.

CONCLUSION

Determination of LDR exposure is an important problem for 
continuity of nuclear works and epidemiological analysis of 
nuclear accidents. However, the effects of LDR are subtle, 
and the absence of reliable biological markers has been 
obstacles. In this review, we summarized the biological markers 

caused by LDR in human, mouse, and cell studies for better 
understanding of the effects of LDR. Due to the limited 
studies that have investigated the changes in humans, most 
of the studies reviewed here were based on the findings in 
experimental models. The alterations of biological markers 
by LDR were summarized in Figure  1 and their related 
molecular events were listed with corresponding references 
in Table  1. By suggesting promising molecular markers 
expressed in each organ, we  look forward to further studies 
to discover the LDR specific molecular makers based on 
this review.

Although previous studies suggested that there are quite a 
few differences of the marker expressions among organs by 
LDR exposure, the molecular basis about the organ-specific 
sensitivity against LDR exposure has not been well-studied. 
We  observed that LDR generally suppressed innate immune 
system, while established pro-inflammatory environments for 
adaptive immune cells. In peripheral organs and brain, LDR 
commonly induced DNA damages and oxidative stresses, which 
led to systemic aberrations. Oppositely, hormetic effects of LDR 
were barely shown in studies about spleen, osteoblasts, and 
ovary. In a recent study, the concentration of radionuclides 
was measured in several organs of 79 cattle around the Fukushima 

FIGURE 1 | A diagram summarizing organ-specific biological markers by low-dose radiation (LDR) exposure. The molecular markers suggested in previous LDR 
studies were categorized. For each organ, the markers were enumerated following the expression change after LDR exposure and increase/decrease was marked 
as arrows (↑/↓).
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Daiichi nuclear power plant (Fukuda et  al., 2013), and the 
deposition of radionuclides was different depending on the 
organs examined. The radionuclides deposition in muscles was 
top ranked among the organs due to proximity to skin, but 
brain, which is covered by skull, showed lower deposition of 
radionuclides compared to most other organs. This result 
suggested that even with whole-body irradiation, the irradiation 
dose and the effect of LDR might vary depending on the 
location of the organ. Collectively, a convoluted understanding 
of the organ-specific LDR responses and sensitivity against 
LDR can be  a promising strategy to figure out the core 
molecular markers.

Although many epidemiological studies about radiation 
accident or LDR exposure have suggested the risk ratio of 
diseases, including cancers and cardiovascular diseases, they 

only could utilize the irradiation doses as a risk factor (Kreuzer 
et  al., 2015; Shore et  al., 2017; Hauptmann et  al., 2020). As 
the measuring was performed in various sites (colon, stomach, 
skin, etc.), it is difficult to interpret the epidemiological analysis 
precisely. In recent epidemiology studies, the introduction of 
associated biological markers not only enhanced the accuracy 
of the analysis but also enabled early diagnosis of the diseases 
(Sjaarda et  al., 2018; Elliott et  al., 2019). Furthermore, in the 
studies covering a stimulus and disease with organ-specific 
cytotoxicity, the significance of measuring organ-specific 
biomarkers greatly increases (Tajima et  al., 2019; Lieske et  al., 
2020). Therefore, further epidemiological LDR research is 
warranted to consider the utilization of biological markers for 
its risk estimation and pro/retrospective analysis. After all, 
we  hope this review can be  relayed to the next generation as 

TABLE 1 | Organ-specific molecular events and the markers regulated by LDR exposure.

Molecular events Organ Molecular marker LDR dose (Gy) Reference

DNA damage 
response

Liver miR-21, miR-221, miR-421, miR-155, miR-375 Chronic LDR Liang et al., 2018

Brain PTPN1, PMS2, HMGN2, IRF3 0.1
Birger et al., 2003; Furusawa and Cherukuri, 2010; 

Yu et al., 2015; Mojena et al., 2018

Heart
miR-375, miR-199a, miR-146a, miR-421, miR-
34a, miR-155, miR-185, miR-221

Chronic LDR Liang et al., 2018

Thyroid
GADD45A, ATM, TNFSF9, p-p53, γ-H2AX, 
CDKN1A, FDXR, BAX, DDB2, SESN1, BCL2, 
MDM2, TNFSF10B, PCNA

4.7–242.5 Visweswaran et al., 2019

Lung p53, p38, p21, ERK1/2, NF-κB, TGF-β 0.1, 0.2
Sypin et al., 2003; Avti et al., 2005; Lee et al., 2006; 
Kim et al., 2007, 2015; Hong et al., 2014; Jangiam 

et al., 2018

Peripheral blood cell
Ku70, Ku80, H2AX Chronic LDR Zhang et al., 2016b
8-oxodG 0.05, 0.1

Sudprasert et al., 2006
XRCC1, Hogg1 0.05

Immune response

Liver PPARα 0.02 Bakshi et al., 2015

Brain IL-8, ICAM-1, VCAM-1, Cox-2 0.5
Manna and Ramesh, 2005; Veeraraghavan  

et al., 2011

Lung IL-1β, IL-5, IL-6, TNF-α 0.5
Kim et al., 2007, 2015; Hong et al., 2014; Liang 

et al., 2016; Velegzhaninov et al., 2018; Park et al., 
2019; Son et al., 2019

Endothelia NF-κB, ICAM-1, ET-1, IL-8, G-CSF, PDGF-BB <0.5, 0.01, 0.1
Prasad et al., 1994; Meeren et al., 1997; Rödel 

et al., 2004; Lanza et al., 2007; Voisard et al., 2007; 
Cervelli et al., 2014; Schröder et al., 2019

Mast cell
TNF-α, IL-4, IL-13, Nr4a2 <0.5 Joo et al., 2015
Histamine, IL-4, TNF-α, β-HEX A <0.05 Joo et al., 2012; Song et al., 2019

BM-MSC CD34, CD38, IL-6, Flt3L 0.1 Fujishiro et al., 2017
Peripheral blood cell IFN-γ, IL-2 0.05 Chen et al., 2011, 2014b
Macro-phage IL-1β, IL-6, TNF-α <0.5 Li et al., 2017

B cell
Let7a, miR-15b, miR-16, miR-21, miR-23b, 
IFN-γ, IL-4, IL-6

0.05, 0.1 Tabe et al., 2016; Cho et al., 2018

Oxidative stress 
response

Lung IL-1β, IL-5, IL-6, TNF-α 0.5
Kim et al., 2007, 2015; Hong et al., 2014; Liang 

et al., 2016; Velegzhaninov et al., 2018;  
Son et al., 2019

Spleen GSH, GCLM, GS, GPx 0.02, 0.2 Lee et al., 2013
Testis miR-199a, miR-193a, miR-375, miR-185 Chronic LDR Liang et al., 2018
Macro-phage SOD, GSH, AP-1, NF-κB 0.25, 0.5 Kawakita et al., 2003; Betlazar et al., 2016

Cell proliferation
Skin

p21, TP53, BAX, BCL-2, Caspase-2,  
Caspase-6

0.05, 0.1, 0.5
Furlong et al., 2013; Hahn et al., 2016;  

Son et al., 2019

Osteoblast/clast COL1A, ALP, OCN, Cbfa1, OPG Chronic LDR
Xu et al., 2012; Chen et al., 2016, 2017;  

She et al., 2016; Deloch et al., 2018a

ECM remodeling Skin COL1A1, MMP1, GDF-15, Connexin43 <0.5
Glover et al., 2003; Bae et al., 2015;  

Sándor et al., 2015
Iron metabolism Liver Hepcidin-2 0.25, 0.5 Iizuka et al., 2016
Synapto-genesis Brain Syn1, Syp, SAP97, Dbn1, PSD-95 0.05 Howe et al., 2019
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an inspiration for further research to find out LDR-specific 
molecular markers based on biological basis.
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